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Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional
interacting bosonic gas
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We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic
field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective
optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate
(BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can
be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and
nondestructively.

DOI: 10.1103/PhysRevA.84.023822 PACS number(s): 37.30.+i, 03.75.Kk, 42.50.Pq

Experimental achievements in manipulating the strong
coupling between ultracold atoms and the electromagnetic
field in an optical cavity have triggered many exciting advances
in cavity quantum electrodynamics (QED) [1–8]. One of
the remarkable achievements is the implementation of cavity
optomechanics with cold atoms [6,7] or a Bose-Einstein
condensate (BEC) [8], which is of great importance for both
technical applications, ranging from optical communication
to quantum computation [9], and conceptional exploration of
classic-quantum boundaries [10].

In this paper, we investigate the optomechanical coupling
between a one-dimensional (1D) interacting bosonic gas and
a cavity field. Recent works have neglected interatomic inter-
actions or considered merely the weakly interacting region,
where mean-field Bogoliubov theory is valid [8,11]. In this
case, the 1D bosonic gas forms a BEC (or quasi-condensate)
[12], and the side-mode excitations of the condensate play
the role of mechanical resonator with the bare frequency
ω0

M = 4h̄k2/M [8], where k = 2π/λc is the wave vector of
the cavity mode. However, when interatomic interactions are
added into the system, the situation changes dramatically.
The strong interatomic interactions transform the ground state
of the condensate to a Luttinger liquid (LL). Remarkably
in a strongly interacting situation, the 1D bosons—known
as a Tonks-Girardeau (TG) gas [13–16]—exhibit completely
different behavior, like ideal fermions. It is therefore impor-
tant to explore the interatomic-interaction effects on cavity
optomechanics, where the quantum fluctuations of 1D bosons
are very strong.

In this work, we first employ the quantum hydrodynamical
approach to derive an effective model of the cavity QED with
1D interacting bosons. We show that effective optomechanics
can be realized in intermediate and strongly interacting
regions. The corresponding optomechanical coupling is deter-
mined by low-energy excitations or interatomic interactions
of the bosons. Therefore, by probing the cavity oscillations
or the noise spectra versus the interatomic interactions, one
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can determine the quantum phases of the 1D interacting
gas and detect the BEC-TG gas crossover, a fascinating
phenomenon of the system [17]. Furthermore, we propose
that one could also measure the sine-Gordon transition, which
has stimulated considerable interest [18,19], conveniently with
nondestructive measurements [20,21].

The system under investigation is schematically depicted
in Fig. 1(a), where N is the ultracold bosonic atoms of mass
M with a resonant frequency ωa confined in a 1D trap inside
an optical cavity with length L. The cavity mode of frequency
ωc is driven by a pump laser of frequency ωp at rate η, and
κ is the decay rate of the cavity field. Following Ref. [22],
we adiabatically eliminate the internally excited state of the
atoms, as justified by the large detuning between the atomic
resonance and pump frequency. Then, by using the dipole and
rotating-wave approximations, one arrives at the following
Hamiltonian of the atomic part:

Ĥa = h̄2

2M

∫ L

0
dx∂x�̂

†(x)∂x�̂(x) +
∫ L

0
dxV̂ (x)ρ̂(x)

+ 1

2

∫ L

0
dxdx ′ρ̂(x)U (x − x ′)ρ̂(x ′). (1)

Here, �̂(x) is the bosonic field operator, ρ̂(x) = �̂†(x)�̂(x)
is the atomic density operator, and V̂ (x) = h̄U0 cos2(kx)ĉ†ĉ
is the dynamical periodic potential, with ĉ the annihilation
operator of a cavity photon and U0 = g2

0/(ωp − ωa) the
potential depth. The interatomic interactions are given by
contact pseudo-potentials U (x − x ′) = g1dδ(x − x ′), where
g1d = 2h̄2as

(1−Cas/
√

2l⊥)Ml2
⊥

is the effective 1D coupling strength

with as the three-dimensional scattering length, C = 1.0325,
and l⊥ = √

h̄/Mω⊥ the transverse oscillator length.
We start by considering the general situation with arbitrary

interatomic interactions and derive an effective model of
the system by using the quantum hydrodynamical approach
[23], which is a well-defined low-energy theory. We work in
the low-photon-number limit, where the dynamical periodic
potential V̂ (x) is negligible. By introducing two new fields
φ̂(x) and θ̂ (x), which describe the collective fluctuations of the
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FIG. 1. (Color online) Experimental setup and schematic density
distribution. (a) N bosonic atoms with resonant frequency ωa are
confined in an effectively 1D trap inside an optical cavity of length L.
The cavity mode is driven by a pump laser of frequency ωp and the
decay rate is κ . (b) Ground-state atomic density distribution ρ0(x) in
the absence of a cavity mode. (c) Distribution of density fluctuation
ρq (x) with wave vector q = ±2k, which is scattered by the periodic
potential of the cavity mode.

phase and density, respectively, and satisfy the commutation
relation [φ̂(x), 1

π
∂x ′ θ̂ (x ′)] = iδ(x − x ′), we can express the

bosonic field operator �̂(x) as

�̂(x) ∼
[
ρ0 − 1

π
∂xθ̂ (x)

]1/2
{ +∞∑

m=−∞
e2miθ̂ (x)eiφ̂(x)

}
(2)

and the corresponding density operator as

ρ̂(x) =
[
ρ0 − 1

π
∂xθ̂ (x)

] +∞∑
m=−∞

e2im[θ̂(x)−πρ0x]. (3)

Here, ρ0 = N/L is the homogeneous ground-state atomic
density.

In the following, we first consider the long-wavelength
approximation, i.e., λc � 1/ρ0, where we can only keep the
m = 0 term in Eqs. (2) and (3). In this limit, the system can
be expressed by a hydrodynamical description, with the weak
dynamical periodic potential coupled to the slow part of the
density operator ρ̂(x). Then, the corresponding low-energy
effective Hamiltonian of the atomic part reads

Ĥ ′
a =

∫ L

0
dx

(
h̄υs

2π

{
K[∂xφ̂(x)]2 + 1

K
[∂xθ̂ (x) − πρ0]2

}

− V̂ (x)

π
∂xθ̂ (x)

)
. (4)

Here, K is the dimensionless parameter, and υs is the sound
velocity. They both depend on a single dimensionless interact-
ing parameter γ = Mg1d/h̄

2ρ0, with υsK ≡ υF = h̄πρ0/M

fixed by Galilean invariance (also see Fig. 3 and the detailed
discussion thereafter). We note that the Hamiltonian (4)
describes a LL coupled to a weak periodic potential, which
is dynamically dependent on the atomic state and determined
self-consistently.

We further transform the Hamiltonian (4) to a momentum
representation and then implement the standard bosoniza-
tion procedure by introducing the bosonic creation operator

b̂
†
q =

√
2π
|q|L ρ̂q . We can arrive at the following effective

Hamiltonian of the coupled system:

Ĥ eff =
∑

q=±2k

h̄ωqb̂
†
q b̂q + h̄g

∑
q=±2k

(b̂†q + b̂q)ĉ†ĉ + h̄�ĉ†ĉ

+ ih̄η(ĉ† − ĉ). (5)

Here the first term describes the long-wavelength density
fluctuations of the 1D interacting gas with ωq = υs |q| for
|q| 	 ρ−1

0 . The second term is the coupling between the
corresponding density fluctuations and the cavity field with

g = U0
4

√
kL
π

. In the sums, we assume that only the q = ±2k

modes are coupled to the cavity, which is justified by the low-
photon-number limit. � = ωc − ωp + U0N/2 is the effective
cavity detuning.

The effective Hamiltonian (5) actually describes the op-
tomechanical coupling between a mechanical oscillator (with
frequency ωM = ω±2k = 2kυs) and the radiation pressure
force of a cavity field. To see this, we introduce the quadratures
of the bosonic excitations X̂M = ∑

q=±2k(b̂†q + b̂q)/
√

2, and
we derive the following Heisenberg-Langevin equations:

d2X̂M

dt2
+ ω2

MX̂M = −2
√

2gωMĉ†ĉ, (6)

dĉ

dt
= −i� eff ĉ + η − κĉ +

√
2κĉ in, (7)

with the resonance frequency � eff = � + √
2gX̂M and the

noise term
√

2κĉ in. Here, the low-energy, long-wavelength
density fluctuation (phonon) plays the role of a mechanical
resonator.

Now, we investigate optomechanical coupling governed
by the set of coupled equations (6) and (7). One of the
characteristic phenomenon of cavity optomechanics is the
bistable behavior of the stationary solutions, which we
derive as X̄M = −2

√
2g|α|2/ωM , and mean photon number

|α|2 = η2/[κ2 + (� − 4g2ω−1
M |α|2)2]. In Fig. 2(a), we give

the bistability for three typical oscillators with frequency
ωM , which corresponds to different quantum phases of the
system. A linear stability analysis shows that the middle
branch (dashed line) is unstable, while the upper and lower
branches are stable. Here, typical experimental parameters are
used: L ∼ 100 μm, λc = 780 nm, N 
 5000 87Rb atoms, with
1/ρ0 
 20 nm 	 λc satisfying the wavelength approximation
and κ = 2π × 1 MHz, U0 = 2π × 20 kHz with the Rabi
frequency g0 = 2π × 10.9 MHz and the pump-atom detuning
ωp − ωa = 2π × 32 GHz.

To discuss the dynamics of optomechanics, we have
taken into account the lossy and driven cavity, where
quantum jumps in the cavity photon number can lead to
a strong entanglement between the cavity photon number
and the bosonic wave function. This creates a displace-
ment noise spectrum of the mechanical oscillator SXM

(ω) =
2κ(4gαωM )2[κ2 + (�̃ + ω)2]/|d(ω)|2 and the corresponding
measurable noise spectrum of the cavity field quadrature X̂c =
(ĉ† + ĉ)/

√
2 [24], which gives SXc

(ω) = {(2gα�̃)2SXM
(ω) +

2κ[κ2 + (�̃ + ω)2}/|d(ω)|2 [see Fig. 2(c)]. Here, d(ω) =
(ω2 − ω2

M )[(κ − iω)2 + �̃2] + 2ωM�̃(2gα)2, and �̃ = � −
(2gα)2/ωM .
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FIG. 2. (Color online) Steady-state and dynamical behavior of the optomechanical coupling. (a) Mean cavity photon number vs � for
ωM = 2π × [0.02 (BEC),0.12 (LL),0.28 (TG gas)] MHz. Here ηcr is the bistability threshold. (b) Cavity photon number |α|2, coupled oscillator
XM (dashed line), and free oscillator XM (g = 0) for � = 0. (c) Noise spectrum SXc vs ω and �. (d) Center frequency ωS (×2π MHz) of SXc

vs γ . The inset shows the results for the small-γ region.

We then explore interatomic-interaction dependence on
effective optomechanics. First we note that, whether the
system is in weakly or strongly interacting regions, one
can realize the effective mechanical oscillator in the whole
region. This implies that the 1D bosonic gas is in fact in a
universal class, which can be well described by low-energy
hydrodynamical theory. However, the mechanical oscillator
frequency ωM is fully dependent on the interatomic-interaction
parameter γ with ωM = 2kυs . Here, the sound velocity is given
by υs =

√
(ρ0/M) ∂2E/∂N2, and E = ∑

l h̄
2k2

l /2M is the
ground-state energy of the 1D bosonic gas with kl determined
by the following Bethe ansatz equations [14]:

klL = 2πIl −
N∑

m=1

tan−1

(
kl − km

γρ0

)
, (8)

where Il ∈ {−(N − 1)/2, . . . ,(N − 1)/2} are the set of inte-
gers. We solve Eq. (8), and in Fig. 3 we show the numerical
results of ωM versus γ . Experimentally, when photons enter the
cavity, the light field and the bosonic excitations are coupled

nonlinearly, and the eigenfrequency of Eqs. (6) and (7) will
modify ωM . Nevertheless, the optomechanical coupling is
fully determined by the frequency ωM of bosonic excitations
and thereby dependent on γ of the 1D gas. Accordingly, by
measuring the cavity field oscillations or detecting the noise
spectrum, one can determine the continuous BEC-TG gas
crossover, which is an intriguing result of the system.

In the weakly interacting region, we can use the Bogoliubov
approximation to derive ωM = 2kυF

√
γ − γ 3/2/(2π )/π for

γ � 10 (the dashed line of Fig. 3). However, we note that
ωM vanishes as γ → 0, which contradicts recent experimental
results [8]. In fact, because the bosons begin to quasi-
condense for γ 	 1, the dominant contribution of the density
fluctuation ρ̂±2k = �̂

†
±2k�̂q=0 + ∑

q =0 �̂
†
±2k+q�̂q comes from

the quasiparticle excitations from the macroscopic occupied
q = 0 ground state. The energy of a quasiparticle is then
determined by the Bogoliubov excitation spectrum ωM =√

ε±2k(ε±2k + 2g1dρ0)/h̄ with ε±2k = 2h̄2k2/M (the dotted
line of Fig. 3). In this case, the mechanical oscillators are the
side-mode excitations of a BEC, and in the limit of γ = 0,
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FIG. 3. (Color online) Mechanical oscillator frequency ωM (in
units of 2kυF ) vs γ . The solid line is the numerical Bethe ansatz result.
The dashed and the dash-dotted lines are the asymptotic results in the
weakly and strongly interacting regions, respectively. In the weakly
interacting region, we also give the Bogoliubov excitation spectrum
(dotted line).

we get the bare oscillator frequency ω0
M = 4h̄k2/M (inset

of Fig. 3). Accordingly, the coupling between the oscillator
and a cavity field should be replaced by g = U0/2

√
N/2 in

Eqs. (6) and (7), which is enhanced by the condensation. We
give the stationary bistability in the inset of Fig. 2(a), and
then numerically integrate the coupled equations for � = 0
by switching on η/κ = 4 at t = 0. We find that the cavity
field oscillates regularly (not shown), but the frequency of
the cavity field has a large shift of ωM , which agrees well
with Ref. [8].

When γ is further increased above unity, the collective
density excitations become dominant and the 1D gas crosses
to a LL [17]. Numerical integration of Eqs. (6) and (7) shows
that both |α|2 and XM exhibit well-defined oscillations, and
the cavity field is excited resonantly at XM = 0 [Fig. 2(b)].
Yet we note that, different from the BEC phase where g is
collectively enhanced, the optomechanical coupling becomes
small. In this case, a linear stability analysis shows that the
eigenfrequency of the set of coupled equations is nearly the
same as for the free oscillator ωM [for example, see Fig.
2(b)]. This is a characteristic phenomenon of the region.
Experimentally, by increasing the interatomic interactions,
if the oscillation frequency of the cavity field follows the
solid line of Fig. 3, the 1D gas should be in the LL phase.
We also calculate the noise spectrum SXc [Fig. 2(c)], where
the center frequency ωS of the spectrum has a shift of
ωM . In Fig. 2(d), we give ωS for � = 0 in the whole
interacting region. We find that ωS increases with γ and has a
tendency to saturate above γ 
 50, which can be inspected in
experiments.

For γ � 1, the strong interactions would prevent the
bosons from occupying the same position. Especially when
γ = ∞, the symmetric many-body wave function of bosons
can be mapped to an antisymmetric fermionic wave func-
tion by �B(x1, . . . ,xN ) = A(x1, . . . ,xN )�F (x1, . . . ,xN ) with
A(x1, . . . ,xN ) = ∏

1�j<k�N sgn(xk − xj ) [13]. Hence, the

Hamiltonian (1) can be rewritten in terms of the fermion field
operators:

ĤF = h̄2

2M

∫ L

0
dx∂x�̂

†
F (x)∂x�̂F (x) +

∫ L

0
dxV̂ (x)ρ̂F (x),

(9)

which is exactly the model describing a free fermion gas
subjected to the cavity periodic potential [25]. Then, the
oscillator is formed by particle-hole excitations at the edges
of ±kF through Bose-Fermi mapping, and the mechanical
frequency is naturally related to the Fermi velocity: ω∞

M =
2kυF = 2kh̄πρ0/M . For finite γ , we use the asymptotic
expression to derive ωM = 2kυF [1 − 4/γ ] (the dash-dotted
line of Fig. 3). Experimentally, when the 1D gas becomes a
TG gas, the oscillation frequency of the cavity field should
follow this asymptotic expression and should approach ω∞

M .
Correspondingly, the center frequency ωS will saturate at
2π × 0.42 MHz [Fig. 2(d)].

Let us now turn to the commensurate situation with λc ∼
2/ρ0, where a new instability—the sine-Gordon transition—
may appear in the strongly interacting 1D quantum gas [19].
Here, the superfluid ground state turns insulating in the
presence of a weak commensurate periodic potential. It is
now necessary to take account of the discrete nature of the
boson with m = 0 terms in Eq. (3). This gives rise to a
sine-Gordon-type perturbation [18] up to the leading term,

Ĥs-G = 1

2
h̄U0ĉ

†ĉρ0

∫ L

0
dx cos[2θ̂(x) + Qx], (10)

where Q = 2π (ρ0 − k/π ), which vanishes at commensurabil-
ity. In the small-photon-number limit, it was shown in [26] that
this term is renormalization independent for K > Kc = 2, or
equivalently γ < γc = 3.5, leaving the ground state a super-
fluid LL with the same linear excitation spectrum as in the long-
wavelength approximation. Then, one expects a well-defined
oscillation of the optomechanical coupling. While for γ > γc,
Ĥs-G becomes relevant, the system transitions to an insulating
Mott phase, where the bosonic excitations are forbidden owing
to the energy cost, and the optomechanical oscillation vanishes
correspondingly. Therefore, in experiments, we can easily use
optomechanical dynamics across the critical point γc to detect
the sine-Gordon transition.

Finally, we remark on several issues related to our work.
First, we note that some literature on nonmeanfield theories of
bosonic fields in cavity light fields already exists. For example,
in Ref. [27], the authors studied the commensurate situation
with large photon numbers, where the sine-Gordon transition
eventually evolves into a Mott transition of a Bose-Hubbard
type combined with a nonlinear cavity mode. In our work, we
explore the non-mean-field effects on cavity optomechanical
oscillations in the low-photon-number limit, which differs
from existing works. Second, when the bosons are incommen-
surate with Q = 0, the system undergoes a commensurate-
incommensurate-type transition [18], which we propose may
also be probed in the cavity. Third, the mechanical frequency
ωM of the interacting gas is generally determined by the optical
potential in classical and semiclassical regimes. In this paper,
we focus on the small-photon-number limit (see Ref. [8] for
the experimental conditions), where the influence of the cavity
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field on cold atoms can be treated perturbatively by standard
linear response theory (LRT). In this situation, the energy
dispersion of the relevant quasiparticles, which determines
the mechanical frequency ωM , is solely dependent on the
intrinsic many-body atomic state. Beyond LRT, the oscillation
frequency would be modified by the photon number and the
atom-photon coupling strength g.

In summary, we demonstrate that one can realize effective
optomechanics in the whole interacting regions of 1D bosonic
gas. This offers an approach to detecting the BEC-TG
gas crossover or the sine-Gordon transition by investigating

optomechanical coupling. These proposals are of particular
significance for exploring novel phenomena of cavity QED
and ultracold atoms.
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