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Quantum quench dynamics of the Bose-Hubbard model at finite temperatures
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We study quench dynamics of the Bose-Hubbard model by exact diagonalization. Initially, the system is at
thermal equilibrium and of a finite temperature. The system is then quenched by changing the on-site interaction
strength U suddenly. Both the single-quench and double-quench scenarios are considered. In the former case,
the time-averaged density matrix and the real-time evolution are investigated. It is found that though the system
thermalizes only in a very narrow range of the quenched value of U , it does equilibrate or relax well into a
much larger range. Most importantly, it is proven that this is guaranteed for some typical observables in the
thermodynamic limit. In order to test whether it is possible to distinguish the unitarily evolving density matrix
from the time-averaged (thus time-independent), fully decohered density matrix, a second quench is considered.
It turns out that the answer is affirmative or negative depending on whether the intermediate value of U is zero
or not.
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I. INTRODUCTION

Out-of-equilibrium dynamics following a quantum quench
is intensively studied at present. The theme is pursued
primarily along two intertwined lines. The first one is about
the equilibration and thermalization mechanism of a quantum
system [1–11], a fundamental yet still open issue in statistical
physics. The second one is about the the real-time dynamical
behavior of a many-body system [12–17], which is highly
nontrivial in the regime where the quasiparticle picture breaks
down.

Among all the models investigated so far, the Bose-Hubbard
model takes a special position. As a paradigmatic strongly
correlated model, it can be realized accurately with cold
atoms in optical lattices, and particularly, the parameters
can be controlled (e.g., changed suddenly) to a high degree
[18–20]. This nice property makes it an ideal candidate for
studying quantum quench dynamics both theoretically and
experimentally. Up to now, in the few theoretical works on the
quench dynamics of the Bose-Hubbard model [3–6,14,15], the
state of the system before the quench is always assumed to be
the ground state of the initial Hamiltonian. That is, the system
is assumed to be at zero temperature initially. However, in
this paper we shall start from a thermal equilibrium state. One
should note that this scenario is actually more experimentally
relevant (certainly, it is also of great academic interest in its
own right) because, in current experiments, one generally
does not get a single tube of cold atoms but instead a
two-dimensional array of one-dimensional lattices for the cold
atoms [20]. In other words, an ensemble of one-dimensional
Bose-Hubbard models is obtained in one shot. Moreover, in
view of the fact that the cold atoms are at finite temperatures
necessarily [21,22], it is reasonable to start from a thermal
state described by a canonical ensemble density matrix [see
Eq. (2) below].

As emphasized by Linden et al. [23], in the pursuit
of thermalization, it is important to distinguish the two
closely related but inequivalent concepts of equilibration
and thermalization. The latter is much stronger and has the
trademark feature of the Boltzmann distribution, whereas the

former refers only to the stationary property of the density
matrix of a (sub)system or some physical observables. It
is absolutely possible that a system equilibrates but without
thermalization. This is actually the case for the Bose-Hubbard
model. As revealed both in previous works (zero-temperature
case) [4,5] and in the present paper (finite-temperature case),
the Bose-Hubbard model thermalizes only if the quench
amplitude is not too large, at least at the finite sizes currently
accessible. However, it will be shown below that, in a much
wider range of parameters, some generic physical observables
equilibrate very well. Among them are the populations on
the Bloch states, which are readily measured by the typical
time-of-flight experiment [24]. Remarkably, this is actually
guaranteed for these quantities in the thermodynamic limit,
i.e., when the size of the system gets large enough.

The equilibration behavior of the physical observables
poses a question. One is ready to recognize that the equi-
libration of the physical observables is largely an effect
of interference cancellation instead of any dephasing or
decoherence. Actually, the density matrix evolves unitarily,
and in the diagonal representation of the Hamiltonian, its
elements simply rotate at constant angular velocities. A natural
question is then, does the time dependence of the density
matrix have any chance to manifest itself, given that it is almost
absent in the average values of the physical observables?
This leads us to consider giving the system a second quench.
The concern is, would the system yield different long-time
behaviors if the second quench comes at different times? It
turns out that the answer depends on whether the intermediate
Hamiltonian is integrable or nonintegrable. In the former case,
the density matrix shows repeated appreciable recurrences, and
thus the dependence on the second quench time is apparent. In
the latter case, on the contrary, the density matrix shows no sign
of recurrence, and quantitatively similar long-time dynamics
is observed for quenches at different times.

This paper is organized as follows. In Sec. II, the setting of
the problem and the basic approaches are given. In Sec. III, the
dynamics after a single quench is studied. The time-averaged
density matrix and the real-time evolution of some physical
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observables are investigated in detail. Based on the observation
in this section, we proceed to study the scenario of a second
quench in Sec. IV. Finally, we summarize the results in Sec. V.

II. BASIC FORMALISM

The time-dependent Hamiltonian of the Bose-Hubbard
model is (h̄ = kB = 1 throughout this paper)

H (t) = −J

M∑
l=1

(a†
l al+1 + a

†
l+1al) + U (t)

2

M∑
l=1

a
†
l a

†
l alal . (1)

Here M is the number of sites (the total atom number will
be denoted as N ), and a

†
l (al) is the creation (annihilation)

operator for an atom at site l. Note that here periodic boundary
condition is assumed. The parameters J and U are the
nearest-neighbor hopping strength and the on-site atom-atom
interaction strength, respectively. The dynamics of the system
depends only on the ratio U/J ; thus we will fix J throughout
and set it as the energy scale. We say the system is quenched if
U is changed suddenly at some time from one value to another.
Experimentally, for cold atoms in an optical lattice, this can
be realized by using the Feshbach resonance.

Assume that, initially, the parameter U is of value Ui (the
corresponding Hamiltonian is denoted as Hi) and the system is
at thermal equilibrium and of inverse temperature βi = 1/Ti .
Denote the mth eigenvalue and eigenstate of Hi as Ei

m and
|ψi

m〉, respectively. The initial density matrix of the system is
then

ρi = 1

Zi

exp(−βiHi) =
D∑

m=1

pi
m

∣∣ψi
m

〉〈
ψi

m

∣∣, (2)

where Zi = ∑D
m=1 exp(−βiE

i
m) is the partition function and

pi
m = 1

Zi
exp(−βiE

i
m) is the probability of occupying the

eigenstate |ψi
m〉. Note that D = (M+N−1)!

(M−1)!N! is the dimension
of the Hilbert space H. The density matrix at time t

is given formally as ρ(t) = U (t)ρiU
†(t), with U (t) =

T exp[−i
∫ t

0 dτH (τ )]. Here T means time ordering.
The Hamiltonian H (t) is invariant under the translation

(al,a
†
l ) → (al+1,a

†
l+1). This indicates that the total quasimo-

mentum of the system q = ∑M−1
k=0 ka

†
kak (mod M), where

a
†
k = 1√

M

∑M
l=1 exp(i2πkl/M)a†

l is the creation operator for
an atom in the kth Bloch state, is conserved. This property
implies that if the full Hilbert space is decomposed into M

subspaces according to the values of q, i.e., H = ⊕M−1
q=0 H(q),

the Hamiltonian and the density matrix are always block diag-
onal with respect to the q subspaces, i.e.,H (t) = ⊕M−1

q=0 H (q)(t)

and ρ(t) = ⊕M−1
q=0 ρ(q)(t) [25,26]. It is then possible to study

the dynamics in each subspace individually (which saves a lot
of computational resources) and then gather the information
together (note that, for the expectation values of quantities
like a

†
kak , there are contributions from each subspace). Here

it is necessary to mention that though we should have done
the gathering or averaging process for many quantities studied
below, we would rather not do so because it is observed that the
system behaves quantitatively similarly in all the q subspaces
[27]. A single q subspace captures the overall behavior very
well. Therefore, our strategy is to focus on a specific q subspace

(q = 1, actually) and take the normalization tr[ρ(q)(t)] = 1. It
is understood that in the following all Hamiltonians, density
matrices, eigenvalues, and eigenstates refer to those belonging
to this specific q subspace. We will drop the superscript q for
notational simplicity.

III. A SINGLE QUENCH

Suppose at time t = 0 the system is quenched by changing
the value of U from Ui to Uf1 , which is then held constatnt. The
Hamiltonian later will be denoted as Hf1 , and the associated
eigenvalues and eigenstates will be denoted as E

f1
n and |ψf1

n 〉,
respectively. In the representation of {|ψf1

n 〉}, the density
matrix at time t is then simply (in this paper 〈· · ·〉 means
quantum state averaging, while · · · means time averaging)

ρ(t) =
Dq∑

m,n=1

e−i(E
f1
m −E

f1
n )t

〈
ψf1

m

∣∣ρi

∣∣ψf1
n

〉∣∣ψf1
m

〉〈
ψf1

n |, (3)

where Dq � D/M is the dimension of the specific q subspace.
It will prove useful to define the time-averaged density matrix

ρ̄ = lim
T →∞

1

T

∫ T

0
dtρ(t)

=
Dq∑

m,n = 1

E
f1
m = E

f1
n

〈
ψf1

m

∣∣ρi

∣∣ψf1
n

〉∣∣ψf1
m

〉〈
ψf1

n

∣∣. (4)

The time-averaged density matrix is of great relevance for our
purposes. First, it is both time independent and variable inde-
pendent. Second, the time-averaged value of an arbitrary oper-
ator O is given simply by 〈O〉 ≡ limT →∞ 1

T

∫ T

0 tr[ρ(t)O]dt =
tr(ρ̄O). That is, the time-averaged density matrix contains the
overall information of the dynamics of the system. Actually,
as we will see later, for some quantities that fluctuate little in
time, the time-averaged density matrix tells almost a complete
story. Third, the process of averaging over time is a process
of relaxation in that the entropy associated with ρ̄ is definitely
no less than that with the density matrix at an arbitrary time,
i.e., S(ρ̄) � S(ρ(t)) = S(ρi). This is a corollary of the Klein
inequality [31] and is reasonable since ρi contains all the
information of ρ̄, while the inverse is invalid. The equality
also means that ρ(t) will never be damped, and time averaging
is essential.

Note that when Uf1 	= 0, generally, there is no degeneracy
between the eigenvalues of Hf1 . Therefore the time-averaged
density matrix is simply diagonal in the basis of {|ψf1

n 〉}, i.e.,

ρ̄ =
Dq∑

m=1

〈
ψf1

m

∣∣ρi

∣∣ψf1
m

〉∣∣ψf1
m

〉〈
ψf1

m

∣∣

≡
Dq∑

m=1

pm

∣∣ψf1
m

〉〈
ψf1

m

∣∣, (5)

with

pm = 〈
ψf1

m

∣∣ρi

∣∣ψf1
m

〉 = 1

Zi

Dq∑
n=1

e−βiE
i
n

∣∣〈ψi
n

∣∣ψf1
m

〉∣∣2
(6)
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being the population of the eigenstate |ψf1
m 〉. In the special case

of Uf1 = 0, the Hamiltonian reduces to Hf1 = ∑M−1
k=0 ωka

†
kak ,

with ωk = −2J cos(2πk/M). In this case, each eigenvalue is
of the form

∑
k nkωk , under the constraints

∑
k nk = N and∑

k knk ≡ q (mod M), and there can be level degeneracy.
However, we can always make some unitary transforms in
each degenerate subspace to make sure that ρ̄ is in the form
of (5).

A. Time-averaged density matrix

Since the time-averaged density matrix provides the overall
information of the dynamics of the system, we look into it first.
In Fig. 1, we consider the scenario of starting from the same
initial condition (Ui/J = 1, βiJ = 0.3) but quenching to six
different values of Uf1 [28,29]. In each panel, the logarithms
of pm are plotted against the eigenvalues E

f1
m (red dots). We

have compared ρ̄ with a canonical ensemble density matrix
ρc, which is defined as

ρc = e−βf1 Hf1

tr(e−βf1 Hf1 )
(7)

under the condition tr(ρcHf1 ) = tr(ρ̄Hf1 ) = tr(ρiHf1 ). Here
βf1 , the final inverse temperature, is the only fitting parameter.
In Fig. 1, the green dots, which form a straight line, correspond
to ρc.

We see that ρ̄ exhibits many interesting features. In the case
of Uf1 = 0, ρ̄ agrees well with ρc throughout the spectrum.
In the case of Uf1/J = 2, ρ̄ agrees well with ρc in the lower
part of the spectrum, while it deviates from it significantly
in the higher part of the spectrum. But overall the two are
in good agreement since the weight of the higher part is

small. The case of Uf1/J = −1 is somewhat the reverse of
the Uf1/J = 2 case. It is in the lower part of the spectrum that
ln pm fluctuates wildly. In the higher part ln pm goes almost
linearly. Since the weight is dominated by the lower part, ρc is
not a good approximation of ρ̄. In the strong interaction limits
of Uf1/J = ±10, another feature takes place. As a whole, the
red dots do not fall close to a single straight line, but they do
form some stripes, and the stripes are almost parallel, with a
common slope close to βi . It is easy to recognize that each
stripe corresponds to a bump in the density of states of Hf1 .

In order to understand the various features in Fig. 1, we
rewrite pm as

pm = 1

Zi

∫ +∞

−∞
dEe−βiEPm(E), (8)

where Pm(E) = ∑
n |〈ψi

n|ψf1
m 〉|2δ(E − Ei

n) is a probability
distribution [30] associated with |ψf1

m 〉. Note that Pm(E) is an
intrinsic property of |ψf1

m 〉 independent of βi . We have tried to
characterize the distribution Pm(E) by its mean µm, its second
central moment σ 2

m, and its third central moment κ3
m, which

are defined as follows:

µm =
∫

dEPm(E)E = 〈
ψf1

m

∣∣Hi

∣∣ψf1
m

〉
, (9a)

σ 2
m =

∫
dEPm(E)(E − µm)2, (9b)

κ3
m =

∫
dEPm(E)(E − µm)3. (9c)

These quantities are presented in Fig. 2. These data enable
us to understand Fig. 1. Suppose for a distribution Pm(E) with
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FIG. 1. (Color online) Semilog plots of pm versus the eigenvalues Ef1
m (red dots). The initial state is the same for all the plots, with

parameters (M,N,q,Dq ) = (9,9,1,2700), Ui/J = 1, and βiJ = 0.3. The quenched values of U and the fitting inverse temperatures βf1 are
shown at the top of each plot. For comparison, the data with ρc (green dots) and p′

m (blue dots) are also shown. The black lines at the bottom
depict the coarse-grained density of states of Hf1 (they are just for reference and do not correspond to the vertical axis).
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(µm,σm) we define a Gaussian distribution

P ′
m(E) = 1√

2πσm

exp

(
− (E − µm)2

2σ 2
m

)
, (10)

which shares the same mean and variance with Pm but has a
vanishing third central moment. Replacing Pm in Eq. (8) by
P ′

m, we get an approximation of pm,

p′
m = 1

Zi

exp

(
−βiµm + 1

2
β2

i σ
2
m

)
. (11)

In Fig. 1, p′
m are represented by the blue dots. We see that,

as a whole, p′
m is a good approximation of pm, except at

the lower part of the spectrum in Fig. 1(b). The reason is
clear: the κm there are the largest throughout all the plots,
which indicates that the corresponding distributions Pm are
wide and asymmetric and thus cannot be well approximated
with a Gaussian distribution.

Now we can understand the good fittings in Figs. 1(c) and
1(d). In these two cases, µm is almost a linear function of E

f1
m ,

and σ 2
m does not vary very much; therefore the exponent in

Eq. (11) goes almost linearly with E
f1
m . The situation is similar

in the higher part of the spectrum in Fig. 2(b), and therefore
we have a good linear fitting for the higher spectrum part in
Fig. 1(b). In contrast, in Fig. 2(e), µm varies wildly for adjacent
E

f1
m ; therefore we see in Fig. 1(e) large fluctuations about the

straight line. As for the parallel stripes in Figs. 1(a) and 1(f),
they are also understandable in terms of Figs. 2(a) and 2(f),
where µm form parallel stripes. It is numerically checked and
can be argued that the slopes of the stripes are almost unity.
Actually, we have

Ef1
m = 〈

ψf1
m

∣∣Hf1

∣∣ψf1
m

〉
= 〈

ψf1
m

∣∣Hi |ψf1
m

〉 + (Uf1 − Ui)
〈
ψf1

m

∣∣Hint

∣∣ψf1
m

〉
, (12)

where Hint = 1
2

∑M
l=1 a

†
l a

†
l alal . Note that in the limit of large

|Uf1/J |, the kinetic term in the Hamiltonian (1) can be
viewed as a perturbation to the second interaction term. The
spectrum of the latter is highly degenerate and consists of
integral multipliers of Uf1 . The effect of the perturbation
is to mix up the eigenstates of the interaction Hamiltonian
with different eigenvalues and smooth the spectrum. That is
why there are bumps in the density of states in Figs. 1(a)
and 1(f), and two adjacent bumps are placed roughly Uf1

apart. By perturbation theory, it is easy to show that the
second term in Eq. (12) varies on the order of J 2/|Uf1 | � J

among eigenstates belonging to the same bump. Therefore,
approximately, we have µm = E

f1
m − const for each bump,

and this explains why the stripes in Figs. 2(a) and 2(f) are of
slope unity. In turn this explains [with the help of Eq. (11)]
why we have the parallel stripes in Figs. 1(a) and 1(f) and
especially why the slopes are approximately βi .

It seems in Fig. 1 that ρc is a good approximation of ρ̄

only when |Uf1 − Ui | is small. In Fig. 3, we employ the tools
of distance D, fidelity F , and relative entropy Srel (for the
definitions, see [31]) between two density matrices to quantify
the difference or resemblance between ρc and ρ̄. In Fig. 3
it is clear that only in the range of |Uf1 − Ui |/J � 1 do we
have (D,1 − F,Srel) � 1, which means ρ̄ is close to ρc. In
the subsequent section we will see that only in this range do
the expectation values of some generic physical observables
according to ρ̄ and ρc agree well.

B. Time evolution

We now proceed to study the time evolution of the system
after the quench. In Fig. 4, we show the time evolution of
the populations on the Bloch states 〈a†

kak〉. The six plots
correspond to those in Fig. 1. For all Uf1 and all k, 〈a†

kak〉
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FIG. 2. (Color online) The parameters µm, σm, and κm [see Eq. (9)] characterizing the probability distributions Pm(E) associated with the
eigenstates of Hf1 . Note that Figs. 2(a)–2(f) correspond to Figs. 1(a)-1(f), respectively.
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FIG. 3. (Color online) The distance D and fidelity F between ρc

and ρ̄ and the relative entropy of ρc with respect to ρ̄ as functions of
Uf1 . The initial state is the same as in Fig. 1.

equilibrate to their average values after a transient time, which
is relatively longer in the cases of Uf1/J = −1 and 5. In the
special case of Uf1 = 0, there is no fluctuation at all. The
reason is simply that, in this case, a

†
kak are conserved. We

see that the time-averaged values of 〈a†
kak〉 predicted by ρ̄

(stars) and ρc (squares) agree relatively well in the cases of
Uf1 = 0 and 2. This is consistent with the closeness between
ρ̄ and ρc for these two values of Uf1 , as revealed in Figs. 1
and 3. Here we would say the system thermalizes well in the
Uf1/J = 2 case; however, we would refrain from making the
same statement for the Uf1 = 0 case. The reason will be clear
in the next section.

Figure 4 shows a finite-sized system with some specific
initial conditions. However, here we have some general state-
ments. We argue that in the thermodynamic limit (M,N → ∞
with N/M fixed), as long as initially the system is at finite-
temperature thermal equilibrium and described by a canonical
ensemble density matrix such as (2), we should see steady
behavior of the physical variables such as a

†
kak .

Let A = a
†
kak and A = ∑

mn Amn|ψf1
m 〉〈ψf1

n | in the repre-
sentation of {|ψf1

m 〉}. The ensemble-averaged value of A at
time t is

a(t) =
∑
mn

ρmnAnm exp
[ − i

(
Ef1

m − Ef1
n

)
t
]
, (13)

where ρmn ≡ 〈ψf1
m |ρi |ψf1

n 〉. Its time-averaged value is

ā = lim
T →∞

1

T

∫ T

0
dta(t) =

∑
m

ρmmAmm. (14)

Here note that, for a generic Hamiltonian Hf1 , there is no level
degeneracy. The time-averaged value of a2(t) is [32]

a2 = lim
T →∞

1

T

∫ T

0
dta2(t)

=
∑
mp

ρmmAmmρppApp +
∑
m	=n

ρmnAnmρnmAmn

=
∑
m

ρmmAmm

∑
p

ρppApp +
∑
m	=n

|ρmn|2|Amn|2

= ā2 +
∑
m	=n

|ρmn|2|Amn|2. (15)
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FIG. 4. (Color online) Time evolution of the populations on the Bloch states 〈a†
kak〉. The plots correspond to those in Fig. 1 in a one-to-one

manner. In each plot, from top to bottom, the five lines correspond to k = 0, . . . ,4. Other k are now shown because 〈a†
kak〉 and 〈a†

M−kaM−k〉
are close to each other all the time. For each line, the markers of the same color on the right-hand side indicate the average value predicted by
ρ̄ (stars) or value predicted by ρc (squares), respectively. Note that, in (b) and (e), the time span investigated is longer than in the other plots.
This is because the transient times in (b) and (e) are relatively longer.
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Note that here it is assumed that there is no degeneracy of
energy gaps. Thus we have for the variance of a(t) in time,

2a = a2 − ā2,


2a =
∑
m	=n

|ρmn|2|Amn|2 �
∑
mn

|ρmn|2|Amn|2. (16)

Since A is semipositive definite and bounded, we have
|Amn|2 � AmmAnn � N2. Thus we have


2a � N2
∑
mn

|ρmn|2. (17)

Here we note that the summation is the square of the Frobenius
norm of ρi in the representation of {|ψf1

m 〉}, which is invariant
in all representations and is preserved by an arbitrary unitary
evolution [33]. Explicitly, we have∑

mn

|ρmn|2 =
∑
mn

〈
ψf1

m

∣∣ρi

∣∣ψf1
n

〉〈
ψf1

n

∣∣ρi

∣∣ψf1
m

〉

=
∑
m

〈
ψf1

m

∣∣ρ2
i

∣∣ψf1
m

〉 =
∑
m

〈
ψi

m

∣∣ρ2
i

∣∣ψi
m

〉

=
∑
m

(
pi

m

)2
. (18)

We argue that this quantity, which depends only on the
initial state, decays exponentially with the size M . Let Ei

m

increase with m. We have

∑
m

(
pi

m

)2
< pi

1 = e−βiE
i
1

Zi

= e−βiE
i
1

e−βiFi
� e−βiαM

e−βiγM
, (19)

as M → ∞. Here in the approximately equal relation we used
the fact the ground-state energy Ei

1 of Hi scales linearly with
M as well as the free energy Fi of the initial state [34]. The
coefficients α and γ are independent of M . Moreover, it is
easy to see that α � γ for any βi , with the equality taken
only in the limit of βi = +∞ or Ti = 0+, and α − γ increases
monotonically with Ti . This makes sure that pi

1 would not
grow exponentially with M and transcend unity.

With (17) and (19), we get an upper bound for 
a,


a � cM exp(−βiθM), θ = 1
2 (α − γ ) � 0, (20)

where c is some constant. The upper bound of 
a helps us
determine an upper bound for the probability of finding a(t)
deviating away from the mean ā by a distance larger than
ε. Actually, following Reimann [35], using the Chebyshev
inequality [36], we have

Prob(|a(t) − ā| > ε) <

2a

ε2
. (21)

For a fixed value of ε, the upper bound decreases exponentially
with the size of the system according to (20). The statement
that physical variables such as a†ak will show steady behavior
in the thermodynamic limit then follows.

Here some comments are worthwhile. Though in the deriva-
tion above we have in mind a sudden quench, it is easy to see
that the conclusion actually applies to any protocol of quench.
For example, the Hamiltonian can be changed continuously
over some period (as in [14,15]) or quenched multiple times (as
in Sec. IV below) as long as after some point it is never changed
again. The reason lies in the fact that the Frobenius norm of

the density matrix ρ(t) is conserved under unitary evolutions
and thus is independent of the historical or the final values of
H (t) and is determined entirely by the initial state. As for the
operator A, only the properties of semipositive definiteness
and boundedness are used. Thus similar conclusions apply to
other operators, such as a

†
ka

†
kakak and a

†
l al or operators in other

models. Finally, it should be mentioned that the conclusion
relies on the fact that the quantity in Eq. (18) is bounded
by some exponentially decreasing function, which is the case
only at finite temperatures (βi < ∞). At zero temperature, the
quantity in Eq. (18) is always equal to unity, and thus the
problem is still open.

IV. A SECOND QUENCH: TYPICALITY

It is shown in Fig. 4 that after a finite transient time,
the physical variables equilibrate to their average values,
exhibiting minimal fluctuations. Moreover, it has been proven
that the amplitudes of the fluctuations will decrease exponen-
tially with the size of the system. Therefore, the observation
is that the system, described by the density matrix ρ(t),
is almost indistinguishable from a system described by the
time-averaged density matrix ρ̄, as far as the simple realistic
physical variables are concerned. This is remarkable because,
though ρ(t) evolves unitarily and suffers no loss of information
of ρi , it behaves as if it were fully decohered. The question is
then, to what extent can we hold onto this belief ? Is it possible
to distinguish ρ(t) and ρ̄ or ρ(t1) and ρ(t2) (t1 	= t2) by some
means? Motivated by this problem, we have considered the
scenario of giving the quenched system a second quench. That
is, after the first quench at t = 0, which changes U from Ui to
Uf1 , at time t = t1, the system is quenched again by changing
the value of U from Uf1 to Uf2 , which is then kept forever.
The concern is, would the long-time dynamics of the system
depend on the specific time t1?

Denote the Hamiltonian associated with Uf2 as Hf2 .
The density matrix of the system later is given by ρ(t) =
e−iHf2 (t−t1)ρ(t1)eiHf2 (t−t1) (for t > t1). As before, we are inter-
ested in the long-time-averaged value of ρ(t),

ρ̄t1 = lim
T →∞

1

T

∫ T

0
dtρ(t1 + t), (22)

since it has been shown and proven above that the dynamics of
the system is, to a large extent, captured by the time-averaged
density matrix. Here the subscript indicates the dependence on
the time t1. It is also useful to define the average of ρ̄t1 with
respect to t1,

� = lim
T →∞

1

T

∫ T

0
dt1ρ̄t1

= lim
T →∞

1

T

∫ T

0
dte−iHf2 t ρ̄eiHf2 t . (23)

The second equality means that � is actually the time-averaged
density matrix associated with an initial state ρ̄ [see Eqs. (4)
and (5)] and a Hamiltonian Hf2 . One purpose of defining �

is to set a reference state independent of t1.
To gain an overall idea of the dependence of the long-time

dynamics on t1, we have studied the distance between � and
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FIG. 5. (Color online) The distance D between the matrices � and ρ̄t1 (top panels) and the time-averaged values of 〈a†
kak〉 (bottom panels)

as functions of the time of the second quench t1. The dashed lines in the bottom panels indicate the average values of the corresponding solid
lines, i.e., values given by � [see Eq. (25)]. The initial state is the same as in previous figures. The parameters (Uf1 ,Uf2 ) are shown at the top
of each panel.

ρ̄t1 , D(�,ρ̄t1 ) ≡ 1
2 tr

√
(� − ρ̄t1 )2, and the time-averaged value

of 〈a†
kak〉,

〈a†
kak〉t1 ≡ lim

T →∞
1

T

∫ T

0
dt tr[ρ(t1 + t)a†

kak]

= tr(ρ̄t1a
†
kak), (24)

as functions of t1. Note that the average value of 〈a†
kak〉t1 with

respect to t1 is given by �,

lim
T →∞

1

T

∫ T

0
dt1〈a†

kak〉t1 = tr(�a
†
kak). (25)

This is another reason for defining �. The quantities D(�,ρ̄t1 )

and 〈a†
kak〉t1 are shown in Fig. 5 .Eight pairs of (Uf1 ,Uf2 ) are

examined with the same initial condition as in Fig. 1. We see

that for all cases with Uf1 	= 0, both D and 〈a†
kak〉t1 settle down

to their average values quickly. However, for the special case
of Uf1 = 0, both D and 〈a†

kak〉t1 display repeated recurrences,
without any sign of equilibration. The situation is the reverse
of that in Fig. 4, where 〈a†

kak〉 does not show any fluctuations
in the case of Uf1 = 0.

This phenomenon is due to the recurrence of the density
matrix ρ(t) to ρi [37]. From Eq. (3), we see that, in the
representation of {|ψf1

m 〉}, the mnth off-diagonal element of
ρ(t) rotates at an angular frequency of E

f1
m − E

f1
n . In the

generic case of Uf1 	= 0, the energy gaps E
f1
m − E

f1
n are

quite random and incommensurate, and thus recurrence of the
density matrix is rare. More precisely, the span between two
times when all the matrix elements of ρ(t) become (nearly)
in phase again is extraordinarily large. On the contrary, in
the special case of Uf1 = 0, all eigenvalues and hence all the
energy gaps E

f1
m − E

f1
n are integral combinations of the few

basic frequencies ωk , and thus the probability of recurrence is
much higher. To demonstrate that the sharp peaks in Figs. 5(c)
and 5(d) are due to recurrences of the density matrix ρ(t) to

ρi , we define the figure of merit of recurrence,

R(t) =
∣∣∑′

m,n ρ2
m,ne

−i(E
f1
m −E

f1
n )t

∣∣∑′
m,n ρ2

mn

, (26)

where the prime means the summation is over (m,n) such that
E

f1
m 	= E

f1
n . It is clear that 0 � R � 1 and R = 1 when and

only when all the off-diagonal elements become in phase.
In Figs. 6(a) and 6(b), which share the same parameters

as Figs. 5(c) and 5(e), respectively, we have shown R(t1)

together with D(�,ρ̄t1 ) and 〈a†
kak〉t1 . In Fig. 6(a), we see that

every time D(�,ρ̄t1 ) and 〈a†
kak〉t1 get close to their values at

t1 = 0, R(t1) shows a peak. In other words, there is a strong

positive correlation between R(t1) and D(�,ρ̄t1 ) and 〈a†
kak〉t1 .

In comparison, in Fig. 6(b), R(t1) drops quickly from unity
to less than 0.2 and remains low all the time, and in turn

D(�,ρ̄t1 ) and 〈a†
kak〉t1 do not show any recurrence. To further

consolidate the connection between the recurrence of ρ(t) and

that of D(�,ρ̄t1 ) and 〈a†
kak〉t1 , we have considered the case

of M = 6. In this case, if Uf1 = 0, all the basic frequencies
ωk (ωk = 0, ±1, or ±2J ) are commensurate, and thus there
exist perfect recurrences, as shown in Fig. 6(c). There we

see clearly that D(�,ρ̄t1 ) and 〈a†
kak〉t1 return to their original

values at t1 = 0 periodically, and this happens when and only
when R returns to unity. However, once Uf1 	= 0 is nonzero
[see Fig. 6(d)] and thus the commensurability of the energy
gaps is destroyed, the situation returns to that in Fig. 6(b).
Finally, we should mention that by extensive exploration in
the parameter space, it is found that as long as Uf1 = 0 the
positions of the major peaks [such as those in Figs. 5(c), 5(d),
6(a), and 6(c)] are insensitive to the values of (N,q,βi,Ui,Uf2 )
and are almost completely determined by the value of M . This
fact constitutes more support for the connection between the

recurrence of the density matrix and that of D and 〈a†
kak〉t1

since the basic frequencies ωk are determined only by M .
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FIG. 6. (Color online) The figure of merit of recurrence R as a function of time. Also shown are D(�,ρ̄t1 ) and 〈a†
kak〉t1

. Note the correlation
between the three in (a) and (c). In (a) and (b), the initial state is the same as in previous figures, i.e., (M,N,q,Dq ) = (9,9,1,2700), Ui/J = 1,
and βiJ = 0.3. In (c) and (d), the initial state is (M,N,q,Dq ) = (6,10,1,497), Ui/J = 1, and βiJ = 0.3. The values of (Uf1 ,Uf2 ) are given at
the top of each plot. Note that in (c), the variables are periodic in t1, with a period of 2πh̄/J . This agrees with the fact that the energy gaps
(Ef1

m − Ef1
n )/J are all integers in this case.

The fact revealed in Figs. 5 and 6 is quite interesting. The
long-time dynamics of the system is sensitive or insensitive
to the time span t1 between the two quenches depending on
whether the intermediate Hamiltonian Hf1 is integrable (Uf1 =
0) or nonintegrable (Uf1 	= 0). In the integrable case, 〈a†

kak〉t1
exhibits large fluctuations and repeated recurrences. The
system retains the memory of the initial state under the control
of the Hamiltonian Hf1 . In contrast, in the nonintegrable case,

〈a†
kak〉t1 go over to their average values (predicted by �) after

a transitory period, showing little dependence on t1 afterward.
Combined with Fig. 4, the picture is that ρ(t) evolving under
the control of a nonintegrable Hamiltonian not only yields the
expectation values of a

†
kak as if it were ρ̄ but even responds to

the second quench as if it were ρ̄.
In Fig. 7, we have checked this picture by studying the real-

time evolution of 〈a†
kak〉 with k = 0 under the double-quench

scenario. The eight plots shown correspond to those in Fig. 5.
For each pair of (Uf1 ,Uf2 ), we have studied the evolution of

〈a†
0a0〉 for several different values of t1. We see that in all the

cases with Uf1 	= 0, as long as t1 is larger than the transient
time, which can be roughly read from Fig. 5, the later evolution
of 〈a†

0a0〉 is quantitatively independent of t1. On the contrary,
in the case with Uf1 = 0, the later values of 〈a†

0a0〉 vary wildly
for different values of t1 [39].

Here it is instructive to combine Figs. 4 and 7 and compare.
In the Uf1 	= 0 cases, there is a sense of typicality [40,41]. The
density matrix ρ(t) governed by Hf1 is surely nonstationary.
However, for ρ(t) at different times, they yield almost the same
expectation values for the observables, and moreover, they
share almost the same response to the same quench. In the case
of Uf1 = 0, what Fig. 7 reveals is a good complement to that in
Fig. 4(c). It demonstrates that it is inappropriate to say that the
system thermalizes in Fig. 4(c), even though the density ma-
trices and expectation values of the observables agree, since,
according to everyday experience, a system in thermal equilib-
rium should not show any time dependence to the same kick.
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FIG. 7. (Color online) Time evolution of the population on the k = 0 Bloch state 〈a†
0a0〉 [38]. Other k show similar behavior and thus are

not shown. The plots correspond to those in Fig. 5 on a one-to-one basis. The initial state is the same as in Figs. 1 and 4. In (a)–(d), the different
t1 investigated are (0,0.35,20,40,60,70,80,90)h̄/J , while in (e)–(h), the different t1 are (0,0.35,5,10,15,20)h̄/J . Note that in each plot, the
black and green lines correspond to t1 = 0 and 0.35h̄/J , respectively.

063622-8



QUANTUM QUENCH DYNAMICS OF THE BOSE-HUBBARD . . . PHYSICAL REVIEW A 83, 063622 (2011)

V. CONCLUSIONS AND DISCUSSIONS

We have studied the quench dynamics of the Bose-Hubbard
model both analytically and numerically. The issues of ther-
malization and equilibration are investigated comprehensively.

On the thermalization side, which concerns whether the
quenched system behaves like a canonical ensemble, it is
found that this is the case only for small-amplitude quenches
(at least for the finite-sized system investigated). However,
the time-averaged density matrix does manifest many in-
teresting features in different regimes. These features are
self-consistently understood after a study of the overlaps
between the eigenstates of Hi and Hf1 . Here we would like
to say that it is urgent and would be very helpful to develop
some analytical tools so that some general relations between
the eigensystems of Hi and Hf1 can be established. These tools
and relations would also be useful to determine whether the
nonthermalization phenomenon observed is just a finite-size
effect.

On the equilibration side, where the issue is whether phys-
ical observables relax to stationary values without appreciable
fluctuations, the result is that this is indeed the case for
quantities such as 〈a†

kak〉, which are of most interest. Moreover,
it is proven analytically that for these quantities the fluctuations
in time will decay exponentially with the size of the system.
Therefore, the overall picture is that, generally, the system
equilibrates but without thermalization.

The second quench reveals something more intriguing.
First, the subsequent dynamics are dependent on or indepen-
dent of the waiting time t1 depending on whether Uf1 = 0
or not. The underlying reason is the recurrence or lack of
recurrence of the initial density matrix, which in turn has
its root in the eigenvalue statistics of the Hamiltonian Hf1 .

This effect leaves us with the impression that a nonintegrable
Hamiltonian has more “dephasing power” than an integrable
one. Possibly, it can be a tool to check the integrability of a
Hamiltonian. Second, in the case of Uf1 	= 0, it is found that
the system described by ρ(t1) responds to the second quench as
if it were ρ̄ for t1 larger than the transient time. This means that
we can take the equilibration more seriously: ρ(t1) and ρ̄ not
only yield almost the same expectation values for the generic
physical variables but also yield almost the same dynamics
after a quench. Moreover, the fact that the transient time is
short indicates that the intermediate Hamiltonian Hf1 , which
is nonintegrable, is effective in “dephasing” the initial density
matrix. In another perspective, the dynamics of the system is
sensitive to the fluctuations of U . This implies that, in future
experiments, accurate control of U would be a necessity to
interpret the results correctly.

It is instructive to compare these behaviors of the present
system with those of spin-glass systems. There, under a
somewhat similar motivation, a temperature cycle, which is
a counterpart of the double-quench here, is implemented [42].
The interesting observation is that some quantities exhibit
apparent rejuvenation and memory effects, a consequence
of the hierarchically organized quasiequilibrium states. In
comparison, here in our case, no obvious rejuvenation is
present, and the memory effect is visible only when Uf1 = 0.
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