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We investigate half-vortex sheets and domain-wall trains of rotating two-component Bose-Einstein condensates
in spin-dependent optical lattices. The two-component condensates undergo phase separation in the form of
stripes arranged alternately. The vortices of one component are aligned in lines in the low-density regions
and filled with the other component, which results in a stable vortex configuration, straight half-vortex sheets.
A train of domain walls, with spatially periodic eyebrowlike spin textures embedded on them, are formed
at the interfaces of the two components. We reveal that these spatially periodic textures on the domain
walls result from the linear gradient of the relative phase, which is induced by the alternating arrangement
of the vortex sheets in the two components. An accurate manipulation of the textures can be realized by
adjusting the intercomponent interaction strength, the rotating angular frequency, and the period of the optical
lattices. Under external disturbances, some interesting phenomena, including collective movement of vortices
along the sheets and spin-wave propagation along the domain walls, as well as local spin precession, are
observed.
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I. INTRODUCTION

Topological excitations, such as quantized vortices, domain
walls, and textures, exist in many fields of physics, and have
attracted much interest of physicists. In cosmology, topological
excitations are theoretically predicted to play an important role
in structure formation in the early Universe. Quantized vortices
have been observed experimentally in type-II superconductors,
liquid helium, and atomic gases Bose-Einstein condensates
(BECs). In contrast to classical vortices, as the unique advan-
tages in identifying and simulating, quantized vortices provide
the possibility of understanding and controlling quantum tur-
bulence [1]. Domain walls, which are the interfaces separating
magnetic domains, have been systematically investigated in
magnetism and magnetic materials. Recent research has shown
that domain wall has potential application prospect in the
racetrack memory, which is believed to bring the revolution
of information storage technology [2]. Textures, such as
skyrmions, have also been observed in magnetic materials
[3], and will become favorites of information processing and
storage [4].

BECs provide an ideal impurity-free environment for
the research of topological excitations. At the same time,
topological excitations play an essential role in understanding
superfluidity and magnetism of BECs. In a single-component
BEC, topological excitations manifest themselves as integer
vortices [5–8]. Multicomponent BECs, which are described by
a vector order parameter, allow the existence of more variety
of exotic topological excitations, such as fractional vortices
[9–13], domain walls [9,14–19], and textures [9,20–24].

BECs respond to rotation by creating quantized vortices.
In different rotation systems or different parameter regions
of the same system, vortices usually arrange themselves
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as different structures, which reflect different features of
superfluidity in a quite visually intuitive way. In a rotating
single-component condensate, the vortex structure is relatively
simplistic, vortices always prefer to arrange themselves as
a regular Abrikosov triangular lattice [25]. Unlike the case
in single-component BECs, the vortex structures in two-
component BECs are very rich.

When the atomic masses, the particle numbers, and the
intracomponent interaction strengths are approximately equal,
the vortex structure in two-component BECs roughly depends
on the intercomponent interaction strength [26–31]. In the
case of negative intercomponent interaction, it is energetically
favorable for the vortices to form an overlapped Abrikosov
triangular lattice [26]. With increasing the strength of in-
tercomponent interaction from zero, the positions of vortex
cores in one component gradually shift from those of the
other component and form an interlaced triangular lattice
[26,27]. With the intercomponent interaction strength further
increasing, the interlaced triangular lattice is deformed into
an interlaced square lattice [26–28]. If the intercomponent
and intracomponent interaction strengths are nearly equal,
the vortex structure evolves into straight vortex sheets, which
are made up of alternating straight chains of vortices of each
component [27,29,30]. When the intercomponent interaction
is stronger that the intracomponent interaction, the straight
vortex sheets bend and are replaced by serpentine vortex sheets
[30]. In the limit of intercomponent interaction, the system
eventually evolves rotating droplets, where the components
are completely phase separated and each component contains
a single patch of density [30,31].

When the particle numbers of the two components are un-
equal, one component is surrounded by the other component,
and a giant vortex can be formed in the outer component
[31,32]. In addition, considering the case of large atomic mass
ratios of the two components, more exotic vortex structures,
such as a two-quantum vortex lattice [33], would be obtained.
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The arrangement of vortices plays an important role in cre-
ating various spin texture patterns, which are intuitive reflec-
tions of the magnetism of multicomponent BECs. Generally
speaking, different vortex configurations always correspond to
different kinds of spin textures. For example, an Anderson-
Toulouse vortex and Mermin-Ho vortices correspond to a
skyrmion and a meron pair, respectively [34,35], and a pair of
vortices with opposite signs that reside in different components
correspond to a spin-2 texture [21]. This suggests that it is a
feasible method to produce more various spin textures by con-
trolling the arrangement of the vortices. As the sophisticated
experimental technology of the manipulation and observation
of BECs, both the vortex structures and spin textures can be
well manipulated and observed in the experiment.

In this paper, we study the vortex structures of rotating two-
component BECs in one-dimensional (1D) spin-dependent
optical lattices, which have not yet been studied. We find
that this system supports a stable vortex structure, straight
half-vortex sheets, which are made up of straight chains
of half quantized vortices. The vortex sheets of the two
components are arranged alternately and each sheet in one
component is filled with the other component, which results
in alternately arranged density stripes. As mentioned above,
similar structure has also been observed in the pure harmonic
trap. However, in that case, the parameter region of this
phase is extremely narrow. At the same time, that structure
is unstable, as there exist many different metastable bent
vortex sheet configurations with almost the same energy as the
straight one. In contrast, as the presence of the spin-dependent
optical lattices, this structure is robust with respect to external
disturbances. Moreover, it does not face the intracomponent
interaction strength limitations.

A dramatic characteristic of this structure is its unique
superfluid velocity behavior. The tangential component, which
is the component along the sheet direction, of the superfluid
velocity always discontinuously jumps across every sheet.
We give a quantitative description of this behavior both
analytically and numerically.

Besides vortex, this system supports another kind of
topological excitation, domain wall. As the presence of the
spin-dependent optical lattices, the two-component BECs are
phase separated and a train of domain walls are formed
naturally at their interfaces. By describing the system in terms
of pseudospin density parameters, we investigate the response
of the domain walls to external rotation. It is found that in the
absence of rotation, the domain walls are classical Néel walls,
with the magnetic moments only reversing perpendicular to
the walls, while in the presence of rotation, the magnetic
moments on the domain walls twist and form spatially periodic
eyebrowlike spin textures.

This eyebrowlike spin texture has the same topological
charge as a skyrmion, but their structures are distinctly
different. We described the structure of this spin texture in
detail by projecting it on a Bloch sphere. We reveal the
formation mechanism of the eyebrowlike spin textures and
discuss the influences of the system parameters on their
distribution. An exact expression on the number of the textures
carried by a domain wall is given, which provides us a
promising way to create and manipulate spin textures in
BECs.

We also study the dynamics of this system under external
disturbances. The stability of the straight half-vortex sheets is
proved by real-time dynamical evolution. At the same time,
we observe some interesting dynamical phenomena, including
collective movement of vortices along the sheets and spin-
wave propagation along the domain walls, as well as local
spin precession.

This paper is organized as follows. In Sec. II, we give
the model of the rotating two-component BECs in spin-
dependent optical lattices. In Sec. III, we study the stable
straight half-vortex sheet structure, and discuss its unique
superfluid velocity behavior. In Sec. IV, we investigate the
internal structure of the domain walls and its response to
external rotation, and reveal the formation mechanism of
the spatially periodic eyebrowlike spin textures. In Sec. V,
we focus on the influences of the system parameters on the
spin textures. The dynamical behaviors of this system under
external disturbances are discussed in Sec. VI. We conclude
this paper in Sec. VII.

II. MODEL

We consider two-component BECs with two hyperfine
spin states. In the weak interaction limit, the two-component
condensates in a frame rotating at an angular frequency �

around the z axis can be described by the coupled Gross-
Pitaevskii (GP) equations

ih̄
∂�i(r,t)

∂t
=

[
− h̄2

2m
∇2 + VH +

∑
j=1,2

gij |�j |2

+VOLi − �L̂z

]
�i(r,t), (1)

where �i is the macroscopic wave function of the ith com-
ponent (i = 1,2). gij = 4πh̄2aij /m represents the strength of
interatomic interactions characterized by the intracomponent
and intercomponent s-wave scattering lengths aij and the mass
m of an atom. L̂z = −ih̄(x∂y − y∂x) is the z component of the
angular momentum operator. The external potential consists of
two parts, the harmonic trapping potential VH = 1

2m[ω2
⊥(x2 +

y2) + ω2
zz

2] and the spin-dependent optical lattice poten-
tial VOLi , where VOL1 = I0 sin2(kx) and VOL2 = I0 cos2(kx).
Here k is the wave vector of the laser light used for the optical
lattice potentials and I0 is the potential depth of the lattices. The
wave functions are normalized as

∑
i

∫ |�i |2dr = N , where
N is the total number of condensate atoms.

For simplicity, we assume that the harmonic trapping
frequencies satisfy ωz � ω⊥. Then, the condensates are
pressed into a pancake. This allows us to reduce Eq. (1) to
a two-dimensional form as [36]

ih̄
∂ψi(x,y,t)

∂t
=

[
− h̄2

2m
∇2 + ṼH +

∑
j=1,2

ηgij |ψj |2

+VOLi − �L̂z

]
ψi(x,y,t), (2)

where η = (h/mωz)−1/2 is a reductive parameter. The
two-dimensional wave functions are normalized as
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∑
i

∫ |ψi |2dxdy = N . The harmonic trapping potential is
reduced to its 2D form ṼH = 1

2mω2
⊥(x2 + y2), where the

tilde will be omitted in the following discussions for
simplicity.

For numerical calculations, it is convenient to make the
following parameter transformations,

x = ahx̃, y = ahỹ, t = t̃ω−1
⊥ ,

(3)
k = k̃a−1

h , I0 = Ĩ0h̄ω⊥, � = ω⊥�̃,

ψi = N1/2a−1
h ψ̃i, βij = 4πNηaij ,

where ah = √
h̄/mω⊥ is the characteristic length of the

harmonic trap. Then the two-dimensional GP equation Eq. (2)
is reduced to a dimensionless form as

i
∂ψ̃1

∂t̃
=

[
−1

2
∇̃2 + 1

2
(̃x2 + ỹ2) +

∑
j=1,2

β1j |ψ̃j |2

+ Ĩ0 sin2(k̃x̃) + i�̃(̃x∂ỹ − ỹ∂x̃)

]
ψ̃1, (4a)

i
∂ψ̃2

∂t̃
=

[
−1

2
∇̃2 + 1

2
(̃x2 + ỹ2) +

∑
j=1,2

β2j |ψ̃j |2

+ Ĩ0 cos2(k̃x̃) + i�̃(̃x∂ỹ − ỹ∂x̃)

]
ψ̃2, (4b)

where βij represents the 2D dimensionless effective interaction
parameters, determined by the s-wave scattering lengths, the
total number of condensate atoms, and the axial trapping fre-
quency. The two-dimensional dimensionless wave functions
are normalized as

∑
i

∫ |ψ̃i |2dx̃dỹ = 1.
In order to describe the system more clearly, the intuitive

pictures of the external potentials are presented in Figs. 1(a)–
1(f). Experimentally, the spin-dependent optical lattice po-
tentials VOL1 and VOL2 can be realized by employing two
counterpropagating blue-detuned laser beams with the same
frequency but perpendicular linear polarization vectors [37].
A schematic of the spin-dependent optical lattices is presented
in Fig. 1(g).

In our simulations, stemming from the consideration of
experiments, we choose a two-level 87Rb BEC system with
|F = 1,mf = −1〉 ≡ |1〉 and |F = 2,mf = 1〉 ≡ |2〉 [38].
The 87Rb atoms are assigned to the two states equally and
the total number of them is N = 105. The radial and axial
trapping frequencies are ω⊥ = 2π × 15 Hz and ωz = 2π ×
150 Hz, respectively. We use the scattering lengths [38]:
a11 = 100.40a0, a22 = 95.00a0, and a12 = a21 = 97.66a0 (a0

is the Bohr radius), except when we discuss the influence
of the intercomponent interaction on the textures in Sec. V.
The intensity of the laser light used for the optical lattice
potentials is chosen as I0 = kB × 27.5 nK (kB is the Boltz-
mann’s constant) [39], which is powerful enough such that
the two states are phase separated. With these experimental
parameters, according to the transformation relation Eq. (3),
we can calculate the corresponding computational parameters
for our numerical simulations as: β11 = 3025, β22 = 2862,
β12 = β21 = 2942, and Ĩ0 = 38.2.

FIG. 1. (Color online) (a) The harmonic trapping potential VH is
rotated about the z axis at a frequency �. (b) The spin-dependent
optical lattice potential VOL1 = I0 sin2(kx), which is experienced by
the |1〉 state. (c) The spin-dependent optical lattice potential VOL2 =
I0 cos2(kx), which is experienced by the |2〉 state. (d) The composite
potential VH + VOL1. (e) The composite potential VH + VOL2. (f) Cross
sections of VH (solid line), VH + V OL1 (dashed line), and VH + VOL2

(dotted line) along the x axis. (g) Schematic of the spin-dependent
optical lattices. Two polarized standing wave laser fields σ+ (red) and
σ− (blue) are formed by two counterpropagating blue-detuned laser
beams with the same frequency but perpendicular linear polarization
vectors. This gives rise to the optical lattice potentials VOL1 and VOL2,
which are experienced by the |1〉 state (pink) and the |2〉 state (green),
respectively.

III. HALF-VORTEX SHEETS

In this section, we present a stable vortex configuration,
straight half-vortex sheets. By using the imaginary-time
propagation method [40,41], we solve Eq. (4) numerically and
obtain the ground state of the two-component condensates.
Without loss of generality, we choose the rotating angular
frequency � = 0.6ω⊥and the period of the optical lattice
potential T = πξ , where ξ = (h̄/mω⊥)−1 is the spatial scale.
The density profiles are presented in Fig. 2. All the vortices
are denoted by crosses (×), whose positions are determined
by the singularities of the phase. As the presence of the spin-
dependent optical lattices, the two-component condensates
undergo phase separation in the form of stripes arranged
alternately. It is energetically favorable for the vortices to site
in the low-density regions, so we find that all the vortices
of one component are aligned in lines in the trough of the
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FIG. 2. (Color online) The ground state density profiles of |ψ1|2,
|ψ2|2, and |ψ1|2 + |ψ2|2 for the rotating angular frequency � =
0.6ω⊥ and the period of the optical lattice potential T = πξ with
ξ = (h̄/mω⊥)1/2. The locations of the vortices are marked by crosses
(×).

optical lattice potential and filled with the other component.
This results in alternately arranged straight vortex sheets in the
two components. Obviously, all the positions of the vortices in
one component are vortex-free regions in the other component,
so all the vortices are half quantized [11–13]. We refer to this
vortex configuration as straight half-vortex sheets. It should be
indicated that the rotational frequency � for the realization of
the straight half-vortex sheets is not limited to 0.6ω⊥, but it
can take the value from 0 to ω⊥. Even though the half-vortex
sheets do not influence the total density distribution of the
condensates, they are crucial for the formation of the spatially
periodic spin textures on the domain walls.

In the absence of the spin-dependent optical lattices, similar
straight vortex sheets configuration can also been observed
in the pure harmonic trap [29,30]. However, in that case,
the intercomponent and intracomponent interaction strengths
are required to be nearly equal, so the parameter region
of this phase is extremely narrow. At the same time, the
straight vortex sheets are unstable as there exist many different
metastable bent vortex sheet configurations with almost the
same energy as the straight one. This is because the energy
of the vortex sheets is mainly determined by two factors, the
intervortex spacing within a vortex sheet and the intersheet
spacing. The shape of the vortex sheets has slight influence
on the energy of the system. Thus, it is easy for the straight
vortex sheets to bend under external disturbances. In contrast,
when the spin-dependent optical lattices are present, the
shape of the vortex sheets becomes an important factor in
determining the energy of the system, and any bending in the
straight vortex sheets will cost much energy. So the straight
half-vortex sheets configuration obtained in our system can
be maintained stably. In our imaginary-time propagations,
for any trial initial configurations, the straight vortex sheets
configuration is always uniquely obtained after sufficient con-
vergence of the energy. In addition, this configuration does not
face the intracomponent interaction strength limitations. Al-
though the intercomponent and intracomponent interaction
strengths, which are chosen in Fig. 2, happen to be approx-
imately equal, we find that for a large difference between
intercomponent and intracomponent interaction strengths,
stable straight vortex sheets configuration can also be obtained.

Next, we study the unique superfluid velocity behavior of
this structure. The most well-known character of a vortex sheet
is the discontinuity of the tangential component of the velocity

FIG. 3. (Color online) (a) The tangential components v1y (left)
and v2y (right) of the superfluid velocities v1 and v2 of the two states
for � = 0.6ω⊥ and T = πξ . (b) Section views of v1y (solid line) and
v2y (dashed line) along the x axis. The y component vrb

y = �x of
the rigid body rotation velocity vrb is shown by the dotted line for
comparison.

across the sheet. The regular arrangement of the straight
vortex sheets allows us to observe this phenomenon clearly. In
Fig. 3(a), the tangential components (the components along
the y axis) v1y and v2y of the superfluid velocities v1 and v2 of
the two states are presented. We can see that both v1y and v2y

discontinuously jump across every sheet. In order to describe
the tangential velocities in detail, the section views of v1y and
v2y along the x axis are shown in Fig. 3(b). The y component
vrb

y = �x of the rigid body rotation velocity vrb = � × r is
presented for comparison. We find that both the tangential
velocities v1y and v2y have a sawtoothlike change following
the rigid-body value vrb

y . The value of viy jumps 2�b across
the sheet in each component and then decreases �b linearly
in an intersheet spacing b. Here, the intersheet spacing b is
defined as the length between two neighboring sheets in the
same component.

The numerical results obtained above can be understood
analytically. Considering that the y component of the rigid
body rotation velocity is vrb

y = �x, which is independent
of y, we suppose that the tangential components of the
superfluid velocity on both sides of the sheet v−

iy and v+
iy

are also independent of y. According to Onsager-Feynman
quantization condition [5]∮

C
vs · dl = 2πh̄

m
Nv, (5)

if we choose the two sides of the sheet as the integration path,
we can calculate that the tangential velocity jump across a
sheet is

�viy = v+
iy − v−

iy = 2πh̄

m

1

dv

, (6)
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where dv is the intervortex spacing within a vortex sheet. This
implies that the tangential velocity jump across the sheet is
only determined by the intervortex spacing within the sheet.
According to the Feynman relation, the mean vortex density
of each component can be estimated as

n1 = n2 = m�

h̄π
, (7)

so we can obtain that the intervortex spacing within a vortex
sheet is

dv = πh̄

m�T
. (8)

Substituting Eq. (8) into Eq. (6), we have

�viy = 2�T. (9)

Equation (9) suggests that the velocity jump can be accurately
controlled by adjusting the rotating angular frequency � and
the period of the optical lattice potential T . As the intersheet
spacing b is just equal to the period of the optical lattice
potential T , the tangential velocity jump across the sheet can
also be expressed as

�viy = 2�b. (10)

Meanwhile, in order to follow the rigid-body value vrb
y , viy

must decrease �b in an intersheet spacing. These analytical
results agree well with the numerical simulations above.

Further numerical simulations with different choices of
computational parameters in Eq. (4) show that the straight
half-vortex sheets can also be obtained in any other two-
component BEC system consisting of two hyperfine spin
states. For example, a two-level 23Na BEC system with
|F = 1,mf = 1〉 and |F = 1,mf = 0〉. In addition, for the
case of a two-component BEC system consisting of different
atomic species, as the atomic masses of the two components
are unequal, the vortex densities of the two components will
differ from one another. We expect that more complicated
straight half-vortex sheet structures, with the sheets of different
components carrying a different number of vortices, would be
obtained.

IV. DOMAIN-WALL TRAINS

The spinor order parameter of the two-component BECs
allows us to analyze this system as a pseudospin-1/2 BEC and
take it as a magnetic system [35]. Introducing a normalized
complex-valued spinor χ , we represent the two-component
wave functions as ψi = √

ρT (r)χi(r), where ρT (r) is the
total density and the spinor satisfies |χ1|2 + |χ2|2 = 1. In
pseudospin representation, the pseudospin density is defined
as S = χTσχ , where σ is the Pauli matrix. Then we have

Sx = 2|χ1||χ2| cos(θ1 − θ2), (11a)

Sy = −2|χ1||χ2| sin(θ1 − θ2), (11b)

Sz = |χ1|2 − |χ2|2, (11c)

where θi is the phase of the wave function ψi .
As the presence of the spin-dependent optical lattices,

the two-component BECs are phase separated and a train of
domain walls are formed naturally at the interfaces of the two
components. By the pseudospin representation, we investigate

the response of the domain walls to rotation. In order to reveal
the essential influence of the rotation on the structure of the
domain walls, the nonrotating and rotating ground states of
the two-component condensates are calculated under the same
parameters. As the rotation can create an effective harmonic
centrifugal potential with frequency � [42], we change the
radial harmonic trapping frequency to

√
ω2

⊥ − �2 in the
absence of rotation. Thus, the nonrotating ground-state density
distribution is nearly the same as the rotating ground-state
density distribution, except that no vortex is created in the
low-density regions of each component in the nonrotating
ground state.

The vectorial representation of the pseudospin S for
the nonrotating and rotating ground states are presented
in Figs. 4(a) and 4(b), respectively. Correspondingly, the
pseudospin densities Sx , Sy , and Sz are presented in Fig. 5.
From Figs. 4 and 5, we can see that two distinct types of domain
walls, with their magnetic moments reversing in different
manners, are formed at the interfaces of the spin up (Sz = 1)
and spin down (Sz = −1) domains. In the absence of rotation,
the magnetic moments on the domain walls reverse only along
the x axis [see Fig. 4(a)], and the pseudospin density Sy = 0
[see the upper panels of Fig. 5]. Therefore, this type of domain
wall is the classical Néel wall. In contrast, in the presence of
rotation, the magnetic moments on the domain walls do not
only reverse along the x axis, but twist and form spatially
periodic eyebrowlike spin textures [see Fig. 4(b) and the lower
panels of Fig. 5]. This domain wall, with its unique manner of
magnetic moment reverse, has not been observed in common
magnetic materials. It is the product of the phase-separated
two-component BECs in response to external rotation, and
reflects the influence of rotation on the magnetism of BECs.

It should be indicated that the classical Néel wall does not
carry topological charges. However, the twist of the magnetic
moments makes the domain wall carry topological charges.
According to the topological charge density

q (r) = 1

8π
εij S · ∂iS × ∂j S, (12)

we can calculate that each period of the eyebrowlike spin
textures on the domain wall just carries one unit topological
charge. As shown in Figs. 4 and 5, from the distributions of the
vortices and the spin textures, we can see that the number of
the vortices is just half the number of the topological charges.

Next, we fasten our attention on the structure of the
eyebrowlike spin textures. From Eq. (11a) and Eq. (11b),
the direction that the magnetic moments reverse along just
depends on the relative phase, and can be represented by an
azimuthal angle

α = θ2 − θ1. (13)

An amplification of Fig. 4(b) for one period is presented in
Fig. 6(a). From Fig. 6(a), we can see that the azimuthal angle
of the magnetic moments changes from −π to π along the
domain wall in a period, but it is constant along the normal
direction of the domain wall.

It is instructive to project the pseudospin density vector
S onto the surface of a unit Bloch sphere [see Fig. 6(b)].
Topologically, the topological charge counts the times that the
Bloch sphere is covered. So one texture just covers the Bloch
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FIG. 4. (Color online) The vectorial representations of the pseudospin S projected onto the x-y plane for (a) � = 0, T = πξ , and
(b) � = 0.6ω⊥, T = πξ . The colors ranging from blue to red describe the values of Sz from −1 to 1. The locations of the vortices are marked
by black dots (•).

sphere once. From Fig. 6, we find that walking through the
domain wall from one side to the other corresponds to strolling
along a longitude line of the Bloch sphere from one pole to
the other, and walking along the domain wall corresponds
to strolling along a latitude line of the Bloch sphere. This is
different from the case of a skyrmion, for which walking along
the radial direction of the skyrmion corresponds to strolling
along the longitude line of the Bloch sphere, and walking
along the azimuthal direction of the skyrmion corresponds to
strolling along the latitude line of the Bloch sphere. Therefore,
this eyebrowlike spin texture essentially corresponds to a
skyrmion in the polar coordinates instead of the Cartesian
ones.

We reveal the formation mechanism of the spatially periodic
eyebrowlike spin textures on the domain walls. In the absence
of rotation, there is no relative phase between the two

FIG. 5. (Color online) The pseudospin densities Sx (left), Sy

(middle), and Sz (right). The upper panels show the case of
� = 0 and T = πξ , and the lower panels show the case of � =
0.6ω⊥ and T = πξ . The locations of the vortices are marked by
crosses (×).

components and the azimuthal angle α = 0. The magnetic
moments on the domain walls only reverse along the x

axis. Therefore, the domain walls are classical Néel walls.
In the presence of rotation, straight vortex sheets are created in
the two components and arranged alternately on two sides of
the domain walls. These alternately arranged vortex sheets
induce a linear gradient of the relative phase along the
domain walls [see Fig. 7]. So the azimuthal angle α can be
approximatively expressed as

α = P (κy) , (14)

where P projects the angle κy onto (−π,π ] and κ is a constant
coefficient, which describes the spatial change frequency of
the azimuthal angle. The value of κ will be given in the
next section. From Eq. (14), the azimuthal angle of the
magnetic moments on the domain walls changes periodically
along the y direction, and spatially periodic eyebrowlike spin
textures are formed. This suggests that the spatially periodic

 

 S
z

 

(a) (b)

S
y

S
x1

0

−1

FIG. 6. (Color online) (a) An amplification of Fig. 4(b) in one
period. (b) Bloch sphere of the pseudospin density vector S. Values
of Sz are represented by linear levels from blue to red (−1 to 1).
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FIG. 7. (Color online) The relative phase θ1 − θ2 for � = 0.6ω⊥
and T = πξ , where θ1 and θ2 are the phases of the wave functions
ψ1 and ψ2, respectively.

eyebrowlike spin textures on the domain walls result from
the linear gradient of the relative phase, which is induced
by the alternating arrangement of the straight vortex sheets
in the two components. In general, there are two factors
determining the emergence of the eyebrowlike spin textures
in two-component BECs: the domain walls and the linear
gradient of the relative phase along them. We predict that
the eyebrowlike spin textures would also be observed on the
domain walls in other phase-separated rotating two-component
BECs.

V. TEXTURE CONTROL

In this section, we discuss the influences of the system
parameters on the eyebrowlike spin textures. Firstly, we study
the distribution of the textures analytically. The topological
charge density q has another formulation derived from the
effective velocity [43]

q (r) = m

2πh̄
(∇ × veff)z , (15)

where the effective velocity is defined as

veff = (ρ1v1 + ρ2v2)

ρT

, (16)

with ρi the density of each component. Approximately
treating the effective velocity veff as the classical rigid body
value vrb = � × r, we obtain the mean topological charge
density

q̄ = m�

πh̄
. (17)

From Eq. (17), we can calculate that the topological charge on
a domain wall per unit length is

ηq = m�T

2πh̄
. (18)

This implies that the number of the textures carried by a domain
wall is proportional to the rotating angular frequency � and
the period of the optical lattice potential T . Thus, an accurate
control on the texture number can be realized by adjusting

FIG. 8. (Color online) The pseudospin density Sy for different
rotating angular frequencies � and periods of the optical lattice
potential T . The upper panels show Sy for T = πξ with (a) � =
0.4ω⊥, (b) � = 0.6ω⊥, and (c) � = 0.8ω⊥. The lower panels show Sy

for � = 0.6ω⊥ with (d) T = πξ , (e) T = 4/3πξ , and (f) T = 2πξ .

the rotating angular frequency and the period of the optical
lattices.

From Eq. (18), the spatial change frequency κ of the
azimuthal angle α in Eq. (14) can be calculated as

κ = 2πηq = m�T

h̄
. (19)

Thus, we obtain the azimuthal angle

α = P
(

m�T

h̄
y

)
. (20)

In order to verify the above analytical discussion, we
perform numerical simulations. The pseudospin density Sy for
different rotating angular frequencies � with constant period
of the optical lattice potential T is shown in the upper panels
of Fig. 8, and Sy for different T with constant � is shown
in the lower panels. Obviously, the number of the topological
charges carried by a domain wall increases in direct proportion
with the increase of � and T . For quantitative comparison,
we choose � = 0.6ω⊥ and T = πξ as an example. From
Eq. (18), we can calculate that the number of the textures
on a domain wall in the region of y = [−5ξ,5ξ ] is 3.
This agrees well with the result of the numerical simulation
in Fig. 8(b).

In our system, as the presence of the spin-dependent optical
lattices, the two components are always phase separated and
not subject to the immiscible condition, g2

12 > g11g22 [44].
Even so, the intercomponent interaction g12 has an important
influence on the domain wall width. When g12 is small, the two
components prefer to have larger overlap at the interfaces, so
the domain walls are wider. Contrarily, when g12 is increased,
the enhanced immiscibility makes the overlap of the two
components reduced, so the domain walls become narrower.
To illustrate this point, the cross section views of Sz along
the x axis for different intercomponent scattering length a12

with constant intracomponent scattering lengths a11 and a22

are shown in Fig. 9(b). We can see that the domain wall
width is sensitive to the intercomponent interaction, and with
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FIG. 9. (Color online) (a) The pseudospin density Sy for the
intercomponent scattering length a12 = 48.83a0 (left), 97.66a0 (mid-
dle), and 976.6a0 (right) with the intracomponent scattering lengths
a11 = 100.40a0 and a22 = 95.00a0, � = 0.6ω⊥ and T = 2πξ . (b)
Cross section views of Sz along the x axis for a12 = 48.83a0 (solid
line), 97.66a0 (dashed line), and 976.6a0 (dotted line).

increasing the strength of intercomponent interaction, the
domain walls become narrow. Moreover, the corresponding
pseudospin densities Sy with the same parameters as Fig. 9(b)
are plotted in Fig. 9(a). We find that the eyebrowlike spin
textures are always embedded on the domain walls and the
texture width changes with the width of the domain walls. This
suggests that we can control the texture width by adjusting the
width of the domain wall. In a word, both the influences of
the system parameters on the number and width of the eye-
browlike spin textures provide basis for texture control in this
system.

VI. DYNAMICAL BEHAVIORS UNDER
EXTERNAL DISTURBANCES

In this section, we discuss the dynamics of this system
under external disturbances. Taking the ground state obtained
in Fig. 2 as an initial value and employing a Gaussian noise, we
perform real-time dynamic evolutions of Eq. (4). The density
profile of the ψ1 component at t = 103ω−1

⊥ is plotted in Fig. 10.
From the density profile, we can see that the straight half-
vortex sheet configuration is stable and robust with respect to
external disturbances. This is agree with our previous analysis
in Sec. III.

With further observations on the actions of the vortices by
tracing their trajectories, we find that all the vortices on each
sheet are moving collectively at a constant velocity with the
interspace of them maintained. When a vortex is created and
enters into the sheet from one side, the vortex on the other side
leaves out and annihilates. The total number of the vortices
is conserved. This phenomenon is intuitively illuminated in
Fig. 10 by indicating the direction and magnitude of the
velocities of all the vortices. We understand this dynamical
behavior of the vortex sheets by noting that the Gaussian noise
brings small amounts of energy to the system. This additional
energy is so little that it can not change the density distribution
of condensates. However, as the vortices are located in the
extremely low-density regions, the movement of them just

FIG. 10. (Color online) The density profile of ψ1 at t = 103ω−1
⊥ of

the real-time dynamical evolution with the same parameters as Fig. 2.
The initial value is chosen as the ground state in Fig. 2 plus a Gaussian
noise of level 0.5%. The vortices of both the two components are
marked by dots (•), and arrows are added to show the direction and
magnitude of the velocities of the vortex move.

need little energy cost. So the energy from the noise can
excite the movement of the vortices easily. At the same time,
because of the strong interaction between the neighboring
vortices in the same sheet, the interspace of the vortices
keeps almost invariable. By numerical simulations, we have
confirmed that this collective movement of the vortices can
happen stably without experiencing any significant nonlinear
decay.

In pseudospin representation, the direct effect of the
collective movement of the vortices is to cause the propagation
of the eyebrowlike spin textures along the domain walls. Under
the same disturbances as Fig. 10, the time evolution of the
pseudospin density Sx on a domain wall is shown in Fig. 11.
We can see that the spin-wave propagates along the domain
wall at a constant velocity. This implies that, for a fixed point
in space, the local spin is precessing around the Sz axis at a
constant angle. This corresponds to strolling constantly along
a latitude line on the Bloch sphere [see Fig. 12(b)]. As an

FIG. 11. (Color online) Time evolution of the pseudospin density
Sx in a domain wall at the region of [0, π

2 , − 6,6] in the presence of
a Gaussian noise of level 0.5%. The numerical simulation process is
the same as Fig. 10.
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FIG. 12. (Color online) (a) Time evolution of the pseudospin Sx ,
Sy , and Sz at a fixed point (x = 0.63625ξ, y = 0) in the presence of a
Gaussian noise at level 0.5. (b) Bloch sphere showing the procession
of the local spin at a fixed point in space (the red dashed line on Bloch
sphere highlights spin trajectory).

example, with the same numerical simulation progress, the
time evolution of the local spin at (x = 0.65625ξ, y = 0) is
shown in Fig. 12(a). We can see that the Sz component of the
pseudospin keeps invariable, while the Sx and Sy components
vary periodically following the sine and cosine functions,
respectively.

In the present study, we have only discussed the influence
of the Gaussian noise on the dynamics behavior of this
system. It should be indicated that the straight half-vortex
sheet configuration is still robust under other external distur-
bances, for example, slight trap inhomogeneities. Meanwhile,
the collective movement of the vortices and the spin-wave
propagation, as well as the local spin precession, can also be
observed in that case.

VII. CONCLUSION

We have investigated half-vortex sheets and domain-wall
trains of rotating two-component BECs in spin-dependent
optical lattices. A stable vortex structure named straight
half-vortex sheets is obtained. The stability of this vortex
structure is due to the peculiar use of the 1D spin-dependent
optical lattices. The unique superfluid velocity behavior of
this system is studied both numerically and analytically. We
find that the tangential component of the superfluid velocity
always discontinuously jumps across every sheet. The value
of the jump is essentially determined by the intervortex
spacing within the sheet, and can be adjusted by changing
the rotating angular frequency and the period of the optical
lattices.

As the presence of the spin-dependent optical lattices, a
train of domain walls are formed naturally at the interfaces of
the two components. We have investigated the response of the
domain wall to rotation, and found that in response to rotation,
the magnetic moments on the domain walls twist and form
spatially periodic eyebrowlike spin textures. One period of
the eyebrowlike spin textures has the same topological charge
as a skyrmion, but their structures are distinctly different. We
described the structure of the spin texture in detail by projecting
it on a Bloch sphere. We have revealed that there are two
factors determining the emergence of the eyebrowlike spin
textures in two-component BECs: the domain walls and the
linear gradient of the relative phase along them. In the present

system, the linear gradient of the relative phase is induced
by the alternating arrangement of the vortex sheets. It should
be emphasized that the appearance of the eyebrowlike spin
textures in response to rotation is a characteristic feature of
domain wall in two-component BECs, and in other phase-
separated rotating systems eyebrowlike spin textures would
also be observed on the domain walls.

We have investigated the influences of the system param-
eters on the textures and find that the number of the textures
on a domain wall is proportional to the rotating angular
frequency and the period of the optical lattices. Meanwhile,
the numerical results indicate that these eyebrowlike spin
textures are always embedded on the domain walls and the
texture width changes with the width of the domain walls.
Their width can be controlled by adjusting the intercomponent
interaction strength. These allow us to realize accurate texture
control.

Under external disturbances, we have observed the col-
lective movement of the vortices along the sheet and the
spin-wave propagation along the domain wall. At the same
time, the propagation of the spin wave along the domain
wall results in local spin precession around the Sz axis. These
interesting dynamical behaviors may be associated with certain
low-energy excitation modes, and could be further analyzed
by the Bogoliubov excitation spectrum.

For the experimental observation of the structure obtained
in the present work, the density is the most direct observable.
However, as the vortices are all hidden in the low-density
regions, one can not strictly confirm the occurrence of this
vortex structure from the density images. Fortunately, as
discussed in Fig. 5, the vortices are always embedded in the
spatially periodic pseudospin density field. The unique patterns
of the transverse components Sx and Sy of the pseudospin
density provide us an excellent evidence for the occurrence of
this phase. So we suggest that the pseudospin density is the best
observable to show the smoking gun for the occurrence of the
phase. With the development of the magnetization-sensitive
phase-contrast imaging technique [45], both the longitudinal
and transverse components of the pseudospin density can be
imaged nondestructively with high spatial resolution [18,46].
We expect that the straight half-vortex sheets and the spatially
periodic eyebrowlike spin textures on the domain walls, as
well as their dynamical behaviors under external disturbances,
would be observed in the future experiments.
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I. Bloch, Phys. Rev. Lett. 91, 010407 (2003); Nature (London)
425, 937 (2003).

[38] K. M. Mertes, J. W. Merrill, R. Carretero-González, D. J.
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