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Strong thermalization of the two-component Bose-Hubbard model at finite temperatures
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We study thermalization of a two-component Bose-Hubbard model by exact diagonalization. Initially, the
two components do not interact and are both at equilibrium but with different temperatures. As the onsite
intercomponent interaction is turned on, perfect thermalization occurs. Remarkably, not merely those simple
“realistic” physical observables thermalize but even the density matrix of the whole system—the time-averaged
density matrix of the system can be well approximated by that of a canonical ensemble. We also discuss how
symmetry of the quenched Hamiltonian affects the level spacing distribution and thermalization of the system.
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I. INTRODUCTION

For an isolated system, how and in which sense thermal
equilibrium is reached from an initially nonequilibrium state,
or even whether it can be reached or not, has long been a
problem [1]. A modern investigation came with the Fermi-
Pasta-Ulam simulation as soon as the electric computer was
available [2]. The surprising result was that the system
exhibited a long-time periodic behavior without any sign of
ergodicity, which was later ascribed to the integrability of the
model in the continuum limit [3]. More recently, the problem
revived again because of the possibility of using ultracold
atoms to address it experimentally [4]. Many different models,
integrable [4–6] or nonintegrable [7–10], are investigated. For
those models integrable, as expected, no thermalization, or at
least no thermalization in the usual Gibbs-ensemble sense is
observed [4–6]. What is unexpected is that, even for some
nonintegrable models [7–9], thermalization does not occur, at
least at finite sizes and at zero temperature. Moreover, even
if thermalization does show up [9,10], it thermalizes only in
the sense that some physical observables relax to the predicted
values of a microcanonical or canonical ensemble—yet the
time-averaged density matrix itself shares little feature with a
microcanonical or canonical ensemble (an exception is [11],
where signature of this is observed). Therefore, the system
thermalizes in a weak or pragmatic sense, since it is the few
simple observables that are readily measured and thus of most
concern that thermalize.

In this paper, we investigate thermalization of the two-
component Bose-Hubbard model, which is known as non-
integrable (see Fig. 2 below). Though at zero temperature
the system shows no sign of thermalization at the finite
sizes accessible, at finite temperatures we do find that in
some regimes the model thermalizes very well at a finite
size. Remarkably, unlike previous works, it is not only some
simple observables that thermalize but even the time-averaged
density matrix (of the whole system) itself, which can be
well approximated by a canonical ensemble density matrix.
The motivation is to simulate the everyday experience that
two objects initially at different temperatures, when brought
in contact, equilibrate eventually as a whole. This textbook
scenario is familiar to everyone and deserves a first-principle
investigation. Here, “first principle” means we are allowed to
explore freely without the restriction of empirical assumptions

and possibly go beyond standard statistical mechanics [12].
Specifically, our approach will be primarily numerical exact
diagonalization, and in spirit it is very much like the Fermi-
Pasta-Ulam simulation.

Here, the two species of bosons act as the two objects.
It is assumed that initially each component is at equilibrium
in themselves and at some finite but different temperatures
and there is no interaction between them. Then at time
t = 0, the intercomponent interaction is switched on and the
subsequent evolution is studied. Note that the two-component
Bose-Hubbard model we choose has a desirable property. That
is, it is potentially realizable experimentally using cold atoms
in optical lattices. In particular, the intercomponent interaction
can be controlled with Feshbach resonance.

This paper is organized as follows. In Sec. II, the model is
defined and the principal object of study—the time-averaged
density matrix ρ̄ is introduced. In passing, the numerical
method is explained in detail. In Sec. III, we focus on
the time-averaged density matrix ρ̄ (a sector of it in some
quasimomentum space actually). We will try to characterize
ρ̄ in various means, using various criterions. The central
observation will be that ρ̄ can be well approximated by the
canonical ensemble density matrix ρc, which is of the same
energy as ρ̄, in some regime. It is also found that ρ̄ is intricately
structured in the presence of symmetry. The good agreement
between ρ̄ and ρc constitutes a highly nontrivial fact and its
implications are discussed in Sec. IV. The conclusions are
presented in Sec. V.

II. THE MODEL AND THE BASIC APPROACH

The Hamiltonian is (h̄ = kB = 1) Ĥt = Ĥa + Ĥb + θt Ĥab,
where Ĥa,b are Hamiltonians of components a and b, respec-
tively. Explicitly,

Ĥa = −Ja

M∑
m=1

(â†
mâm+1 + H.c.) + Ua

2

M∑
m=1

â†
mâ†

mâmâm,

and Ĥa ↔ Ĥb as a ↔ b. Here, M is the number of sites and
periodic boundary condition is assumed. The intercomponent
interaction is of the on-site type: Ĥab = Uab

∑M
m=1 â

†
mâmb̂

†
mb̂m.

The control function is defined as θt<0 = 0 while θt�0 = 1. By
assumption, the initial density matrix of the whole system is
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ρ(0) = ρa(0) ⊗ ρb(0), where the initial density matrices of the
two components are (α = a,b)

ρα(0) = 1

Zα

Dα∑
j=1

e−βαE
j
α |j 〉α〈j |. (1)

Here, βα is the inverse temperature of the component α, |j 〉α
denotes the j th eigenstate of Ĥα with eigenvalue E

j
α , and

Zα = ∑Dα

j=1 e−βαE
j
α is the partition function. The dimension of

the Hilbert space Hα of component α is Dα = (M+Nα−1)!
(M−1)!Nα ! , with

Nα being the total atom number of component α.
Now turn on the interaction. Denote the nth eigenstate (with

eigenvalue En) of the quenched Hamiltonian Ĥt�0 as |ψn〉.
The density matrix at an arbitrary time later is formally ρ(t) =∑D

n,l=1〈ψn|ρ(0)|ψl〉e−i(En−El )t |ψn〉〈ψl|, where D = DaDb is
the dimension of the full Hilbert space H = Ha ⊗ Hb. At this
point, the time-averaged density matrix is defined as

ρ̄ ≡ lim
τ→∞

1

τ

∫ τ

0
dtρ(t)

=
D∑

n,l=1;En=El

〈ψn|ρ(0)|ψl〉|ψn〉〈ψl|. (2)

The operator ρ̄ is of significant relevance for our purpose
for multiple reasons. First, it is observable-free. Second, the
time-averaged value of an arbitrary operator is given simply

by 〈Ô〉 ≡ limτ→∞ 1
τ

∫ τ

0 tr[ρ(t)Ô]dt = tr(ρ̄Ô). As proven in
Ref. [13], for many observables, the fluctuation of 〈Ô〉 around
its average value shrinks exponentially with the system size
[14]. Thus, the dynamics of 〈Ô〉 is to a good extent captured

by 〈Ô〉. Third, the process of averaging over time is a process
of relaxation in the sense that the entropy associated with ρ̄

is definitely no less than that with ρ(t), i.e., S(ρ̄) � S(ρ(t)) =
S(ρ(0)). This is a corollary of the Klein inequality [15] and is
reasonable since ρ(0) contains all the information of ρ̄ while
the inverse is invalid.

We note that Ĥt is invariant under the simultaneous
translations (âm,b̂m) → (âm+1,b̂m+1). Especially, the initial
Hamiltonian Ĥt<0 = Ĥa + Ĥb is invariant under the two
translations individually. This implies the conservation of
quasimomentum(a) (QM). The QM of component a is defined
as

qa =
M−1∑
k=0

kâ
†
kâk (mod M), (3)

where â
†
k = 1√

M

∑
m eim2πk/Mâ

†
m is the creation operator of

an atom in the kth Bloch state. Similar operators are defined
for component b. Our strategy is then to transform to the
QM space. We decompose the total Hilbert space H into
M subspaces according to the total QM q = qa + qb, H =
⊕M−1

q=0 H(q), which are further decomposed according to the QM

of the two components (qa,qb), H(q) = ⊕M−1
qa=0H

(qa )
a ⊗ H(q−qa )

b .
The Hamiltonian and density matrix are always block-diagonal
with respect to the q subspaces, Ĥt = ⊕M−1

q=0 Ĥ
(q)
t and ρ(t) =

⊕M−1
q=0 ρ(q)(t). In particular, the initial density matrix can

be decomposed finer as ρ(q)(0) = ⊕M−1
qa=0ρ

(qa )
a (0) ⊗ ρ

(q−qa )
b (0)

with ρ
(qα )
α ∈ H(qα)

α , since Ĥ
(q)
t<0 can be decomposed similarly.

In each q subspace, generally there is no degeneracy between
the eigenstates {|ψn〉}, therefore, the ρ̄ in each q subspace is
simply the diagonal part of the initial density matrix in the
{|ψn〉} representation, i.e., 〈ψn|ρ̄(q)|ψl〉 = δnl〈ψn|ρ(q)(0)|ψl〉.

Here, some remarks are in order. First, technically we use
the exact diagonalization algorithm in Ref. [16]. To be specific,
we work in the momentum representation and rewrite the
Hamiltonian Ĥt in terms of the operators âk and b̂k . We then
enumerate all the Fock states in the q subspace and set up
the matrix corresponding to Ĥ

(q)
t in this basis. These are done

using the tricks in Ref. [16]. Once the Hamiltonian matrix is
diagonalized completely, all quantities can be calculated easily.
It should be stressed that we impose no cutoff on the occupation
number on each site. That is, our numerical simulation is
completely exact. Second, it should be mentioned that for
some quantities [e.g., 〈â†

kâk〉] studied below, we should have
averaged over all the q subspaces. However, in this paper we do
not do so, because the system behaves quantitatively similar in
all the q subspaces [see Fig. 1(c)]. This fact is reasonable and
is even expected in the thermodynamic limit. The reason is that
the value of q can be changed from one to another by simply
changing the quasimomentum of a single atom—a process
expected to be of little influence on the thermodynamics of
the system. Given that a single q subspace captures the overall
behavior well, we shall focus on a specific q subspace (q = 1)
and take the normalization tr[ρ(q)(t)] = 1.

III. CHARACTERIZATION OF ρ̄

As mentioned above, our motivation is to study the
relaxation dynamics of the initially nonequilibrium sys-
tem. A natural question is, then, what ρ̄(q) is like.
The following subsections are devoted to various aspects
of it.

A. Canonical distribution

As revealed by Fig. 1, at least in some regimes, the time-
averaged density matrix ρ̄(q) has a strong characteristic of
a canonical ensemble [17]. In each panel, the occupations
pn = 〈ψn|ρ̄(q)|ψn〉 on the eigenstates are plotted versus the
eigenvalues En. It is amazing that most of the points cling
close to a straight line except at the ends of the spectrum,
and the straight line is actually the prediction of a canonical
ensemble,

ρ(q)
c (βf ) ≡ e−βf Ĥ

(q)
t>0

tr
(
e−βf Ĥ

(q)
t>0

) , (4)

with the same energy as ρ̄(q), i.e., Ē ≡ tr(Ĥ (q)
t>0ρ̄

(q)) =
tr[Ĥ (q)

t>0ρ
(q)
c (βf )]. The situation improves if the initial tem-

peratures 1/βa,b are increased and worsens if they are
decreased. The relatively bad agreement between ρ̄(q) and
ρ

(q)
c at the edges of the spectrum or at low tempera-

tures is expected, since a finite system with few-body and
finite-range interactions is not chaotic at the edges of the
spectrum [18].
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FIG. 1. (Color online) (a) and (b): Diagonal elements of ρ̄(q) (blue dots) and ρ(q)
c (red dots) versus the eigenvalues En. The parameters

are (Na,Nb,M,q) = (4,4,9,1), (Ja,Jb,Ua,Ub) = (1,1,2,2), (βa,βb) = (0.2,0.4), and Uab = 0.5 in (a); Uab = 1 in (b). The dimension of the q

subspace is D(q) = 27,225. The green lines depict the coarse-grained density of states of Ĥ
(q)
t>0 (just for reference, not corresponding to the

vertical axes). The inverse temperature βf and the entropies of ρ̄(q) and ρ(q)
c are shown in the inserts. (c) is an extension of (b), where three

q subspaces (q = 0, blue dots; q = 1, red dots; q = 2, green dots) are investigated. The blue and red dots are hardly visible because they are
covered by the green dots. Note that in (a) and (b) we use tr(ρ̄(q)) = 1, while in (c) tr(ρ̄) = 1.

Besides Fig. 1, we have explored the parameter space
extensively. The observation is that when the J ’s and U ’s
are comparable, i.e., when the model is far from the integrable
limits, results similar to Fig. 1 can occur. Of course, the fitting
is not always as good as in Fig. 1. In the low temperature or
unbalanced case (|βa − βb| large), the fitting worsens (e.g., see
Fig. 4). We will come back to this point later in Sec. IV.

Having the eigenvalues of Ĥ
(q)
t>0 solved numerically, we

have also studied its level spacing statistics. The results
are shown in Fig. 2. There the two panels correspond to
the first two panels of Fig. 1 one to one. It is apparent that
the Hamiltonian Ĥ

(q)
t>0, in the specific parameters, belongs to

the Gaussian orthogonal ensemble (GOE) universal class. This
proves that the model in question is generically nonintegrable
as expected.
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FIG. 2. (Color online) Level spacing distribution of the Hamilto-
nian Ĥ

(q)
t>0. Each panel corresponds to that in Fig. 1, respectively, with

the same parameters. In each panel, the green dashed line and the red
solid line correspond to the Poisson distribution PP (s) = exp(−s) and
Wigner-Dyson distribution PWD(s) = πs

2 exp(−πs2/4) of a Gaussian
orthogonal ensemble (GOE), respectively. We employ the unfolding
procedure in [19]. Note that due to the symmetric parameters
(Ja = Jb, Ua = Ub, Na = Nb), the Hamiltonian is invariant under
the exchange a ↔ b. Therefore, only eigenstates even under the
exchange are counted.

B. The weak coupling limit of Uab → 0

Here, the weak intercomponent interaction limit Uab → 0
is of special interest [17]. On one hand, when Uab = 0,
the eigenvalues of Ĥ

(q)
t>0 are direct sums of those of Ĥ

(q1)
a

and Ĥ
(q2)
b (q1 + q2 = q), and thus the level spacing statistics

should be Poisson. Therefore, as Uab increases from zero,
there should be a crossover from the Poisson distribution
to the GOE distribution as shown in Fig. 2. On the other
hand, in the symmetric cases (i.e., Ja = Jb, Ua = Ub, and
Na = Nb) as in Fig. 1, for Uab small enough, the degeneracy
between |φq1

m 〉a|φq2
n 〉b and |φq2

n 〉a|φq1
m 〉b is lifted (if they are

different; otherwise, only the plus sign should be taken) to
form eigenstates of Ĥ

(q)
t>0,

|q1q2mn; ±〉 = 1√
2

(∣∣φq1
m

〉
a

∣∣φq2
n

〉
b
± ∣∣φq2

n

〉
a

∣∣φq1
m

〉
b

)
(5)

with eigenvalues approximately E
q1
m + E

q2
n . Here, |φqi

m 〉α (α =
a,b and i = 1,2) is the mth eigenstate of Ĥ

(qi )
α with eigenvalue

E
qi
m . Note that in the symmetric case, E

qi
m is independent of α.

Moreover, the populations on |q1q2mn; ±〉 are

p± = 1

2Z

(
e−βaE

q1
m −βbE

q2
n + e−βaE

q2
n −βbE

q1
m

)
, (6)

where Z is a normalization factor (or partition function). It is
easy to show that

ln(p±) � − 1
2 (βa + βb)

(
E

q1
m + E

q2
n

) − ln Z, (7)

and (βa < βb)

ln(p±) � −βb

(
Eq1

m + Eq2
n

) + (βb − βa)Eu − ln Z, (8a)

ln(p±) � −βa

(
Eq1

m + Eq2
n

) − (βb − βa)El − ln Z, (8b)

where El,u are the lower and upper bounds of E
q1
m . The equal-

ities in Eqs. (7), (8a), and (8b) are approached, respectively,
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FIG. 3. (Color online) Left panel: diagonal elements of ρ̄(q) (blue
dots) and ρ(q)

c (red dots) versus the eigenvalues En. Note that the blue
dots are sharply bounded by a triangle, the slopes of whose boundaries
are −βa , −βb, and − 1

2 (βa + βb), respectively. Right panel: level

spacing distribution of the Hamiltonian Ĥ
(q)
t>0, processed in the same

way as in Fig. 2. The parameters are the same as in Fig. 1 and Fig. 2,
except that Uab = 0.025.

when (Eq1
m − E

q2
n ) approaches zero, when min(Eq1

m ,E
q2
n ) = El ,

and when max(Eq1
m ,E

q2
n ) = Eu. It is interesting that the three

boundaries form a triangle with slopes − 1
2 (βa + βb), −βb, and

−βa , respectively.
In Fig. 3, we have studied the case with Uab = 0.025, which

is much smaller than the J ’s and U ’s. The two points above are
verified excellently. In Fig. 3(b), the level spacing statistics are
apparently between the Poisson and the Wigner-Dyson statis-
tics, and in Fig. 3(a), the triangle envelope is clearly visible.

Here again some remarks are in order. First, though
the discussion above is very instructive, one should
note that the phenomena associated with the Uab → 0 limit
are finite-size effects essentially. The reason is that as the
size of the system increases, the typical level spacing of the
unperturbed Hamiltonian Ĥa + Ĥb decreases exponentially,
and the value of |Uab| needs to be accordingly small to validate
the discussion. Second, Figs. 1–3 reveal that as Uab is turned
on, the level spacing statistics transform from the Poisson
statistics (feature of integrable systems) to the Wigner-Dyson
statistics (feature of nonintegrable systems), and at the same
time the distribution of pn heals from the triangular distribution
to the Boltzmann distribution. A natural question is then, does
the first transition imply or even ensure the second?

This turns out to be an intricate problem. First of all,
one should note that the level spacing distribution is solely
a property of the quenched Hamiltonian. Yet, the problem of
thermalization depends also on the initial state of the system.
In particular, here it depends on the initial temperatures of the
two components. From this point of view, the level spacing
distribution being the Wigner-Dyson distribution does not
guarantee thermalization, since the canonical fitting worsens
in the low temperature limit as mentioned above.

However, the level spacing distribution being Wigner-
Dyson does seem to be a favorable, if not necessary condition
of thermalization. It is generally believed that non-Wigner-
Dyson distribution signals integrability or symmetry and
thermalization is hampered by them. Indeed, as we shall see
in Fig. 5, deviation from the Wigner-Dyson distribution in
the presence of symmetry is accompanied by deterioration

of the canonical fitting. Yet, levels belonging to the same
symmetry class still satisfy the Wigner-Dyson distribution,
and, interestingly, each class admits a good canonical fitting
individually even though such a global fitting is impossible.

C. Distances and fidelities

Figure 1 gives us an overall impression of ρ̄(q). To char-
acterize it further, we use the tools of distance and fidelity to
study its relation to some reference density matrices. The three
reference density matrices chosen are, respectively, the canon-
ical ensemble one mentioned above, the product state (q sec-
tion, actually) ρ

(q)
prod(βf ) = N1 ⊕M−1

qa=0 e−βf Ĥ
(qa )
a ⊗ e−βf Ĥ

(q−qa )
b ,

and the initial density matrix ρ(q)(0) = N2 ⊕M−1
qa=0 e−βaĤ

(qa )
a ⊗

e−βbĤ
(q−qa )
b , where N1,2 are normalization coefficients such that

tr(ρ(q)
prod) = tr[ρ(q)(0)] = 1. The distance and fidelity between

two density matrices are defined as D(ρ,σ ) = 1
2 tr

√
(ρ − σ )2

and F (ρ,σ ) = tr
√

ρ1/2σρ1/2, respectively. They both take
values in the range of [0,1] and are closely related to each other
by the inequality 1 − F � D �

√
1 − F 2 [15]. Two density

matrices are close to each other if the distance D and the
infidelity 1 − F are much smaller than unity.

1. General behavior

In Figs. 4(a) and 4(b), the D’s and F ’s are shown as the
interaction strength Uab is varied while all other parameters
fixed. We see that in the full range of Uab investigated, ρ

(q)
c
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FIG. 4. (Color online) (a) Distance and (b) fidelity between ρ̄(q)

and the canonical ensemble density matrix ρ(q)
c (red ∗), product den-

sity matrix ρ
(q)
prod (blue ), and the initial density matrix ρ(q)(0) (black

�). The parameters are (Na,Nb,M,q) = (4,4,9,1), (Ja,Jb,Ua,Ub) =
(1,1,2,2), and (βa,βb) = (0.3,0.8). (c) and (d) Distance and fidelity
between ρ̄(q) and ρ(q)

c as functions of both the intercomponent
interaction strength Uab and the inverse temperatures βa,b. Note that
βb/βa = 8/3 as βa varies.
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is the one closest to ρ̄(q), while ρ(q)(0) is the farthest [and so
is ρ(q)(t), actually, because D(ρ(q)(0),ρ̄(q)) = D(ρ(q)(t),ρ̄(q))
and F (ρ(q)(0),ρ̄(q)) = F (ρ(q)(t),ρ̄(q)) by the unitary invariance
of D and F ], with ρ

(q)
prod being the intermediate one. Moreover,

the distance and infidelity between ρ̄(q) and ρ
(q)
c are much

smaller than unity throughout the range. This indicates that
the initially nonequilibrium state is effectively thermalized by
time-averaging. The fact that ρ

(q)
c is always a better approx-

imation of ρ̄(q) than ρ
(q)
prod indicates that the two subsystems

equilibrate as a whole instead of factorizably. This is consistent
with the fact that the intercomponent interaction is a bulk type
not a surface type. We also observe that in the limit of Uab → 0,
D(ρ̄(q),ρ(q)(0)) does not converge toward zero, nor does
F (ρ̄(q),ρ(q)(0)) converge toward unity. The reason lies in that
in the symmetric case (i.e., Ja = Jb, Ua = Ub, and Na = Nb),
an infinitesimal Uab is enough to lift the level degeneracies
and render ρ̄(q) different from ρ(q)(0). This is easily seen from
Eqs. (5) and (6). In the asymmetric case (e.g., Na �= Nb), when
the degeneracy lift mechanism is missing, D(ρ̄(q),ρ(q)(0)) and
1 − F (ρ̄(q),ρ(q)(0)) do converge toward zero as Uab → 0.

Having established the fact that ρ
(q)
c is the best approxi-

mation of ρ̄(q), we proceed to study the distance and fidelity
between them as functions of both Uab and βa,b. The results
are shown in Figs. 4(c) and 4(d). We see that as the initial
temperatures 1/βa,b are lowered, both D and 1 − F increase.
This is in accord with what was mentioned before, that
the fitting worsens in the low temperature limit. As for the
intercomponent interaction strength Uab, an observation is that
there is a finite (optimal) value of Uab (� 0.85) where both D

and 1 − F are at their minima. This effect is reasonable. If
Uab is too small, we have situations like that in Fig. 3; if Uab

is too large, again bad fitting is expected, since the large Uab

limit is an integrable limit. Indeed, it is observed in a variety of
systems that thermalization is absent if the quench amplitude
is too large [7,8,11,13,20].

2. A special point: A hidden symmetry

A curiosity invoking phenomenon revealed in Figs. 4(a)
and 4(b) and further confirmed in Figs. 4(c) and 4(d) is that

at Uab = 2, there is a cusp in the values of D and F . It is
interesting that D and F do not vary smoothly as functions of
Uab. We have looked into the time-averaged density matrix ρ̄(q)

and the level spacing distribution in the vicinity of Uab = 2.
Three values of Uab, i.e., Uab = 2, 2 ± 0.2, are investigated
(see Fig. 5). We see that at the point Uab = 2 (middle panels),
the level spacing distribution deviates significantly away from
the Wigner-Dyson distribution and the fluctuation of pn is
large. However, as Uab moves away from this point, left or
right, the Wigner-Dyson distribution is quickly recovered and
the fluctuation of pn shrinks apparently. The fact that the fluctu-
ation of pn is larger at Uab = 2 than on the two sides is consis-
tent with the fact that D and 1 − F are at their (local) maxima
there.

It turns out that the anomaly at Uab = 2 is rooted in the
symmetry of the Hamiltonian Ĥt>0 at this special point. When
Ja = Jb = J and Ua = Ub = Uab = U , the total Hamiltonian
is of the form

Ĥt>0 = −J

M∑
m=1

(â†
mâm+1 + b̂†mb̂m+1 + H.c.)

+ U

2

M∑
m=1

[(â†
mâm + b̂†mb̂m)2 − (â†

mâm + b̂†mb̂m)]. (9)

The four operators below commute with Ĥt>0:

N̂ =
M∑

m=1

(â†
mâm + b̂†mb̂m), (10a)

L̂z = 1

2

M∑
m=1

(â†
mâm − b̂†mb̂m), (10b)

L̂+ =
M∑

m=1

â†
mb̂m, L̂− =

M∑
m=1

b̂†mâm. (10c)

As the notation suggests, the three operators L̂z and L̂±
satisfy the su(2) algebra, which is easily seen using the
Schwinger representation of angular momentum operators.
They are the sum of the corresponding components of M

independent spins and they all commute with the operator
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FIG. 5. (Color online) Upper panels: diagonal elements of ρ̄(q) versus the eigenvalues of Ĥ
(q)
t>0. Lower panels: level spacing distribution of

Ĥ
(q)
t>0. The parameters are the same as in Fig. 4(a), except that Uab = 1.8, 2, and 2.2 in the left, middle, and right panels, respectively.
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N̂ . Moreover, it is obvious that all four operators above,
as the Hamiltonian Ĥt>0, are invariant under the translation
(âm,b̂m) → (âm+1,b̂m+1). This means they conserve the to-
tal quasimomentum. Therefore, the Hamiltonian Ĥ

(q)
t>0 has

SU(2) ⊗ U(1) symmetry and its eigenstates can be classified
according to the irreducible representations of the group
SU(2) ⊗ U(1). That is, each eigenstate can be labeled with
a set of quantum numbers (N,L,Lz), with N , L(L + 1),
and Lz being, respectively, the eigenvalues of the operators
N̂ , L̂2 = L̂2

z + 1
2 (L̂+L̂− + L̂−L̂+), and L̂z. The point is that

eigenstates belonging to the same set of quantum numbers do
not mix as J and U vary [21].

In the specific space with fixed Na and Nb, the values of
N and Lz are fixed and, therefore, the only variable left is L.
It is clear that |Na − Nb| = |Lz| � L � N/2 = (Na + Nb)/2.
The second inequality is from the fact that the total spin of a
collection of spins is upper bounded by the sum of the values
of the spins. We have thus classified the eigenstates according
to the value of L (see Appendix A) and reexamined the
populations pn and the level spacing distribution in Figs. 5(b)
and 5(e), respectively. The results are presented in Fig. 6.
There, in the left panel, a close-up of Fig. 5(b) is shown,
but with eigenstates of different values of L differentiated
by different colors. The interesting fact revealed is that each
set of dots form a narrow stripe, and the stripes run almost
parallel to each other. The point is that each L class admits
a good canonical fitting individually, though the classes as a
whole can not be fitted well. It seems that thermalization is
robust within each symmetry class even if it cannot maintain
itself globally. This effect constitutes an impressive scenario of
how symmetry of the Hamiltonian may affect thermalization
of a system. We have also studied other q subspaces and
superposed Fig. 6(a) with different q’s. The resulting figure
is quite similar to Fig. 6(a).

It is instructive to compare Fig. 6(a) with Fig. 1(c), where
there is no appreciable difference between different q classes.
In contrast, in Fig. 6(a) the displacements between the L

classes are quite remarkable. Whether this is just a finite-size
effect and the offsets between the L classes will disappear
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FIG. 6. (Color online) Left panel: a close-up of Fig. 5(b). From
up to down, the blue, red, green, yellow, and black dots correspond
to eigenstates with total angular momentum L = 4, 3, 2, 1, and
0, respectively. Note that each set of dots form a narrow stripe.
Right panel: level spacing distribution of the Hamiltonian Ĥ

(q)
t>0. The

parameters are the same as in Figs. 5(b) and 5(e). But in contrast
to Fig. 5(e), only eigenvalues with L = 2 [green dots in (a)] are
taken.

in the thermodynamic limit is unclear currently and is up to
future work.

D. Equilibration of physical variables and the role of the
eigenstate thermalization hypothesis

It has been verified in many aspects that ρ̄(q) can be well
approximated by some canonical ensemble density matrix
ρ

(q)
c (βf ). We then anticipate that the time-averaged values

(predicted by ρ̄(q)) of many physical quantities of interests
are also well predicted by ρ

(q)
c . Moreover, if dephasing is

effective, we shall see perfect relaxation phenomenon in the
dynamics of the physical quantities. It is indeed the case.
As shown in Fig. 7(a), occupations on the Bloch modes
〈â†

kâk〉 [and 〈b̂†kb̂k〉] relax to their average values quickly,
exhibiting minimal fluctuations [13,22], and these values are
very close to those predicted by ρ

(q)
c (but with much larger

discrepancy to those by the microcanonical ensemble density
matrix ρ

(q)
mic [23]). That is, these quantities relax and relax to

their equilibrium values in ρ
(q)
c . Note that due to the symmetric

parameters chosen, 〈â†
kâk〉 = 〈b̂†kb̂k〉 for ρ̄(q), ρ(q)

c , and ρ
(q)
mic all,

and indeed in Fig. 7(a), 〈â†
kâk〉 and 〈b̂†kb̂k〉 merge from distinct

initial values.
Here, some remarks about the connection between thermal-

ization of the density matrix and that of physical observables
are in order. The point is that the former implies, but is
unnecessary for, the latter. Two density matrices can yield
the same expectation values for a few “realistic” physical
quantities, yet be quite far apart in terms of D and F .
Actually, for a generic system, in the thermodynamic limit,
the predictions of a microcanonical ensemble and a canonical
one agree, yet it is easy to persuade oneself that the distance
and fidelity between the corresponding density matrices are
such that (1 − D,F ) � 1. The reason is formulated as the
eigenstate thermalization hypothesis (ETH) [24], which is
verified in some finite systems [9,10]. According to ETH,
the expectation value of a generic few-body physical quantity
varies little between eigenstates close in energy; therefore,
the detailed distribution pn does not matter as long as it is
narrow in energy. Here, it is verified that ETH is acceptable
for the variables in Fig. 7(a) [see Fig. 7(b)]. However, it plays a
marginal role in the thermalization of the physical observables
there. As shown in Fig. 7(b), the average energy Ē falls at the
head of the spectrum where ETH is not so good. Thus, we see
in Fig. 7(a) that the predictions of ρ

(q)
mic deviate significantly

from the true values, yet the predictions of ρ
(q)
c agree much

better with ρ̄(q). This situation persists in a wide range of
parameters, even if Ē falls in the body of the spectrum where
ETH is good. It is thus apparent that in our case it is the detailed
distribution, which is more accurately captured by ρ

(q)
c than

ρ
(q)
mic, that really matters. However, this does not rule out the

possibility that in the thermodynamic limit, the distribution
of E falls in a small interval where ETH holds and thus both
ρ

(q)
c and ρ

(q)
mic agree with ρ̄(q) as the physical observables are

concerned.
Here, an issue needs to be clarified. Figure 7(b) shows that

Ē is on the edge of the spectrum. One may wonder how the
system can thermalize with so “low” an energy. The point
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FIG. 7. (Color online) (a) Evolution of the occupations on the Bloch states, 〈â†
k âk〉 (solid lines) and 〈b̂†

kb̂k〉 (dotted lines). From up to down,
k = 0, . . . ,4. Other k’s are not shown because lines with k and M − k are very close to each other all the time. For each pair of lines, the
markers of the same color on the right hand side indicate the ρ̄(q) prediction (∗), ρ(q)

c prediction (�), and ρ(q)
mic prediction (), respectively. The

parameters are the same as in Fig. 4(a) with Uab = 1. (b) Occupations on the Bloch states 〈â†
k âk〉 for each eigenstate of Ĥ

(q)
t>0. The ↑ indicates

the average energy Ē in (a).

is that though judged by eye, Ē is close to the ground-state
energy, it is actually located in a high density-of-state region
[see Fig. 1(b)]. Thousands of levels participate significantly
in ρ̄(q). It is not the case such that only a few levels (the
ground-state and some low excited levels) contribute to ρ̄(q).
Moreover, it should be noted that Ē is not a good indicator of
the hotness or coolness of the system, because it is an extensive
quantity. The final temperature (an intensive quantity) 1/βf

is. In Fig. 7, 1/βf � 2, which is half of the band width of a
one-dimensional tight binding model with hopping amplitude
unity. This temperature is not so low.

IV. IMPLICATIONS OF THE GOOD FITTING

We now return to Fig. 1. The fact that the occupations on
the eigenstates

pn = N
∑

|ij〉∈H(q)

e−βaE
i
a−βbE

j

b |〈ij |ψn〉|2, (11)

where N is a normalization factor, are well fitted by the
formula pn ∝ e−βf En , is too remarkable to be overlooked. This
fact is consistent with the other fact that S(ρ̄(q)) is very close to
S(ρ(q)

c ), as shown in the inserts of Fig. 1. Because the canonical
distribution is the only one that maximizes the entropy when
the average energy is fixed [25], ρ̄(q) should be close to ρ

(q)
c if

S(ρ̄(q)) � S(ρ(q)
c ).

So far we have not fully understood this nontrivial fact,
but we do understand the weak fact that pn/pm � 1 if
|En − Em| � 1/βf , in particular, pn/pn+1 � 1. That is, the
populations on two eigenstates are close if the eigenenergies
are close. We have

pn = N
∫ ∫ +∞

−∞
dEadEbPn(Ea,Eb)e−βaEa−βbEb , (12)

with the probability distribution function Pn(Ea,Eb) =∑
|ij〉 |〈ij |ψn〉|2δ(Ea − Ei

a,Eb − E
j

b ) [26]. It consists of a
series of δ functions with fixed positions but n-dependent
amplitudes and is an intrinsic property of |ψn〉 in terms of |ij 〉.
Coarse-graining Pn by replacing the δ functions with some

regular peaked function f (x,y) (satisfying
∫ ∫

dxdyf = 1
and f > 0), we rewrite pn as

pn = N
c

∫ ∫ +∞

−∞
dEadEbP̄n(Ea,Eb)e−βaEa−βbEb . (13)

Here, the coarse-grained distribution P̄n(Ea,Eb) =∑
|ij〉 |〈ij |ψn〉|2f (Ea − Ei

a,Eb − E
j

b ), and the constant
c = ∫ ∫

dxdye−βax−βbyf (x,y), which is n-independent. The
fact that ρ̄(q) and ρ

(q)
c in Fig. 1 always agree well in the

high-temperature regime βa,b � 0.4 suggests that there exists
some f such that for most n’s, P̄n and P̄n+1 are close to each
other in a certain sense—an intrinsic property independent of
βa,b. As a measure of the difference between two distributions,
we have the metric [15]

||P̄n − P̄m|| ≡ 1

2

∫ ∫ +∞

−∞
dEadEb|P̄n − P̄m|. (14)

By this metric, two distributions are close to each other if
||P̄n − P̄m|| � 1. We have studied the distances between P̄n and
P̄n+1 using the Gaussian function f (x,y) = 1

πw2 exp[−(x2 +
y2)/w2], where w is the adjustable width. The results are
shown in Fig. 8. We see that although for the initial distribu-
tions (w = 0, in this case P̄n degenerates to Pn), ||P̄n − P̄n+1||
centers around 0.63, once broadening is triggered, it shrinks
abruptly. For w = 0.5 and 1, over 84% and 93% pairs have
a distance less than 0.1, respectively. Moreover, those pairs
having large distances fall mainly at the ends of the spectrum,
consistent with the fact that in Fig. 1 the fitting is bad at
the ends (large fluctuations). In Figs. 8(c)–8(f), the broadened
distributions P̄n(Ea,Eb) for four successive n’s are illustrated.
It is apparent that they agree even in detail. We also observe
that the contour of P̄n stretches along the direction Ea + Eb =
const. This is reasonable since Ĥab, as a perturbation, mixes
eigenstates of Ĥa + Ĥb with adjacent eigenenergies best. At
this point, we can understand why the fitting in Fig. 1 is
good and why low temperature and large difference |βa − βb|
are adverse for the fitting. The exponential weight function
e−βaEa−βbEb descends fastest in the direction (βa,βb). In the two
adverse conditions, the weight function changes significantly
across the region where P̄n takes significant values and which
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FIG. 8. (Color online) (a) Distances between coarse-grained probability distributions corresponding to adjacent eigenstates, with Gaussian
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between adjacent pairs are (0.0460,0.0419,0.0502). The parameters are the same as described in the caption of Fig. 1(b) (but note that βa,b are
irrelevant here).

extends primarily in the direction (1, − 1). This nonuniformity
potentially will spoil the closeness between P̄n and P̄n+1 in
terms of the metric above.

Finally, we should mention that the essence of coarse-
graining is to smear out irrelevant details of the distribution Pn

and retain only the relevant overall information. To be specific,
since e−βaEa−βbEb is a smooth function of Ea,b, pn is sensitive
not to the individual amplitudes of δ functions located near
each other but only to the average amplitude of them. As the
system size grows, the number of δ functions within the radius
w increases exponentially and coarse-graining shall be even
more effective in reducing the distance between Pn and Pn+1,
and therefore it is legitimate to expect even better fitting.

So far we have been dealing with the good fitting case
in Fig. 1. We now turn to the interesting case in Fig. 5(b).
There the fluctuation of pn among eigenstates from different
L classes is relatively large, while the fluctuation of pn within
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FIG. 9. (Color online) (a) Distances between coarse-grained
probability distributions corresponding to adjacent eigenstates, with
Gaussian broadening. The green, red, and blue dots correspond to
w = 0, 0.5, and 1, respectively. The parameters are the same as
described in the caption of Fig. 5(b). (b) Similar to (a) but only
adjacent eigenstates belonging to the L = 2 class are considered.

each individual L class is much smaller. This indicates that the
difference between the coarse-grained probability distributions
of eigenstates from different L classes is relatively large, yet
much smaller within each L class. It is indeed the case. In
Fig. 9(a), the distances ||P̄n − P̄n+1|| are shown. We see that,
in contrast to that in Fig. 8(a), even under coarse graining, a
significant portion of ||P̄n − P̄n+1|| remain large. However, if
we pick out a specific L class and study the distance ||P̄ (L)

n −
P̄

(L)
n+1|| again, the good case in Fig. 8(a) reappears. Here, P̄ (L)

n

refers to the coarse-grained probability distribution of the nth
eigenstate in the L class.

A notable fact in Figs. 8(a) and 9(b) is that the distances
(green dots) between the non-coarse-grained probability dis-
tributions P̄n and P̄n+1 (or P̄ (L)

n and P̄
(L)
n+1) concentrate around

some value (� 0.637). This is not accidental. It is actually
consistent with the fact that the level spacing distribution is
Wigner-Dyson [see Figs. 2(b) and 6(b)], which is a character-
istic of the GOE of hermitian matrices [27]. We have drawn
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FIG. 10. (Color online) (a) Distances between the probability
distributions [see Eq. (15)] corresponding to adjacent eigenstates of a
2000 × 2000 matrix drawn from the Gaussian orthogonal ensemble.
(b) Histogram of ||P̄n − P̄n+1|| in bins of length 0.02.
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a d × d (d = 2000) hermitian matrix h from this ensemble
numerically. Denote the nth (normalized) eigenvector of h as
�vn = (v1n,v2n, . . . ,vdn)T . The counterpart of Eq. (14) is

||P̄n − P̄m|| ≡ 1

2

d∑
i=1

∣∣v2
in − v2

im

∣∣. (15)

The statistics of ||P̄n − P̄n+1|| are shown in Fig. 10. We see
that the behavior in Figs. 8(a), 8(b), and 9(b) is recovered
quantitatively. This demonstrates the presence of universality
in the system in question. In Appendix B, we will give a
tentative account of the typical value 0.637 of ||P̄n − P̄n+1|| in
the non-coarse-grained case.

V. CONCLUSIONS

To conclude, it is demonstrated that the generic two-
component Bose-Hubbard model can exhibit perfect ther-
malization at finite temperatures and appropriate parameters.
It is strong thermalization in that not merely the average
values of a few physical variables but even the time-averaged
density matrix of the whole system itself thermalizes. Our
finding constitutes an interesting, (so far) isolated example in
regard to the mechanism of thermalization. There is concern
that thermalization of the density matrix itself, especially the
density matrix of the whole system, may be too strong to be a
general mechanism of thermalization. Indeed, first, at least in
some other systems [10], this is unnecessary and some other
mechanism can account for thermalization of the physical
observables. Second, existing theories can predict canonical
behavior for subsystems only. However, since the problem of
thermalization is yet largely open, one should be open-minded
to welcome the possibility that thermalization does happen in
its strong form in some circumstances. Hopefully this issue
can be solved in future work.

We have also identified the influence of symmetry on ther-
malization. An empirical observation is that levels belonging
to the same symmetry class share the same fate or feature
with each another, while levels from different classes are less
correlated. This point is reflected in several aspects. First,
levels in the same symmetry class couple with each another
and they show level repulsion and Wigner-Dyson statistics. On
the contrary, levels in different classes do not couple and it is
okay for them to get close to each other or even cross each
other, which results in Poisson-like statistics. Second, in the
presence of SU(2) symmetry, it is observed that levels within
each L class coordinate themselves in such a way to satisfy the
canonical distribution very well, while different L classes are
seemingly independent. Third, the coarse-grained probability
distributions of levels in the same L class are close to each
another as long as the levels are close in energy, yet those of
levels in different L classes are far from each another even if
the energies are close. Overall, the lesson is that symmetry, like
integrability, hampers thermalization; and breaking symmetry,
like breaking integrability, favors thermalization.

Note added in proof. Recently, an account of the “strong
thermalization” observed here was given by Ponomarev et al.
in Ref. [28].
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APPENDIX A: NUMBER OF LEVELS IN AN L CLASS

The number of levels within an L class can be related to the
dimension of the Hilbert space with fixed (Na,Nb,q) [denoted
as D(q)(Na,Nb), with the dependence on M suppressed] in a
simple way. Using the raising and lowering operators L̂±, we
see that there is a one-to-one correspondence between levels
of the same value of L but different values of Lz or (Na,Nb)
(but with Na + Nb = N fixed). Therefore, we have

D(q)(Na,Nb) =
L=N∑

L=|Na−Nb|
n

(q)
L (N ), (A1)

where n
(q)
L (N ) is the number of levels in the L class, which

depends on the value of N but not on Na − Nb. From Eq. (A1),
we have then

n
(q)
L (N ) = D(q)( 1

2 (N + L), 1
2 (N − L)

)

−D(q)( 1
2 (N + L) + 1, 1

2 (N − L) − 1
)
. (A2)

APPENDIX B: A TENTATIVE ACCOUNT OF THE
TYPICAL VALUE

It is stimulating and enlightening to give a tentative account
of the typical value 0.637 in Sec. IV. For the GOE, each
eigenvector (referred to by the rank of the corresponding eigen-
value within the spectrum) satisfies the uniform (rotationally
invariant) distribution on the hypersphere Sd−1 :

∑d
i=1 x2

i = 1.
This distribution can be realized by generating d independent,
normally distributed random variables �x = (x1,x2, . . . ,xd ),
and then taking the projection �x → x̂ ≡ �x/‖�x‖, with ‖�x‖ =
(
∑d

i=1 x2
i )1/2. Suppose we sample two points x̂ and ŷ on the

hypersphere Sd−1 according to this algorithm. Now, consider
the metric similar to Eq. (15):

m(x̂,ŷ) = 1

2

d∑
i=1

∣∣∣∣ x2
i

‖�x‖2
− y2

i

‖�y‖2

∣∣∣∣. (B1)

For d large enough, according to the large number law,
the typical value of ‖�x‖2 and ‖�y‖2 is d. Therefore, m(x̂,ŷ)
can be well approximated by 1

2d

∑d
i=1 |x2

i − y2
i |. Here, xi and

yi are independent, normally distributed random variables.
Using the large number law again, we get readily that the
typical value of m(x̂,ŷ) can be well approximated by

1

2

∣∣x2
i − y2

i

∣∣ = 1

4π

∫ ∫ +∞

−∞
dxidyie

− 1
2 (x2

i +y2
i )
∣∣x2

i − y2
i

∣∣

= 2

π
� 0.637. (B2)

That is, if we choose two unit vectors on the hypersphere
Sd−1 independently and according to the uniform distribution,
with probability approaching unity, the metric between them
as defined in Eq. (B1) will be very close to the value 0.637.
This final conclusion has been verified numerically using the
algorithm above.
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Here, we have assumed the two unit vectors to be inde-
pendent. This is definitely not the case for two eigenvectors
of a Hamiltonian drawn from the GOE, since they must be
orthogonal to each other. However, this should not be a great
limitation. The two unit vectors drawn in the way above, with

probability very close to unity, are nearly orthogonal since the
expectation value of the square of the inner product between
them is 1/d [29]. Therefore, it is believed that the simplified
problem considered above is the essential mechanism for the
typical value 0.637 observed in Sec. IV.
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