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We present a physical model that describes the transport of Bose-Einstein-condensed atoms from a reservoir
to a waveguide. By using the similarity and Möbius transformations, we study nonautonomous matter waves
in Bose-Einstein condensates in the presence of an inhomogeneous source. Then, we find its various types
of exact nonautonomous matter-wave solutions, including the W-shaped bright solitary waves, W-shaped and
U-shaped dark solitary waves, periodic wave solutions, and rational solitary waves. The results show that these
different types of matter-wave structures can be generated and effectively controlled by modulating the amplitude
of the source. Our results may raise the possibility of some experiments and potential applications related to
Bose-Einstein condensates in the presence of an inhomogeneous source.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation has exten-
sively drawn much attention due to its numerous physical
applications in many branches of nonlinear science, such as
nonlinear fiber optics [1–3] and Bose-Einstein condensates
(BECs) [4–7] in which the NLS equation is also known as the
Gross-Pitaevskii (GP) equation. The standard NLS equation is
completely integrable [8] and possesses many types of solitons
(e.g., bright solitons, dark solitons, gray solitons, multisoliton
solutions, etc.) [9–12]; however, the quasi-one-dimensional
or higher-dimensional NLS or GP equations with space-
and/or time-modulated coefficients [4–6] may generate non-
linear physical phenomena, such as nonautonomous solitons
[13–15], resonant solitons, and breathing solitons [16,17],
vortex solitons [18–21], vector solitons [22], and ring dark soli-
tons [23] by modulating external potentials and nonlinearities
as well as gain or loss terms. They are in general nonintegrable
and difficultly solved. Recently, symmetry analysis provides a
powerful way to exactly investigate nonautonomous solutions
(also called self-similar solutions) of nonlinear physical
models [12–17,24–27], which means that the wave profiles
remain unchanged and their amplitudes and widths simply
scale with time or propagation distance [13].

It should be pointed out that the above-mentioned works
in nonlinear optics have been mainly focused on the study
of exact self-similar wave propagation in single-core fibers.
In fact, the twin-core fibers, which originate from the linear
coupling between thee two fibers, can easily be fabricated
[28–30]. Very recently, some attention has also been paid to
the study of exact nonlinear waves in twin-core fibers, such
as the NLS equation with a source [31], the generalized NLS
equation with a source [32], and the higher-order NLS equation
with a source [33].

Moreover, the quasi-one-dimensional (1D) time-dependent
GP equation in the presence of an inhomogeneous source
S0 exp(−iμt/h̄)δ(x − x0), which models the coupling of a
reservoir of Bose-Einstein-condensed atoms to the waveguide,
has also attracted much attention [34]. The source term is
located at a position x = x0 in the upstream region and emitting
monochromatic matter waves, and simulates the coupling of

a reservoir of Bose-condensed matters to the waveguide at a
given chemical potential, from which matter waves are injected
into the waveguide [34–39]. Furthermore, the two-dimensional
case [38] and the coupled case [39] in the presence of source
terms have also been considered. In addition, the coupling
drive (it in fact plays the role of an inhomogeneous source) has
been used to transfer phase-sensitive population between two
condensates |F = 1,mf = −1〉 and |F = 2,mF = 1〉. The
above-mentioned coupling drive admits an effective frequency
of 6834.6774 MHz and is detuned slightly (∼100 Hz) from
the expected transition frequency in our trap [40].

In this paper, we consider a model that simulates the
coupling of a reservoir of Bose-Einstein-condensed atoms
and the waveguide, as shown in Fig. 1. Condensate at
a given chemical potential is injected into the waveguide
from a reservoir at x0. The reservoir emits a plane matter
wave in both directions into the guide. Here, we go beyond
previous studies by considering the case with time- and
space-modulated potential and inhomogeneous source, as well
as time-modulated nonlinearity and gain or loss terms in BECs,
which is in the form of

ih̄
∂ψ

∂t
=

[
− h̄2

2m

∂2

∂x2
+ Vext(x,t) + g1D(t)|ψ |2 + i�(t)

]
ψ

+ S(t) exp[iϕ(x,t)], (1)

where ψ ≡ ψ(x,t) is the macroscopic wave function of the
condensate, m is the mass of atom, the nonlinearity g1D(t) =
2h̄ω⊥as(t) is the effective 1D coupling strength with ω⊥ being
the transverse confining frequency and as(t) being the time-
dependent s-wave scattering length modulated by a Feshbach
resonance (as(t) > 0 for a repulsive interaction and as(t) < 0
for an attractive interaction). Vext(x,t) denotes the time- and
space-modulated external potential and can be chosen as
the second-degree polynomial in space with all coefficients
being functions of time. �(t) stands for the time-dependent
gain or loss distribution. Finally, S(t) exp[iϕ(x,t)], with the
time-dependent amplitude S(t) and phase ϕ(x,t), simulates the
coherent injection of matter waves from an external reservoir
onto the scattering region [34,35,38]. It should be pointed out
that the losses are caused by the collisions between thermal
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FIG. 1. (Color online) Schematics of the coupling of a reservoir
of Bose-Einstein-condensed atoms and the waveguide. Condensate
at a given chemical potential is injected into the waveguide from
a reservoir at x0. The reservoir emits a plane matter wave in both
directions into the guide. Shown in the right part is the external
potential added along the axis direction of the waveguide.

atoms, which is a three-body physical course. Otherwise, the
system should be described in a different way (such as a two-
degenerate system with a coupling term) [41]. Furthermore, by
making the ideal assumption, we neglect the heating effects,
which will indeed heat the atoms remaining in the waveguide
and play a role for the parameters of the propagation of the
matter wave.

Normalizing the length and time in Eq. (1) by a⊥ =√
h̄/(mω⊥) and ω−1

⊥ , we arrive at an effective GP equation
with an inhomogeneous source term in the dimensionless form

i
∂ψ

∂t
=

[
−1

2

∂2

∂x2
+ v(x,t) +g(t)|ψ |2 + iγ (t)

]
ψ

+ s(t) exp[iϕ(x,t)], (2)

where the external potential v(x,t), the nonlinearity g(t), the
gain or loss distribution γ (t) and the source s(t) exp[iϕ(x,t)]
are related to the external potential Vext(x,t), nonlinearity
g1D(t), the gain or loss term �(t), and the source term
S(t) exp[iϕ(x,t)] in Eq. (1), respectively. Equation (2) is
associated with δL/δψ† = 0 in which the Lagrangian density
can be written as L = i(ψψ

†
t − ψtψ

†) + |ψx |2 + 2[v(x,t) +
iγ (t)]|ψ |2 + g(t)|ψ |4 + 2s(t) exp[iϕ(x,t)]ψ†, where ψ†(x,t)
denotes the complex conjugate of the wave function ψ(x,t).

To translate our results into units relevant to the experiments
[34], in this paper, our calculations are performed for 87Rb
atoms with m = 1.44 × 10−25 Kg, ω⊥ = 2π × 103 s−1 for
repulsive interaction. In this case, a unity of the dimensionless
space corresponds to a⊥ = √

h̄/(mω⊥) � 0.34 μm, and a
unity of the dimensionless time corresponds to 1.6 × 10−4 s.
For the attractive case, we focus on 7Li atoms with m =
1.17 × 10−26 Kg, and a unity of the dimensionless space
corresponds to a⊥ = √

h̄/(mω⊥) � 1.19 μm. Here, we want
to point out that in the following discussion, both the space
and time extent of the obtained solutions are all in the range
of quasi-one-dimensional validity. Furthermore, we focus
on various nonautonomous matter waves of Eq. (2), which
generate new matter-wave structures (e.g., W-shaped bright
matter waves and U-shaped dark matter waves illustrated
in Sec. III) and can be controlled by the modulation of the
inhomogeneous source.

The rest of the paper is organized as follows. In Sec. II, by
using the similarity transformation, the 1D time-dependent
GP equation in the presence of an inhomogeneous source

term (2) is reduced to the stationary GP equation with
a constant source. In Sec. III, the distinguished types of
Möbius transformations [33] are employed to the stationary
GP equation with a constant source. We find various types of
exact nonautonomous solutions of Eq. (2), such as rational
wave solutions, W-shaped bright solitary wave solutions,
periodic wave solutions, and W-shaped and U-shaped dark
solitary wave solutions, by modulating the source amplitude.
Moreover, we discuss the effects of both the inhomogeneous
source and gain or loss amplitudes on the propagation of matter
waves. Finally, Sec. IV presents the conclusions of this study.

II. THE TRANSFORMATIONS AND CONSTRAINTS

A. The transformations

We here focus on spatially localized and temporally ma-
nipulated nonautonomous solutions of Eq. (2). To investigate
its exact nonautonomous solutions, we consider the general
nonautonomous solutions in the form of [33]

ψ(x,t) = ρ(t)eiθ(x,t)�[η(x,t)], (3)

connecting solutions of Eq. (2) with those of the stationary GP
equation with a constant source

μ�(η) = −d2�(η)

dη2
+ σ�3(η) + s0. (4)

Here, the time-dependent function ρ(t) can be used to
modulate the amplitude of nonautonomous matter waves, the
time- and space-dependent function θ (x,t) denotes the phase,
η(x,t) stands for the nonautonomous matter-wave variables,
the chemical potential μ, the nonlinear coefficient σ (σ < 0
for the attractive interaction and σ > 0 for the repulsive
interaction), and the source amplitude s0 are all real-valued
constants related to the external potential, nonlinearity, and
external source in Eq. (2), respectively.

Notice that Eq. (4) in fact differs from the usual stationary
NLS equation [i.e., μ�(η) = −�ηη(η) + σ�3(η)] since the
source amplitude s0 �= 0 is required here, which leads Eq. (4)
to be nonintegrable. However, the nonzero source amplitude
s0 will play an important role to manipulate many types of
localized nonautonomous matter-wave solutions of Eq. (2).

Equation (3) allows us to reduce Eq. (2) to Eq. (4); variables
in this reduction can be determined from the requirement for
the new field �(η) to satisfy Eq. (4). Thus, we substitute
transformation (3) into Eq. (2) and, after relatively simple
algebra, obtain the following system of partial differential
equations:

ηxx = 0, ηt + θxηx = 0, (5a)
2ρt + ρ(θxx − 2γ ) = 0, 2s(t) − s0ρη2

x = 0, (5b)

2g(t)ρ2 − ση2
x = 0, 2v(x,t) + μη2

x + θ2
x + 2θt = 0 (5c)

under the constraint θ (x,t) = ϕ(x,t).

B. Constraints for the time- and space-modulated coefficients

Here, we determine these variables in ansatz (3) and
coefficients in Eq. (2) by solving the system (5). First, it follows
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from Eq. (5a) that we have the self-similar wave variable η(x,t)
and the phase θ (x,t) in the form

η(x,t) = α(t)x + χ (t), (6)

θ (x,t) = ϕ(x,t) = − α̇(t)

2α(t)
x2 − χ̇ (t)

α(t)
x + ϕ0(t), (7)

which are similar to the time-dependent GP equation in the
absence of an inhomogeneous source [12,25], where the time-
dependent function α(t) denotes the inverse of the width of
the localized matter waves; the expression −χ (t)/α(t) stands
for the position of its center of mass; and the time-dependent
functions −α̇(t)/[2α(t)], − χ̇ (t)/α(t), and ϕ0(t) in the phase
ϕ(x,t) are related to the phase offset, the frequency shift, and
the phase-front curvature, respectively.

And then it follows from Eqs. (5b) and (5c) along with
Eqs. (6) and (7) that

ρ(t) = ρ0δ(t)
√

|α(t)|, (8)

v(x,t) = v2(t)x2 + v1(t)x + v0(t), (9)

s(t) = 1

2
ρ0s0δ(t)α2(t)

√
|α(t)|, g(t) = σ |α(t)|

2ρ2
0δ2(t)

, (10)

where δ(t) = exp[
∫ t

0 γ (τ )dτ ], ρ0 is an integration constant
and can, without loss of generality, be chosen as ρ0 = 1, the
coefficients vj (t) (j = 1,2,3) of the external potential are
given by v2(t) = α̈(t)/[2α(t)] − [α̇(t)/α(t)]2, v1(t) =
χ̈(t)/α(t) − 2χ̇ (t)α̇(t)/α2(t), and v0(t) = −(1/2)
[χ̇(t)/α(t)]2 − (μ/2)α2(t) − ϕ̇0(t) with ϕ0(t) being an
arbitrary differentiable function of time. We may, without loss
of generality, choose the phase-front curvature as ϕ0(t) ≡ 0.

It follows from Eqs. (7) and (8) that the gain or loss
term γ (t) and α(t) (i.e., the inverse of the width of the
nonautonomous matter waves) can be used to manipulate the
amplitude ρ(t) of the matter-wave solutions, and α(t) and
χ (t) can adjust the the phase offset and the frequency shift of
the phase. Moreover, it follows from Eq. (9) that the external
potential v(x,t) is a second-degree polynomial in space with
their coefficients being functions of time, which just satisfies
the condition that the important potential in BECs is chosen
as the time-dependent harmonic trapping potential [4–6].
Equation (10) shows that the gain or loss term γ (t) can be
used to modulate the source amplitude s(t) and nonlinearity
g(t). In addition, we find that the two functions α(t) and χ (t)
do affect the amplitude ρ(t), the external potential v(x,t), the
phase φ(x,t), nonlinearity g(t), and the source amplitude s(t).
Thus, the abundant matter-wave structures can be generated,
which will be investigated in detail for the attractive BECs
(σ < 0) and repulsive BECs (σ > 0) in Sec. III.

Therefore, we have established a “bridge” (transforma-
tion) (3) connecting the solutions of the 1D time-dependent
GP equation with an inhomogeneous source term (2) with
the well-known solutions of the stationary GP equation with
a constant source (4), which can be generated by using the
Möbius transformations [31,33]

�(η) = a + b φj (η)

1 + c φj (η)
(j = 1,2) (11)

FIG. 2. (Color online) Profiles of the coefficient v2(t) (solid line)
of second-degree term of the linear potential v(x,t) given by Eq. (9),
nonlinearity g(t) (dashed line), and the source term s(t) (dashed-
dotted line) given by Eq. (10). The parameters are defined by Eq. (12)
with σ = ρ0 = s0 = 1. (a) γ0 = 0.1, (b) γ0 = 1.

connecting solutions of Eq. (4) with those of the stationary
NLS equation φηη(η) = c1φ(η) + c2φ

3(η) with a, b, c and c1,2

being all real-valued constants.

C. Choice of the parameters

To make sure that the amplitude ρ(t) and nonlinearity g(t)
are bounded for realistic cases, we choose α(t), χ (t), and γ (t)
as the localized periodic functions in the form

α(t) = 1 + 0.1 sin(t),

χ (t) = 2 + cos(t), (12)

γ (t) = γ0 cos(t),

where γ0 is called the gain or loss amplitude that can be used
to control different types of matter-wave structures.

Figure 2 displays the profiles of the coefficient v2(t) of
second-degree terms of the external potential v(x,t) given
by Eq. (9), nonlinearity g(t), and the inhomogeneous source
amplitude s(t) given by Eq. (10) for the chosen parameters
given by Eq. (12).

In the following, we will investigate many types of nonau-
tonomous matter-wave solutions of Eq. (2) for the attractive
(σ < 0) and repulsive (σ > 0) nonlinearities by means of
similarity transformation (3) and solutions of the stationary
GP equation with a constant source (4) obtained by means of
the Möbius transformation (11).

III. NONAUTONOMOUS MATTER-WAVE SOLUTIONS

A. The attractive nonlinearity σ = −1

1. The rational solution

We here consider the Möbius transformation with the
rational form �(η) = (a + bη2)/(1 + cη2), which is in fact
a modification of the transformation �(η) = [aφ2(η) + b]/
[φ2(η) + c] with φ(η) = 1/η being a rational solution of the
elliptic equation φηη(η) = c1φ(η) + c2φ

3(η) (here c1 = 0 and
c2 = 2) [33]. After some algebra, we obtain the rational bright
solitary wave solutions of Eq. (2).

Case I (Rational formal bright soliton solutions):

ψrs(x,t) = ρ(t)eiθ(x,t) 3 3
√

4s0 − 2s0 η2

2
(
1 + 3

√
2s2

0 η2
) , (13)
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FIG. 3. (Color online) Wave propagations for the intensity
distribution |ψrs |2 given by Eq. (13). (a) γ0 = 0.1, s0 = 0.2, (b)
γ0 = 0.1, s0 = 2, (c) γ0 = 0.1, s0 = 20, (d) γ0 = 1, s0 = 0.2, (e)
γ0 = 1, s0 = 2, (f) γ0 = 1, s0 = 20.

where the negative chemical potential is given by μ = −3/

2 3
√

2s2
0 , η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), re-

spectively. In particular, |ψrs(x,t)| → 2|s0|/ 3
√

2s2
0 |ρ(t)| as

x → ∞.
Figure 3 illustrates the intensity distribution of the localized

rational solutions (13) for different source amplitude s0 and
gain or loss amplitude γ0. As shown in this figure, when the
gain or loss amplitude γ0 becomes large (e.g., γ0 = 1), the
amplitude of the solitons close to the corners attenuates rapidly
so that the soliton chains are generated [see Figs. 3(d)–3(f)].

Moreover, for a fixed gain or loss amplitude γ0 (e.g.,
γ0 = 0.1 or 1), the strong quasiperiodic oscillations in matter-
wave structures are generated and the widths of the solutions
decrease with the source amplitude s0 [see top or bottom (from
left to right, i.e., s0 = 0.2,2,20) of Fig. 3].

2. The periodic cn2-wave solution

If we employ the Möbius transformation with the el-
liptic function in the form of �(η) = [a + b cn2(η,k)]/
[1 + c cn2(η,k)] with the modulus k ∈ [0, 1], and then insert
the ansatz into Eq. (4). We can obtain the following solutions
for the different modulus k. For example, we choose the
modulus as k = 1, 0, 0.5 corresponding to the bright solitary
waves, trigonometric function solutions, and periodic cn2-
wave solutions, respectively.

Case II (Bright soliton solutions for k = 1):

ψbs(x,t) = ρ(t)eiθ(x,t) (2c + 1) − c(2c + 3) sech2η√−2c(c + 1)(1 + c sech2η)
. (14)

Here, η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), re-
spectively. We introduce the parameter c with the condi-
tion −1 < c < 0 and c �= −0.5 to simply the expression
of the solutions (14) [42], which is in fact related to the
source amplitude s0 = (2c + 1)/[c(c + 1)

√−2c(c + 1)] and
the chemical potential μ = (4c2 + 4c + 3)/[2c(c + 1)]. Thus,
we can in principle replace the parameter c with the source

FIG. 4. (Color online) Wave propagations for the intensity
distribution |ψbs|2 given by Eq. (14) with γ0 = 0.1. (a) The
source amplitude s0 vs the parameter c. (b) W-shaped pro-
file with s0 = 20.95 (i.e., c = −0.9). (c) The W-shaped pro-
files vs x with s0 = 20.95 (i.e., c = −0.9) and t = 0 (solid line),
5 (dashed line), 10 (dashed-dotted line). (d) The bell-shaped pro-
file with s0 = −20.95 (i.e., c = −0.1). (e) The bell-shaped
profiles vs x with s0 = −20.95 (i.e., c = −0.1) and t =
0 (solid line), 5 (dashed line), 10 (dashed-dotted line).

amplitude s0 and the chemical potential μ by solving the
equation s0 = (2c + 1)/[c(c + 1)

√−2c(c + 1)]. Note that we
have |ψbs(x,t)| → |(2c + 1)ρ(t)|/√−2c(c + 1) �= 0 as x →
∞, since s0 �= 0 (i.e., c �= −0.5) is required here.

The bright solitary wave solution (14) can display different
matter-wave structures for different parameters c, which is
related to the source amplitude s0. When the source amplitude
s0 → ∞ corresponding to c → −1 [see Fig. 4(a)], we have the
W-shaped bright solitary waves [see Figs. 4(b) and 4(c)] that
differ from the usual bright solitary wave solutions; whereas,
when the source amplitude s0 → −∞ corresponding to c → 0
[see Fig. 4(a)], we get the bell-shaped bright solitary wave
solutions [see Figs. 4(d) and 4(e)].

Moreover, we find that, when the source amplitude s0

becomes smaller (e.g., from s0 = 20.95 to s0 = −20.95
corresponding to c = −0.9 to c = −0.1), the wave width of the
solutions becomes larger [see Figs. 4(b) and 4(d)]. Note that
similarly to Case I shown in Figs. 3(d)–3(f), for the large gain
or loss amplitude (e.g., γ0 = 1), the amplitudes of the bright
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FIG. 5. (Color online) Wave propagations for the intensity
distribution |ψcs|2 given by Eq. (15) with the gain or loss am-
plitude γ0 = 0.1. (a) The source amplitude s0 vs the parameter
c. (b) W-shaped profile with s0 = 23.26 (i.e., c = 10). (c) The
W-shaped periodic profiles vs x with s0 = 23.26 (i.e., c = 10)
and t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line). (d)
The bell-shaped profile with s0 = 0.75 (i.e., c = 1). (e) The bell-
shaped periodic profiles vs x with s0 = 0.75 (i.e., c = 1) and
t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line).

solitary wave solutions (14) close to the corners will almost
decrease to zero so that solitary wave chains are generated.

Case III (Trigonometric function solutions for k = 0):

ψcs(x,t) = ρ(t)eiθ(x,t) −(3c + 2) + c(c + 2) cos2 η√
2(c + 1)(1 + c cos2 η)

, (15)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), re-
spectively, the parameter c is chosen as c > −1 with c �= 0
to make sure the solution (15) is localized, s0 = c2(c + 2)/
[(c + 1)

√
2(c + 1)], and μ = −(3c2 + 4c + 4)/[2(c + 1)].

The profiles of the solution (15) are displayed in Figs. 5(b)–
5(e). In particular, when the source parameter s0 becomes large
(e.g., s0 = 23.26 corresponding to c = 10) [see Fig. 5(a)],
resulting in the W-shaped matter waves in one period [see
Figs. 5(b) and 5(c)]. Moreover, we find that when the source
amplitude s0 becomes small (e.g., from s0 = 22.26 to 0.75
corresponding to from c = 10 to 1), the wave width of the
solutions will become large [see Figs. 5(b) and 5(d)].

FIG. 6. (Color online) Wave propagations for the intensity
distribution |ψcn|2 given by Eq. (16) with the gain or loss amplitude
γ0 = 0.1. (a), (b) The source amplitude s0 vs the parameter c. (c)
The W-shaped profile with s0 = −926.15 (i.e., c = 20). (d) The
W-shaped periodic profiles with s0 = −926.15 (i.e., c = 20) and
t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line). (e) The
bell-shaped profile with s0 = −8.72 (i.e., c = 2). (f) The bell-
shaped periodic profiles with s0 = −8.72 (i.e., c = 2) and t =
0 (solid line), 5 (dashed line), 10 (dashed-dotted line).

Case IV (Periodic cn2-wave solutions for k = 0.5):

ψcn(x,t) = ρ(t)eiθ(x,t) a + b cn2(η,k)

1 + c cn2(η,k)
, (16)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8),
respectively, k = 0.5, a = −(9c2 + 4c − 1)Q/c, b =
(3c2 + 4c − 3)Q, Q =

√
c/(24c2 + 16c − 8) with −1 < c <

0 and c > 1/3, s0 = −(27c6 + 36c5 − 45c4 − 15c2 − 4c +
1)/[4c2(3c2 + 2c − 1)], and μ = −(24c3 + 34c2 − 8c + 3 +
27c4)/[8c(3c2 + 2c − 1)].

The profiles of the solution (16) are displayed in Fig. 6.
In particular, when the source parameter s0 becomes small
(e.g., s0 = −926.15 corresponding to c = 20) [see Fig. 6(a)],
it results in the W-shaped matter waves in one period [see
Figs. 6(b) and 6(c)].

Moreover, we find that when the source amplitude s0

becomes small (e.g., from s0 = −8.72 to −925.165 corre-
sponding to from c = 2 to 20), the wave width of the solutions
will become large [see Figs. 6(b) and 6(d)].
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3. The periodic cn-wave solution

Here, we consider the Möbius transformation with the
elliptic function in the form of �(η) = [a + b cn(η,k)]/
[1 + c cn(η,k)] with the modulus k ∈ [0, 1]. We thus insert
the ansatz into Eq. (4) and, after some algebra, obtain the
following solutions of Eq. (2) for different modulus k. For
example, we choose the modulus k = 1, 0, 0.8 corresponding
to the bright solitary wave solutions, trigonometric function
solutions, and periodic cn-wave solutions, respectively.

Case V (Bright solitary wave solutions for k = 1):

ψbs2(x,t) = ρ(t)eiθ(x,t) c + (2 − c2) sech η√
2(1 − c2)(1 + c sech η)

, (17)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), respec-
tively, the parameter c is chosen as −1 < c < 1 with c �= 0,
s0 = c/[(c2 − 1)

√
2(1 − c2)], and μ = (c2 + 2)/[2(c2 − 1)].

The intensity distribution of this solution is similar to the bright
solitary wave solutions (14). Note that we have |ψbs2(x,t)| →
2|ρ(t)|/

√
2(1 − c2) �= 0 as x → ∞.

The solitary wave solutions exhibit different structures
for the parameter c related to the source amplitude s0 [see
Fig. 7(a)]. When the source amplitude s0 → ∞ corresponding
to c → −1 (e.g., s0 = 87.94 corresponding to c = −0.98), we
have the W-shaped bright solitary wave solution of Eq. (2) [see
Figs. 7(b) and 7(c)], which differs from the usual bright solitary
wave solutions; whereas, when the source amplitude s0 →
−∞ corresponding to c → 1 (e.g., s0 = 0.83 corresponding
to c = 0.6), we have the bell-shaped bright solitary wave
solutions of Eq. (2) [see Figs. 7(d) and 7(e)].

Case VI (Trigonometric function solutions for k = 0):

ψcs2(x,t) = ρ(t)eiθ(x,t) 2c2 − 1 + c cos η√
2(1 − c2)(1 + c cos η)

, (18)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), respec-
tively, −1 < c < 1 with c �= 0, s0 = c2/[(c2 − 1)

√
2(1 − c2)],

and μ = (2c2 + 1)/[2(c2 − 1)].
Although the curve change of s0 versus the parameter c

for the solution (18) differs from the one for the solution (15)
[see Figs. 8(a) and 5(a)], the intensity distribution of this solu-
tion (18) is similar to the trigonometric function solution (15).

Case VII (Periodic cn-wave solutions for k = 0.8):

ψcn2(x,t) = ρ(t) exp[iθ (x,t)]

×c(18c2 + 7) + (32 − 7c2)cn(η,k)

Q[1 + c cn(η,k)]
, (19)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), respec-
tively, k = 0.8, Q = √

800 − 350c2 − 450c4 with −1 < c <

1 and c �= 0, s0 = 25c(9c4 + 16)/[Q(9c4 + 7c2 − 16)], and
μ = −(126c4 − 1777c2 − 224)/[50(9c4 + 7c2 − 16)].

Although the curve change of the source amplitude s0

versus the parameter c for the solution (19) differs from one
for the solution (16) [see Figs. 8(b) and 6(a)], the intensity
distribution of this solution (19) is similar to the periodic wave
solution (16).

4. The periodic dn-wave solution

Here, we consider the Möbius transformation with the
elliptic function in the form of �(η) = [a + b dn(η,k)]/

FIG. 7. (Color online) Wave propagations for the intensity
distribution |ψbs2|2 given by Eq. (17) with the gain or loss
amplitude γ0 = 0.1. (a) The source amplitude s0 vs the pa-
rameter c. (b) The W-shaped profile with s0 = 87.94 (i.e., c =
−0.98). (c) W-shaped profiles with s0 = 87.94 (i.e., c = −0.98)
and t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line). (d)
The bell-shaped profile with s0 = −0.83 (i.e., c = 0.6). (e) The
bell-shaped profiles with s0 = −0.83 (i.e., c = 0.6) and t = 0
(solid line), 5 (dashed line), 10 (dashed-dotted line).

[1 + c dn(η,k)] with the modulus k ∈ (0, 1]. We thus insert
the ansatz into Eq. (4) and, after some algebra, obtain the
following solutions of Eq. (2) for different modulus k. We
here choose the modulus as k = 0.8 to illustrate the solutions
of Eq. (2).

Case VIII (Periodic dn-wave solutions with k = 0.8):

ψdn(x,t) = ρ(t) exp[iθ (x,t)]

×c(9c2 − 17) + (17c2 − 25)dn(η,k)

Q[1 + c dn(η,k)]
, (20)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), re-
spectively, k = 0.8, Q =

√
(225c4 − 850c2 + 625)/2 with the

conditions for the parameter −5/3 < c < 1 or −1 < c <

1 and c �= 0, or c > 5/3, s0 = 128c(25 − 9c4)/[25Q(9c4 −
34c2 + 25)], and μ = −2(153c4 − 386c2 + 425)/[25(9c4 −
34c2 + 25)].

023627-6



NONAUTONOMOUS MATTER WAVES IN A WAVEGUIDE PHYSICAL REVIEW A 84, 023627 (2011)

FIG. 8. (Color online) (a) The source amplitude s0 vs the
parameter c for the trigonometric function solution (18). (b) The
source amplitude s0 vs the parameter c for the periodic cn-wave
solution (19).

The profiles of the solution (20) are displayed in Fig. 9.
There exist three curves for the source s0 versus the parameter
c displayed in Fig. 9. Here, we only consider Fig. 9(b).
When the source amplitude s0 becomes small corresponding
to c → −1 (e.g., s0 = −11.52 corresponding to c = −0.95)
[see Fig. 9(b)], resulting in the W-shaped matter waves in one
period [see Figs. 9(d) and 9(e)]. When the source amplitude s0

becomes large [e.g., s0 = −1.35 corresponding to c = −0.8
in Fig. 9(b)], the wave shape is changed into the type of bright
soliton solution in one period [see Figs. 9(f) and 9(g)].

B. The repulsive nonlinearity σ = 1

1. The sech2-wave solution

For the repulsive nonlinearity σ = 1, we consider another
Möbius transformation with the hyperbolic function in the
form �(η) = [a + b sech2(η)]/[1 + c sech2(η)]. We thus in-
sert the ansatz into Eq. (4) and, after some algebra, obtain
the following dark soliton solutions of Eq. (2) in terms of the
transformation (3).

Case I (Dark solitary wave solutions):

ψds2(x,t)=ρ(t)eiθ(x,t) −(2c + 1) + c(2c + 3) sech2η√
2c(c + 1)

(
1 + c sech2η

) , (21)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), re-
spectively, c > 0, s0 = −(2c + 1)/[c(c + 1)

√
2c(c + 1)], μ =

(4c2 + 4c + 3)/[2c(c + 1)]. Note that we have |ψds2(x,t)| →
(2c + 1)|ρ(t)|/√2c(c + 1) �≡ 0 as x → ∞ since s0 �= 0 (i.e.,
c �= −0.5) is required here.

Although the form of the soliton (21) is similar to the
above-mentioned bright soliton (14), the parameter c is
chosen in a different range such that they exhibit different
solitary wave structures. Figure 10 displays the profiles of the
dark soliton solution (21) for the different source amplitude
corresponding to the different parameter c and chemical
potential, in which, when the source amplitude s0 becomes
small (e.g., s0 = −23.26 corresponding to c = 0.1), the profile
becomes the usual dark solitary wave solutions [see Figs. 10(b)
and 10(f)]. When the source amplitude s0 becomes large (e.g.,
s0 = −0.013 corresponding to c = 10), the profile displays the
W-shaped dark solitary wave type [see Figs. 10(c) and 10(g)];

FIG. 9. (Color online) Wave propagations for the intensity
distribution |ψdn|2 given by Eq. (20) with the gain or loss amplitude
γ0 = 0.1. (a)–(c) The source amplitude s0 vs the parameter c.
(d) The W-shaped profile with s0 = −11.52 (i.e., c = −0.95). (e)
W-shaped periodic profiles with s0 = −11.52 (i.e., c = −0.95)
and t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line). (f)
The bell-shaped profile with s0 = −1.35 (i.e., c = −0.8). (g) The
bell-shaped periodic profiles with s0 = −1.35 (i.e., c = −0.8) and
t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line).

whereas, when the source amplitude becomes larger (e.g.,
s0 = −3.4 × 10−3 corresponding to c = 20), the middle part
decreases step by step, resulting in the weakly W-shaped dark
solitary wave solutions [see Figs. 10(d) and 10(h)]. Finally, as
the source amplitude becomes larger (e.g., s0 = −8.6 × 10−4

corresponding to c = 40) again, the middle part will disappear
such that the profile of the U-shaped dark solitary wave
solutions is found [see Figs. 10(e) and 10(i)]. This implies
that the source amplitude s0 can be used to control the shapes
of matter-wave structures.

2. The sech-wave solution

Here, we consider the Möbius transformation with the hy-
perbolic function in the form of �(η) = [a + b sech(η)]/[1 +
c sech(η)]. We thus insert the ansatz into Eq. (4) and, after
some algebra, obtain the following dark soliton solutions of
Eq. (2).
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FIG. 10. (Color online) Wave propagations for the intensity
distribution |ψds2|2 given by Eq. (21) with the gain or loss amplitude
γ0 = 0.1. (a) The source amplitude s0 vs the parameter c. (b) The dark
solitary waves with s0 = −23.26 (i.e., c = 0.1). (c) the W-shaped
dark solitary waves with s0 = −0.013 (i.e., c = 10). (d) The weak
W-shaped dark solitary waves with s0 = −3.4 × 10−3 (i.e., c = 20).
(e) The U-shaped dark solitary waves with s0 = −8.6 × 10−4 (i.e.,
c = 40). (f) The dark solitary waves with s0 = 23.25 (i.e., c =
0.1) and t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line).
(g) The W-shaped waves with s0 = −0.013 (i.e., c = 10) and
t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line). (h) The
weak W-shaped waves with s0 = −3.4 × 10−3 (i.e., c = 20) and
t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line). (i) The
U-shaped waves with s0 = −8.6 × 10−4 (i.e., c = 40) and t =
0 (solid line), 5 (dashed line), 10 (dashed-dotted line).

Case II (Dark solitary wave solutions):

ψds(x,t) = ρ(t)eiθ(x,t) c + (2 − c2) sech η√
2(c2 − 1) (1 + c sech η)

, (22)

where η, θ (x,t), and ρ(t) are given by Eqs. (6)–(8), re-
spectively, the parameter c satisfies c > 1, and the positive
source amplitude and chemical potential are given by s0 = c/

[(c2 − 1)
√

2(c2 − 1)] > 0 and μ = (c2 + 2)/[2(c2 − 1)] > 0.
Note that we have |ψds(x,t)| → c|ρ(t)|/

√
2(c2 − 1) �≡ 0 as

x → ∞.
Although the form of the soliton (22) is similar to the above-

mentioned bright soliton (17), the parameter c is chosen in
different ranges such that they exhibit different types of solitary
wave solutions. Figure 11 displays the profiles of the dark
solitary wave solutions (22) for the parameter c related to
the source amplitude and chemical potential. When s0 = 0.76
(i.e., c = 1.5), the profile becomes the usual dark solitary wave
solutions [see Figs. 11(b) and 11(f)]. As the source amplitude
s0 → 0 (e.g., s0 = 7.18 × 10−3 corresponding to c = 10), the
profile displays the W-shaped dark solitary wave solutions
[see Figs. 11(c) and 11(g)], whereas the smaller s0 (e.g., s0 =
2.83 × 10−4 corresponding to c = 50) makes the middle part
of the W-shaped dark solitary wave solutions become larger
[see Figs. 11(d) and 11(h)]. If we further take smaller source
amplitude (e.g., s0 = 2.83 × 10−6 corresponding to c = 500),
the middle part of the W-shaped dark solitary wave solutions

FIG. 11. (Color online) Wave propagations for the intensity
distribution |ψds|2 given by Eq. (22) with the gain or loss amplitude
γ0 = 0.1. (a) The source amplitude s0 vs the parameter c. (b) The
dark soliton profile with s0 = 0.76 (i.e., c = 1.5). (c)–(e) W-shaped
profile with s0 = 7.18 × 10−3, 2.83 × 10−4, 2.83 × 10−6 (i.e., c =
10, 50, 500). (f) The dark soliton profile with s0 = 0.76 (i.e., c = 1.5)
and t = 0 (solid line), 5 (dashed line), 10 (dashed-dotted line).
(g)–(i) The W-shaped profile with s0 = 7.18 × 10−3, 2.83 ×
10−4, 2.83 × 10−6 (i.e., c = 10, 50, 500) and t = 0 (solid line),
5 (dashed line), 10 (dashed-dotted line).

becomes larger, but it is less than the amplitudes of both sides
[see Figs. 11(e) and 11(i)].

Stability of the solutions against small perturbations, such
as thermal noise, is a crucial issue as it is linked with the
experimental observation and especially important for gases
with repulsive interactions [43]. This can be done by the linear
stability theory and numerical simulations of the solutions
with perturbations initially implanted. As the object of this
paper is to find the exact matter-wave solutions, a thorough
analysis of the stability surpasses the scope of this paper
and deserves separate studies. We will leave these studies
to later publications. Moreover, the technique used in this
paper can also be extended to higher-dimensional and/or
multicomponent BECs in the presence of inhomogeneous
source terms.

IV. CONCLUSIONS

In conclusion, we have studied nonautonomous matter
waves in Bose-Einstein condensates in the presence of an
inhomogeneous source, and analytically reported many types
of exact nonautonomous matter-wave solutions of the 1D time-
dependent GP equation in the presence of a source term (2).
These obtained nonautonomous matter-wave solutions contain
bright solitary waves, dark solitary waves, periodic wave so-
lutions, and rational solitary waves subject to different source
amplitudes and gain or loss term. Moreover, the functionalities
of the source (s0) and gain or loss (γ0) amplitudes are presented
to manipulate and control different matter-wave propagation
structures. These matter-wave solutions may further raise the
possibility of some experiments and potential applications
related to BECs in the presence of an inhomogeneous source.
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