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Topological superfluid transition induced by a periodically driven optical lattice
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We propose a scenario to create a topological superfluid in a periodically driven two-dimensional square optical
lattice. We study the phase diagram of a spin-orbit coupled s-wave pairing superfluid in a periodically driven
two-dimensional square optical lattice. We find that a phase transition from a trivial superfluid to a topological
superfluid occurs when the potentials of the optical lattices are periodically changed. The topological phase is
called the Floquet topological superfluid and can host Majorana fermions.
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I. INTRODUCTION

The study of topological phase transition has attracted
much attention following the discovery of the quantum Hall
effect [1,2] and has now extended into two- and three-
dimensional topological insulators [3,4]. This novel phase
transition is closely related to the topological characteristics
of the system as a whole and cannot be interpreted by use
of the Landau theory because there is not an order parameter
to describe the transition. One remarkable feature linking to
the topological phases is the gapless edge mode protected by
the topological properties of the ground-state wave function,
which is robust to the disorder [5] or other perturbations.
Especially, the topological superconductors based on spin-
orbit (SO) coupling are one particularly interesting class of
systems that could host Majorana fermions, which can be
used for topological quantum computation. However, subject
to the compounds’ natural properties [6], we have to rely on
serendipity in looking for topological materials in solid-state
structures [7–10]. Nevertheless, the ultracold-atom system
provides a more convenient research platform, where one can
create various optical lattices, adjust the hoppings and the
interatom interaction [11], and even add impurities into the
optical lattice [12]. Thus this flexible tunability gives rise to
more opportunities to engineer the lattice Hamiltonian and
realize the novel topological phases in cold-atom systems
[13–16]. Furthermore, gauge-field simulation proposed in
theory [17–20] and realized successfully in experiment [21,22]
makes it a hot topic to study topological quantum states in
cold-atom systems [23–26].

In this paper, we show that periodically driven perturbations
may give rise to a phase transition from a trivial superfluid to
a topological one, which carries the hallmark of topological
protected gapless edges on the boundaries of the system. The
time-periodic dependent Hamiltonian can be described by
Floquet’s theorem, which is used to explain quantized adiabatic
pumping phenomena [27–30]. Recently, it was demonstrated
that the phase transition from a superfluid to a Mott insulator
in a one-dimensional Bose-Hubbard model can be induced
by a periodically driven optical lattice [31]. We extend this
phase-transition mechanism to explore the topological phase

transition in a two-dimensional optical lattice. We study the
phase diagram of a spin-orbit coupled s-wave pairing super-
fluid in a periodically driven two-dimensional (2D) square
optical lattice. We find that a topological phase transition from
a trivial superfluid to a topological superfluid can be induced
in periodically modulated optical lattices. The topological
phase is called the Floquet topological superfluid [32–36] and
can host Floquet Majorana fermions. It was proposed that a
topological phase can be realized in a BCS s-wave superfluid
of ultracold fermionic atoms in the presence of both a Rashba
spin-orbit (SO) interaction and a large perpendicular Zeeman
field [37–40]; however, the Rashba spin-orbit coupling and a
large perpendicular Zeeman field are hard to simultaneously
realize for cold fermionic atoms [39,40]. We will prove that if
one replaces the Zeeman field by a periodically driven optical
lattice [31], a spin-orbit coupled BCS s-wave superfluid will
still allow a realization of the topological superfluid through
modifying the oscillating amplitude (or modulation strength)
of the optical lattice. Therefore we provide an alternative
method to create an important topological superfluid which
can host Majorana fermions.

This paper is organized as follows: In Sec. II, we introduce
the s-wave superfluid model in a square optical lattice in the
presence of both a Rashba SO coupling and a periodically
modulated optical lattice potential. A Zeeman-magnetic-field-
like term will be derived under the first-order approximation. In
Sec. III we present a two-band approximation and explain the
topological phase transition at the � point in the first Brillouin
zone (BZ). Finally, we give a brief summary in Sec. IV.

II. MODEL

The tight-binding Hamiltonian, which describes an s-wave
superfluid of neutral fermionic atoms in a 2D optical square
lattice, is given by

H (t) = H0 + Hd (t), (1)

where

H0 = −t0
∑
〈ij〉

c
†
i cj − iλ

∑
〈ij〉

c
†
i (σ × d̂ij )zcj

+μ
∑

i

c
†
i ci + U

∑
i

c
†
i↑c

†
i↓ci↓ci↑ (2)
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and

Hd (t) = K(t) ·
∑

i

ric
†
i ci . (3)

Here t is the hopping amplitude between the nearest-neighbor
link 〈i,j 〉 and c

†
i = (c†i↑,c

†
i↓), with c

†
iα (ciα) denoting the

creation (annihilation) operator of a fermionic atom with
pseudospin α (up or down) on lattice site i. The second term
in Eq. (2) represents a Rashba SO coupling interaction which
can be obtained with the laser-induced-gauge-field method,
λ is the coupling coefficient, σ are the Pauli matrices, and
d̂ij is a unit vector along the bond that connects site j to
i. μ is the chemical potential, and U < 0 denotes an on-site
attractive interaction which is easy to obtain via an s-wave
Feshbach resonance in a cold-atom system. The oscillating
Hamiltonian Hd , with K(t) = K(cos(ωt), sin(ωt)), mimics a
monochromatic electric dipole potential with frequency ω and
amplitude K . This term can be realized experimentally by
periodically shifting the position of a mirror employed to
generate the standing laser waves along the x and y directions
and transforming to the comoving frame of reference [31]. We
choose t0 = 1 as the energy unit and the distance a between
the nearest sites as the length unit throughout this paper. It
was demonstrated in Ref. [37] that the Hamiltonian H0 in
a mean-field approximation combined with a perpendicular
Zeeman field can support a topological superfluid. On the other
hand, replacing the Hamiltonian H0 with a one-dimensional
Bose-Hubbard Hamiltonian, it was shown in Ref. [31] that a
phase transition from a superfluid to a Mott insulator can be
induced by Hd in its one-dimensional form.

Generally, for a quantum system with time-independent
Hamiltonian H , the solutions of the time-dependent
Schrodinger equation are called stationary states with real
eigenvalues E. When a Hamiltonian of the quantum system
has a periodic dependence on time, i.e., H (t) = H (t + T ) with
period T = 2π/ω, the time-dependent Schrodinger equation
cannot be divided into two different parts according to the
spatial degree of freedom and temporal degree of freedom. The
Hamiltonian, satisfying the discrete time translational sym-
metry t → t + T , can been described by Floquet’s theorem
[31,41,42]. Floquet’s theorem tell us that the Schrödinger
equation with a time-periodic dependent Hamiltonian has
a complete set of solutions with the form |ψn(t)〉 =
|un(t)〉 exp(−iεnt/h̄). Here, the characteristic exponent εn is
called quasienergy. Just like that the quasimomentum k is
used to characterize the Bloch eigenstates in the spatially
periodic crystal system, the quasienergy εn can characterize
the Floquet states in a system with the time variable satisfying
the translational symmetry t → t + T . The periodic function
|un(t)〉 = |un(t + T )〉, a similar analogy to Bloch states, is
called the Floquet mode and satisfies the eigenvalue equation

[H (t) − ih̄∂t ]|un(t)〉 = εn|un(t)〉. (4)

We call H(t) = H (t) − ih̄∂t the Floquet Hamiltonian. It is
easy to notice that the Floquet modes |un(t)〉 exp(imωt) are
also the solution of Eq. (4) with the shifted quasienergy εn +
mh̄ω. Here, h̄ω is like the reciprocal lattice vector in k space,
and we define the width of Brillouin zone with a sense of
time. The integer m = 0,±1,±2, . . . indexes the different
zone structure. Because of the coupling between the spatial

degree of freedom and temporal degree of freedom in this time-
dependent system, it is convenient to introduce the Floquet
basis:

|{ni},m〉 = |{ni}〉 exp

[
− i

h̄ω

∫ t

−∞
dt ′K(t ′) ·

∑
i

rini + imωt

]
,

(5)
with |{ni}〉 indicating a Fock state with ni particles on the
ith site and m accounting for the zone structure [31], which
consists of an extended Hilbert space of T -periodic functions
with the scalar product given by

〈〈·|·〉〉 = 1

T

∫ T

0
dt〈·|·〉, (6)

i.e., by the usual scalar product 〈·|·〉 combined with time
averaging. Hence, the quasienergies are obtained by comput-
ing the matrix elements of the Floquet operator H (t) − ih̄∂t

in the basis (5) with respect to the scalar product (6)
and diagonalizing. By a straightforward calculation, we can
obtain the matrix elements of some operators in the Floquet
Hamiltonian H(t):

〈〈{n′
i},m′|c†iαcjα′ |{ni},m〉〉 = e−i(m′−m)θij Jm′−m(zij ), (7)

〈〈{n′
i},m′|c†iαciα|{ni},m〉〉 = niαδm,m′ , (8)

〈〈{n′
i},m′|c†i↑c

†
i↓ci↓ci↑|{ni},m〉〉 = ni↑ni↓δm,m′ , (9)

where Jm′−m(zij ) is the Bessel function of the (m′ − m)th

order and zij = K
h̄ω

√
x2

ij + y2
ij . Here, xij = (ri)x − (rj )x , yij =

(ri)y − (rj )y , and tan θij = xij /yij . In the above matrix, the
diagonal block of the Floquet Hamiltonian H(mm) is the
n-photon sector, i.e., the subspace with n photons, and
the nondiagonal blocks H(m′m) with m′ 
= m correspond
to the interaction between different subspaces [34]. When
parameter K is relatively small and the adiabatic condition
t0 � h̄ω is met, the admixture of neighboring photon sectors is
negligible, which enables us to focus on the zero-photon sector.
In this case, we can follow the calculations in Ref. [34] to show
that the driven system (1) behaves similar to the undriven
system (2), but with the tunneling matrix element t0 and the
SO coupling λ of the latter being replaced by the effective
matrix element t0 ∼ t0J0(zij ) and λ ∼ λJ0(zij ), respectively.

Now, suppose that we enhance the modulation strength K;
then we have to consider the coupling of other photon sectors.
For simplicity, we only consider the coefficient of the subspace
with n = 1 photon on the subspace with n = 0 photons. When
K is strong enough but still satisfies zij � 1, the system has
the effective Hamiltonian [36]

Heff = H(00) + 1

h̄ω
[H−1,H+1]. (10)

Here, H−1 (H+1) denotes the nondiagonal block with
m′ − m = −1 (+1) around the zero-photon sector. According
to Eqs. (7)–(9), we can obtain

H(00) = −t0
∑
〈ij〉

J0(zij )c†i cj − iλ
∑
〈ij〉

J0(zij )c†i (σ × d̂ij )zcj

+μ
∑

i

c
†
i ci + ψs

∑
i

(c†i↑c
†
i↓ + H.c.), (11)
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H−1 = −t0
∑
〈ij〉

eiθij J−1(zij )c†i cj

− iλ
∑
〈ij〉

eiθij J−1(zij )c†i (σ × d̂ij )zcj , (12)

H+1 = −t0
∑
〈ij〉

e−iθij J+1(zij )c†i cj

− iλ
∑
〈ij〉

e−iθij J+1(zij )c†i (σ × d̂ij )zcj . (13)

In the derivation of Eq. (11), we have made a mean-field
approximation, and ψs is the gap function.

By using the Fourier transform of atomic operators c
†
iσ , i.e.,

c
†
iσ = 1√

N

∑
k

c
†
kσ e−ik·Ri , (14)

the Hamiltonian (10) in a square lattice system can be rewritten
in the momentum space as

Heff =
∑

k

ψ+
k Heff(k)ψk, (15)

where we have defined the four-component basis operator
ψk = (ck↑,ck↓,c

†
−k↑,c

†
−k↓)T. The effective Hamiltonian in mo-

mentum space is given by

Heff(k) =

⎛
⎜⎜⎜⎜⎝

εk − �(k,z) 2λJ0(z)α(k) 0 ψs

2λJ0(z)α∗(k) εk + �(k,z) −ψs 0

0 −ψs −ε−k + �(k,z) 2λJ0(z)α∗(k)

ψs 0 2λJ0(z)α(k) −ε−k − �(k,z)

⎞
⎟⎟⎟⎟⎠ , (16)

where α(k) = sin ky + i sin kx,z = Ka
h̄ω

,�(k,z) = 16λ2J+1(z)J−1(z)
h̄ω

cos kx cos ky , and εk = −2t0J0(z)(cos kx + cos ky) − μ. Follow-
ing the method outlined in Ref. [37], one can obtain a “dual” Hamiltonian:

HD(k) =

⎛
⎜⎜⎜⎜⎝

ψs − �(k,z) 2λJ0(z)α(k) 0 −εk

2λJ0(z)α∗(k) −ψs + �(k,z) εk 0

0 εk ψs + �(k,z) −2λJ0(z)α∗(k)

−εk 0 −2λJ0(z)α(k) −ψs − �(k,z)

⎞
⎟⎟⎟⎟⎠ , (17)

where the unitary transformation HD(k) = DHeffD
†, with

D = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1

⎞
⎟⎟⎟⎠ .

It is easy to obtain the eigenvalues of Eq. (17) with

E1 = −
√

f1 + f 2, E2 = −
√

f1 − f2,

E3 = +
√

f1 − f2, E4 = +
√

f1 + f2,

where we have defined

f1 = �2(k,z) + (ε2
k + ψ2

s ) + 4J 2
0 (z)λ2|α(k)|2,

f2 = 2
√

�2(k,z)
(
ε2

k + ψ2
s

) + 4λ2J 2
0 (z)ε2

k|α(k)|2.
It is obvious that only if ψs 
= 0, i.e., the system lies in the
superfluid phase, the energy levels E1 and E4, denoting the
lowest and the highest bands, will not touch each other. Next,
we discuss levels E1 and E2 (or E3 and E4). These two levels
can touch each other only if the relations

�2(k,z) = 0

and

J 2
0 (z)ε2

k(sin2 kx + sin2 ky) = 0

are simultaneously satisfied. From �2(k,z) = 0, we have kx =
±π

2 or ky = ±π
2 in the first BZ. So, when J0(z) 
= 0, we have

−μ = 2t0J0(z)(cos kx + cos ky).

When −μ > |2t0J0(z)|, levels E1 and E2 (or E3 and E4) will
not touch each other ever. Otherwise, when −|2t0J0(z)| �
−μ � |2t0J0(z)|, E1 and E2 (or E3 and E4) will touch
each other at points (kx = ±π

2 ,ky = arccos( −μ

2t0J0(z) )) and (kx =
arccos( −μ

2t0J0(z) ),ky = ±π
2 ). In the following, we only consider

the case −μ > |2t0J0(z)|, which means bands E1 and E4

will be off away from the other two levels, E2 and E3, and
then the topological properties of bands E1 and E4 will not
change if we vary some parameters. Therefore, we will only
consider the topological properties of bands E2 and E3, which
have chances to be in contact with each other at the high
symmetry points Ki=1,...,4 = (0,0); (0,π ); (π,0); (π,π ) in the
first BZ when satisfying the condition

�2(z) = ε2
Ki

+ ψ2
s (18)

because band-gap closing is an essential condition for the
topological characteristic changes. We denote �2

Ki
(Ki ,z) =

[16λ2J 2
+1(z)/h̄ω]2 = �2(z). Considering z � 1 and −μ >

|2t0J0(z)|, the two bands can only touch at point K1 = (0,0)
when varying parameter z.
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III. TOPOLOGICAL PHASE TRANSITION

We now study the topological properties of these two bands
by two-band approximation at point K1 = (0,0) in the first
BZ. We will not consider the other points since the gaps at

other high-symmetry points will not shut down and will not
influence the topological changes. To have a basic idea of
the topological features of the system, we explore it by using a
two-band approximation at point K1 in the first BZ. We expand
the Hamiltonian (17) at point K1 and obtain

HD
K1

(q) =

⎛
⎜⎜⎜⎝

ψs + �(z) 2λJ0(z)q+ 0 4t0J0(z) + μ

2λJ0(z)q− −[ψs + �(z)] −[4t0J0(z) + μ] 0

0 −[4t0J0(z) + μ] ψs − �(z) −2λJ0(z)q−
4t0J0(z) + μ 0 −2λJ0(z)q+ −[ψs − �(z)]

⎞
⎟⎟⎟⎠ , (19)

with q± = qy ± iqx . Because ψs < 0 and �(z) > 0, when
taking |4t0J0(z) + μ| � 1, we can see that the major con-
tribution to bands E2 and E3 comes from the up-diagonal
sector in the above matrix, and thus we may treat the others
as a perturbation. Under this condition, we obtain an effective
two-band Hamiltonian, given by

HK1
eff (q) = 2λJ0(z)qyσx − 2λJ0(z)qxσy + M(z)σz, (20)

where the corresponding mass term M(z) = ψs + �(z) +
[4t0J0(z) + μ]2/[ψs − �(z)] and σν=x,y,z are the Pauli ma-
trices. If M(z) = 0, we obtain the gapless condition (18)
again at point K1. Equation (20) can be written as HK1

eff (q) =
σ · d, where the vector d = {2λJ0(z)qy,−2λJ0(z)qx,M(z)}.
The topological features of the system can be characterized
by the winding number (first Chern number) of the Berry
phase gauge field C = 1

4π

∫
dkx

∫
dky d̂ · ( ∂d̂

∂kx
× ∂d̂

∂ky
) in the

first Brillouin zone, where d̂ = d/|d|. When M(z) 
= 0, it is
straightforward to obtain the winding number for the effective
system described by Eq. (20), i.e.,

C = 1
2 sgn[M(z)]. (21)

This nonintegral winding number appears since the deviations
from this two-band approximation model at large momenta are
not included in the above calculation of the winding number.
So it cannot be directly related to the topological features of
the system; however, the change in the winding numbers is
independent of the large-momentum contribution [43]. Let us
discuss the change of the topological properties of superfluid
system when we adjust the oscillating amplitude K of optical
lattice. It is obvious that the initial nondriven system is in a
trivial state which corresponds to z = 0 and M(z) < 0. Now,
we apply the driven field to the system and change M(z) < 0
to M(z) > 0, and the change in Chern number is

�C = 1
2 {sin[M(z)>0] − sgn[M(z)<0]} = +1. (22)

So we get a topological superfluid state with C = +1 for
M(z) > 0.

It is notable that gapless chiral edge states are usually
the hallmark of a topological system. Therefore, to further
prove the above argument, we will show the phase diagram
and the band structures of the effective Hamiltonian (10)
in a striped geometry in Fig. 1. To be consistent with
the aforementioned adiabatic condition t0 � h̄ω, we choose

h̄ω = 6.0, which is sufficiently larger than t0 = 1. This
condition actually places some restrictions on the parameter
values for which the transition is expected to be observable.
When h̄ω is large enough, the Zeeman-magnetic-field-like
term �(z) = 16λ2J 2

+1(z)/h̄ω would be large enough to induce
the topological phase transition only under the condition
that the order parameter ψs is the same order as �(z). In
order to see the chiral edge states clearly, we choose the
parameter ψs = −0.15. In Fig. 1(a), we plot the mass M(z)
as a function of z, which can be adjusted by changing
the modulation strength K . Point B denotes M(z) = 0 with
z = 0.299, where bands E2 and E3 touch each other at the �

point. The band structures in a striped geometry with 300 sites
in the x direction are shown in Figs. 1(b)–1(d), corresponding
to points A (z = 0), B (z = 0.299), and C (z = 0.4) in Fig.
1(a), respectively. In the numerical calculation, we take the
typical parameters t0 = 1,λ = 1.6,h̄ω = 6.0, and μ = −3.91.
It is clear that there is no edge state in region I where the mass
M(z) < 0 with 0 � z < 0.299, so it is a trivial superfluid.

FIG. 1. (Color online) The phase diagram and the band structures
of the system. (a) The mass M(z) as a function of z. Region I
with M(z) < 0 is a trivial superfluid, while region II with M(z) > 0
is a topological superfluid. The band structures of the effective
Hamiltonian (10) in a striped geometry with 300 sites in the
x direction are shown in (b)–(d), corresponding to the points
A (z = 0), B (z = 0.299), and C (z = 0.4) in (a), respectively.
The other parameters are t0 = 1,λ = 1.6,ψs = −0.15,h̄ω = 6.0, and
μ = −3.91.
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In contrast, there is a pair of edge states in region II where
the mass M(z) > 0 with z > 0.299, so it is a topological
superfluid. There is a phase transition from a trivial superfluid
to a topological superfluid that occurs at point B where the gap
is closed.

Generally, a Majorana Fermionic excitation bounded with
the vortex structure in the nontrivial topological superfluid
phase exists. Hence, we can obtain the 2-D Floquet Majorana
fermions [32] if we have the vortex structures in our system.
The vortex structure can be produced from two different
routes, one of which can be realized through the phase
twist of the SO-produced lasers: λ → λeimθ , with m being
the vorticity [37]. Another route is that the vortex structure
can come from an initial rotation of the atomic cloud [44].
Then the vortex structure is coupled with the superfluid
order parameter: ψs → ψse

imθ , which is similar to the case
in the topological superconductor [45]. Both cases give a
similar Majorana fermion obviously confirmed from Eqs. (16)
and (17) connected by the unitary transformation D. The zero-
mode solutions of the Majorana fermion can be obtained from
the Bogoliubov–de Gennes equation, which has a similar form
compared with that in Ref. [37]. Moreover, such Majorana
fermion excitations can be detected by the standard Raman
spectroscopy [40,46].

IV. CONCLUSION

In summary, we have discussed the topological superfluid
phase transition in a periodically driven square optical lattice.
By using Floquet’s theorem, we find that a Floquet topological
superfluid will be created when the two-dimensional square
optical lattice potentials are periodically driven. This topolog-
ical phase is interesting because it hosts a Majorana fermion
excitation which can be detected by Raman spectroscopy in a
cold-atom system. Therefore we propose a scenario to create
Majorana fermions, which may play a key role in topological
quantum computation.
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