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Quantum phase transition in an array of coupled dissipative cavities
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We study the features of superfluidand Mott-insulator states in a two-dimensional array of cavities with a
two-level atom embedded in each cavity which is strongly coupled to the cavity field and immersed in a bosonic
bath. Employing a different quasiboson approach, we show analytically how the dissipation and decoherence
influence the quantum phase transitions from two aspects and find a localized tendency. For the superfluid state,
a dynamical instability will lead to a sweeping to a localized state of photons. For the Mott-insulator state, a
dissipation-induced fluctuation will suppress the restoring of long-range phase coherence driven by interaction.
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Introduction. One of the remarkable applications of coupled
cavity arrays is to realize quantum simulators. Due to the
controllability of atomic and optical systems, it could be useful
to attack some unclear physics and to explore new phenomena
in quantum many-body systems [1–4]. In particular, recent
experimental progress in the control of optical systems [5–8]
and in the fabrication of large-scale arrays of high-Q cavities
[9,10] make these potential applications close to becoming a
reality. Moreover, theoretical proposals, including paradigms
such as the Bose-Hubbard model and effective spin model
[11–13], have been put forward and have predicted a large
quantity of novel applications [14–17]. However, the quantum
optical system is typically driven by an external laser source
and is always coupled to its environment [18–20]. These result
in effects such as dissipation, decoherence, and entanglement
[21], and bring the system out of equilibrium [22–29] and
profoundly affect the dynamics of interest [30–33]. Important
questions thus arise and need to be clarified, e.g., under
realistic experimental conditions, how would the dissipation
and decoherence behave in these open systems?

In this paper, we propose answers to the above question by
investigating the superfluid(SF)–Mott-insulator phase transi-
tion in the array of dissipative coupled cavities. We show that
the transition shares some of the features of the nondissipative
counterparts. There are still two quantum many-body states
that can be recognized as the delocalized and localized states
of photons. However, very differently, the dissipation and the
decoherence give rise to a localizing effect and drive the system
into mixed states. For the superfluid state, a nonequilibrium
dynamical instability can lead to a sweeping to a localized state
at a finite time. For the Mott-insulator state, where photons are
already localized at each lattice site, the localization holds,
but a dissipation-induced fluctuation of photon number acting
on each lattice site will suppress the restoration of long-range
phase coherence.

Model. Consider a system consisting of atoms and cavities
coupled weakly to a bosonic environment at zero temperature.
As the size of the individual cavities is generally much smaller
than their spacing, we assume that the photons emitted from
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each cavity are uncorrelated. The total Hamiltonian therefore
reads

H = Hs + Hbath + Hcoup, (1)

where Hs is the Hamiltonian for the system,
Hbath = ∑

j

∑
α,k ωkα

r
†
j,kα

rj,kα
is the Hamiltonian for the

environment, and Hcoup = ∑
j

∑
α,k(η∗

kα
r
†
j,kα

αj + H.c.) is
the coupled term. In addition, α = a, c labels the operators
and physical quantities associated with atoms and cavities,
respectively; ωkα

denotes the frequency of environmental
modes; r

†
j,kα

and rj,kα
are the creation and annihilation

operators of quanta in the kαth model on the j th lattice site;
and ηkα

is the coupling strength. Here we set h̄ = 1.
The system we modeled, as depicted in Fig. 1, is a two-

dimensional array of resonant optical cavities, each embedded
with a two-level (artificial) atom coupled strongly to the
cavity field. The possible realizations include photonic band-
gap cavities and superconducting strip line resonators [4].
With ωa and ωc being the frequency of atom transition and
cavity mode, respectively, in the rotating wave approximation
(RWA), such an individual atom-cavity system on site j

is well described by the Jaynes-Cummings Hamiltonian,
H JC

j = ωaa
†
j aj + ωcc

†
j cj + β(a†

j cj + H.c.). Here a
†
j and aj

(c†j , cj ) are atomic (photonic) raising and lowering operators,
respectively, and β is the coupled strength. In the grand
canonical approach, Hs is therefore given by combining
H JC

j with the photonic hopping term and chemical potential
term,

Hs =
∑

j

H JC
j −

∑
〈j,j ′〉

κjj ′c
†
j cj ′ −

∑
j

µnj . (2)

Here κjj ′ is the photonic hopping rate between cavities. Since
the evanescent coupling between cavities decreases with the
distance exponentially, we restrict the summation

∑
〈j,j ′〉

running over the nearest neighbors. nj = a
†
j aj + c

†
j cj is the

total number of atomic and photonic excitations on site j . µ is
the chemical potential, where the assumption µ = µj for all
sites has been made.

Due to the strong coupling, as shown in Fig. 1(b), the
resonant frequencies of the individual atom-cavity system

are split into E|±,n〉 = nωc ±
√

nβ2 + �2

4 − �
2 , where | ± ,n〉
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FIG. 1. (Color online) A type of possible topologies for two-
dimensional cavity arrays for z nearest neighbors. (a) Individual
cavities are coupled resonantly to each other due to the overlap
of the evanescent fields. Each cavity contains a two-level system
coupled strongly to the cavity field and immersed in a bosonic
bath (marked by the dash line). (b) Energy eigenvalues of the
individual cavity-atom system on each site. ωc = ωa is assumed for
simplicity. The anharmonicity of the Jaynes-Cummings energy levels
can effectively provide an on-site repulsion U to block the absorption
for the next photon.

labels the positive (negative) branch of dressed states, and
� = ωc − ωa is the detuning. The anharmonicity of the
Jaynes-Cummings energy levels can effectively provide an
on-site repulsion. For instance, the resonant excitation by a
photon with frequency E|±,1〉 will prevent the absorption of
a second photon at E|±,1〉, which is the striking effect known
as photon blockade [8]. It is therefore feasible to realize a
quantum simulator in terms of the system described by Eq. (2).
This so-called Jaynes-Cummings-Hubbard (JCH) model was
recently suggested by Greentree et al. [2].

Methods. However, the situation changes dramatically
once the degrees of freedom of the environment are taken
into consideration, as described by Hamiltonian (1). The
nonequilibrium dynamics for the open quantum many-body
system will arise, which is a formidable task to solve. Here
we propose a treatment to eliminate those external degrees of
freedom. To approach this, we rewrite Hamiltonian (1) as

H = Hlocal −
∑
〈j,j ′〉

κjj ′c
†
j cj ′ −

∑
j

µnj , (3)

where Hlocal = ∑
j H JC

j + Hbath + Hcoup.
First, considering the case where the j th cavity containing

an initial photon interacts with a bath, the dynamics is governed
by

Hj = ωcc
†
j cj +

∑
k

ωkc
r
†
j,kc

rj,kc
+

∑
k

(
η∗

kc
r
†
j,kc

cj + H.c.
)
. (4)

We denote its eigenvalue as ω and expand the eigenvector
|φj 〉 as |φj 〉 = ecc

†
j |∅〉 + ∑

k ekr
†
kc
|∅〉. Here ec and ek are the

probability amplitudes for the excitation occupied by the cavity
field and the environment, respectively. |∅〉 denotes the vacuum
state. Deducing the equations of these two amplitudes, one
can express ek in terms of ec and, under the Born-Markov

approximation, integrate out the degrees of freedom of the
environment, and obtain (ωc + δωc − iγc) ec = ωec. δωc is
known as an analog to the Lamb shift in atomic physics and
is significantly small when the coupling to the environment is
weak. γc is the decay rate and indicates a finite lifetime of the
cavity mode [34].

This motivates us to introduce a quasiboson, described by
Cj , with a complex eigenfrequency 
c = ωc − iγc, where
δωc has been absorbed into ωc, to redescribe the cavity field
coupled with a bath in terms of H eff

j |φj 〉 = 
c|φj 〉. H eff
j =


cC
†
jCj is the effective Hamiltonian, and now |φj 〉 = ecC

†
j |∅〉.

Because of loss, the system would be nonconservative and
the corresponding operators would be non-Hermitian. The
commutation relation of Cj reads [Cj ,C

†
j ′ ] = (1 + i

γc

ωc
)δjj ′ , in

which γc

ωc
is of the order of 1

Q
, with Q being the quality factor

of the individual cavity. The bosonic commutation relation is
therefore approximately satisfied for the high-Q cavity, which
can be met in most cavity quantum electrodynamics (QED)
experiments.

The complex eigenfrequency underlines the facts that, on
one hand, dissipation is an inherent property for a realistic
cavity. When a photon with a certain frequency has been
injected into a dissipative cavity, the composite system of
the cavity field plus the environment cannot be characterized
merely by the frequency of the injected photon, because we
must take the impacts of the environment into account. On
the other hand, in general we are not concerned with the time
evolution of the bath. In this way, the array of dissipative
cavities can be regarded as a configuration consisting of
quasibosons. Quite similar operations can be performed on
an atom to introduce another kind of quasiboson described
by Aj with frequency 
a = ωa − iγa , where γa is the atomic
decay rate.

We can therefore rephrase Hamiltonian (1) with the renor-
malized terms,

H =
∑

j

H eff
j −

∑
<j,j ′>

κjj ′C
†
jCj ′ −

∑
j

µnj , (5)

where now H eff
j = 
aA

†
jAj + 
cC

†
jCj + β(A†

jCj + H.c.)

and Nj = A
†
jAj + C

†
jCj . One nice feature of Hamiltonian (5)

here is that the losses are described by leaky rates γa and
γc rather than by operators. Without having to mention the
external degrees of freedom, this effective treatment would be
of great conceptual and, moreover, computational advantage,
rather than the general treatment as Hamiltonian (1). A more
microscopic consideration points out that in the cavity QED
region, since the atom is dressed by the cavity field, the atom
and field act as a whole subjected to a total decay rate � [35].
Specifically, � = n(γa + γc) for � = 0.

To gain insight into the role of dissipation in the SF–Mott-
insulator phase transition, we use a mean-field approximation,
which could give reliable results if the system is at least two
dimensional [36]. We introduce a superfluid parameter, ψ =
Re〈Cj 〉 = Re〈C†

j 〉. In the present case, the expected value of

Cj (C†
j ) is in general complex with the formation 〈Cj 〉 =

ψ − iψγ (〈C†
j 〉 = ψ + iψγ ). ψγ is a solvable small quantity

as a function of γa and γc, and vanishes in the limit of no loss.
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By using the decoupling approximation C
†
jCj ′ = 〈C†

j 〉Cj ′ +
〈Cj ′ 〉C†

j − 〈C†
j 〉〈C†

j 〉, the resulting mean-field Hamiltonian can
be written as a sum over a single site,

HMF =
∑

j

[
H eff

j − zκψ(C†
j + Cj )

+ zκ|ψ |2 − µNj + O
(
ψ2

γ

)]
, (6)

where we have set the intercavity hopping rate κjj ′ = κ for all
nearest neighbors, with z labeling the number.

ψ can be examined analytically in terms of the second-order
perturbation theory, with respect to the damped dressed basis.
For energetic favor, we assume each site is prepared in the
negative branch of the dressed state. But because the dressed
basis is defined on n � 1, a ground state |0〉 with the energy
E|0〉 = 0 needs to be supplemented. Thus

ψ = e−�t

√
− χ

zκ�
. (7)

χ and � are functions of all of the parameters for the whole
system. Since the evanescent parameter κ is a typical small
quantity in systems of coupled cavities, the perturbation theory
gives good qualitative and quantitative descriptions compared
to the numerical results given by explicitly diagonalizing
[2,37].

Arguably the most interesting situation is the case in
which the effective photon-photon interactions are maximized,
namely, when cavities are on resonant with atoms and with one
initial excitation per site [38]. In addition, � = γa + γc = γ .
With F1 = ωc − β − µ and F2 = −ωc + (

√
2 − 1)β + µ, in

Eq. (7), � = 1
2F 2

1 +2γ 2 + 3+2
√

2
4F 2

2 +4γ 2 > 0, and

χ = F1

2F 2
1 + 2γ 2

+ (3 + 2
√

2)F2

4F 2
2 + 4γ 2

+ 1

zκe−2γ t
. (8)

In the absence of loss, one can recognize that χ = 0 is the well-
known, self-consistent equation, and therefore distinguish the
SF phase and Mott-insulator phase. Nevertheless, the coupling
to the environment induces a nonequilibrium dynamics, thus
no strictly defined phase exists. However, if the external time
dependence is much slower than the internal frequencies of
the system, then there remain two fundamentally different
quantum states that can be identified by whether ψ vanishes
or has a finite value, i.e., photons localized in each lattice site
(Mott-insulator-like state) and delocalized across the cavities
(SF-like state).

Analyses. To analyze the physics of the transition between
these two states in detail, we proceed with our discussion
from two aspects. First, we start with the superfluid phase and
track the time evolution of the long-range phase coherence.
The prefactor e−�t in Eq. (7) indicates the expected decay
of ψ . However, more importantly, a dynamical instability
due to the coupling to the external environment is revealed
by χ . As illustrated in Fig. 2, for t � β−1, ψ has a slight
reduction scaled by γ 2

β2 . For t > β−1, zκe−2γ t is the leading
term and pronounces the decrease of the effective tunneling
energy. Consequently, a photon hopping rate κ given initially
in the superfluid region will cross the critical point at a time
tc � 1

2γ
ln κ

κc
, with κc being the critical tunneling energy for the
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0

0.2
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t ( β−1)

ψ
(t
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n
(t

)
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∆
n
(t

)

tc
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FIG. 2. (Color online) The temporal decrease of the superfluidity
and the photon number fluctuation on each site for a certain initial
state (inset). For a initial SF state, the long-range order decays
continuously and the fluctuation on each site is a total effect of
the photon hopping and the photon leakage before tc [from left to
right ( zκ

β
,

γ

β
) = (0.2,0.01),(0.3,0.02) and (0.3,0.01) respectively, in

the main panel]. The superfluidity breaks down and the related photon
number fluctuation behaves as the fluctuation of a Mott-insulator-like
state beyond tc [the solid line for ( zκ

β
,

γ

β
) = (0.3,0.01) and the

dot-dashed line for ( zκ

β
,

γ

β
) = (0,0.01) in inset].

nondissipative case with a given z and β. Before tc, a nonlocal
region is still recognized as nonlocal. The dissipation has not
changed the fundamental nature of the system, albeit with the
reduction of long-range phase coherence and an additional
fluctuation due to photon leakage. Nevertheless, beyond tc,
the superfluidity breaks down, i.e., a sweeping to the localized
state does occur [39]. An analogous localizing effect was
described in an optical lattice system very recently, where
the spontaneous emission of atoms owing to the lattice heat
led to decoherence of the many-body state [40].

In what follows, in contrast, we start in the Mott-insulator
state and discuss the impacts of dissipation on the critical
behavior and the fluctuation behavior. Consider that the initial

0 0.1 0.2 0.3
0

0.2

0.4

0.6

zκ/

ψ
(κ
,γ

,t
)

β−1

FIG. 3. (Color online) The restoring of long-range phase coher-
ence from the Mott-insulator state. Influences of dissipation depend
on the leaky rate γ (the dotted and solid lines for γ

β
= 0 and 0.05,

respectively) and will accumulate along with time [the red, green,
and blue solid lines (left to right) for t = 0, 0.1γ −1, and 0.2γ −1,
respectively, with t in units of β−1].
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state is deep in the Mott-insulator phase, zκ
β

= 0, and we
continuously increase the intercavity coupled rate. For the
related ideal case, one can reach the superfluid phase at
zκ
β

= ( zκ
β

)′c � 0.16. However, the presence of a bath converts
coherences originally in the system into entanglement of the
system and the environment [6], thus the effective tunneling
energy will be lower than expected. Moreover, this impact will
continue to accumulate over time. As shown in Fig. 3, to expect
the appearance of photonic hopping, we must keep increasing
κ . On the other hand, although long-range order is still absent,
which is different from the pure Mott-insulator state, there will
be a fluctuation owing to photon leakage acting on each lattice
site (dot-dashed line in Fig. 2). Consequently, it will not be
able to restore the long-range phase coherence perfectly by
the driven zκ

β
into the superfluid region.

Conclusions. In summary, we have shown analytically the
features of the superfluid–Mott-insulator phase transition in
the array of dissipative cavities. Our analysis sufficiently
takes into account the intrinsically dissipative nature of
an open quantum many-body system, and identifies how
dissipation and decoherence would come into play. For the
further experimental signature, we predict that there will be a
localizing effect.
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