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The nonequilibrium dynamics of a rapidly quenched spin-1 Bose gas with spin-orbit coupling is studied.
By solving the stochastic projected Gross-Pitaevskii equation, we show that crystallization of half-skyrmions
(merons), can occur in a spinor condensate of 87Rb. The stability of such a crystal structure is analyzed. Likewise,
inverted half-skyrmions can be created in a spin-polarized spinor condensate of 23Na. Our studies provide a
chance to explore the fundamental properties of skyrmionlike matter.
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I. INTRODUCTION

Spin-orbit coupling (SOC) [1] is a ubiquitous quantum
phenomenon which links the internal (spin) and orbital (linear
or angular momentum) degrees of freedom of a particle.
The best-known example of SOC arises in the motion of
electrons in the atom, where the electron’s orbiting around
the nucleus can affect the orientation of electron’s spin.
Recently, SOC with tunable strength has been realized by
Lin et al. [2] by irradiating two laser beams intersecting in a
pseudo-spin- 1

2 Bose-Einstein condensate (BEC) of 87Rb [3].
The lasers are detuned from Raman resonance so that the
momentum and spin can couple via exchanging photons in the
two beams. This opens new possibilities to simulate the role
of SOC for a wide range of phenomena in condensed-matter
physics by using ultracold atoms and promises applications
to quantum computing [4], spintronics [5,6], and topological
insulators [7–9]. Inspired by the experimental realization in
Ref. [2], theoretical extensions using atomic BECs have been
studied by a number of authors [10–13]. These include the
direct incorporation of SOC into the spin- 1

2 , 1, and 2 BECs, in
which nontrivial ground-state structures have been predicted.
On the other hand, new types of excitations, such as the
Rashba pairing bound state (Rashbon) [14,15], have also been
predicted in degenerate fermionic gases with SOC [16].

So far, most of the theoretical studies on the ultracold atoms
with SOC were focused in the limit of zero temperature. It is
of fundamental importance to see how the nonlocal nature of
SOC affects the pattern of spontaneous symmetry breaking.
In this work, we study the nonequilibrium dynamics during
the condensation of a spin-1 Bose gas with SOC. In particular,
we focus on the formation of topological defects in the limit
of rapid temperature quench. According to the Kibble-Zurek
mechanism [17,18], topological defects can be created via
phase transitions at finite temperatures, which are caused by
spontaneous symmetry breaking and thermal fluctuations near
the critical point [19,20]. By solving the stochastic projected
Gross-Pitaevskii equation (SPGPE), we show that, in a spin-1
BEC, the combination of SOC, spin-exchange interaction, and
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thermal fluctuations can generate half-skyrmion-like excita-
tions. The half-skyrmions (merons) are a peculiar topological
defect that was originally hypothesized as the half-instanton
in particle physics [21] and later the half-skyrmion in the
quantum Hall systems [22,23]. Since merons carry half a unit
of topological charge, it is believed that the isolated merons
can be observed only when particular boundary conditions are
imposed. By far, merons have been created in the superfluid
3He-A in a rotating cylinder [24,25] and the spinor BEC with
a constraining magnetic field [26]. In what follows, we show
that stable collective excitations such as the crystalline order of
merons and other isolated variants can be created in a rapidly
quenched spinor BEC with SOC.

The organization of this paper is as follows. In Sec. II, an
account of SPGPE for the spin-orbit coupled spin-1 BEC is
given. The numerical results for the spin-orbit coupled spin-1
BEC with ferromagnetic and antiferromagnetic interaction are
presented, respectively, in Sec. III. The structures of the spin
textures for the emergent topological defects are discussed. In
particular, the stability of the crystallized merons is analyzed.
Finally, some concluding remarks are presented in Sec. IV,
including the scheme for fulfilling the rapid temperature
quench.

II. THEORETICAL MODEL

The order parameter of a spin-1 BEC is given by
� = (�1, �0, �−1)T, where the superscript T stands for the
transpose and �mF

(mF = ±1,0) denotes the macroscopic
wave function of the atoms condensed in the spin state |1,mF 〉.
The total particle number, N , and total magnetization, M , are
determined by

∫ |�|2d3r = N , and
∫

(|�1|2 − |�−1|2)d3r =
M . In the following, we consider the Dresselhaus type of SOC,
Hso = ∑

α VαpαFα , where Vα , pα , and Fα are, respectively,
the coupling strength, the linear momentum, and the 3 × 3
matrix of the spin-1 angular momentum in the α(= x,y,z)
direction. Such a SOC can be realized, in principle, by
extending the experimental methods in [2]. However, in lifting
the degeneracy of the hyperfine spin states, a weaker magnetic
field is needed to avoid the decoupling of spin states due
to quadratic Zeeman shift. We notice that a generalized
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Rashba-Dresselhuas type of SOC for spin-1 particles has
been proposed by using a tetrapod configuration [27,28].
Nonetheless, the atomic setup in [27] is beyond the scope of the
current studies, as the spin-exchange interaction characterizing
the spinor BEC may not be properly manifested in such a
scheme.

In the absence of magnetic field, the dynamics of � is
described by the following coupled nonlinear Schrödinger
equation:

ih̄
∂

∂t
�j =HGP

j �j =H�j +gs

∑
α

∑
n,k,l

(Fα)jn�n�
∗
k (Fα)kl�l

+ h̄

i

∑
α

∑
n

Vα(Fα)jn∂α�n (j,k,l,n = −1,0,1).

(1)

Here H = −h̄2 �2 /2m + U (r)+ gn|�|2 denotes the spin-
independent part of the Hamiltonian, with U (r) being the
trapping potential. The coupling constants gn and gs char-
acterizing the density-density and spin-exchange interactions,
respectively, are related to the s-wave scattering lengths a0

and a2 in the total spin channels Ftotal = 0, 2 by gn =
4πh̄2(a0 + 2a2)/3m, gs = 4πh̄2(a2 − a0)/3m [29,30]. Note
that gn is always positive, yet gs can be either positive or
negative. A spin-1 BEC is said to be ferromagnetic (FM) when
gs < 0 and antiferromagnetic (AFM) when gs > 0. As we
focus on the dynamics of spin texture, we introduce the basis

set �α (α = x,y,z), such that �±1 = (±�x + i�y)/
√

2 and
�0 = �z. It follows that the new basis states satisfy Fα|α〉 = 0,
and the spin texture, which is parallel to the local magnetic
moment, can be defined by S(r) = i�̃† × �̃/|�|2 = |S(r)|ŝ,
where �̃ = (�x,�y,�z)T [31], and ŝ(r) is the local unit vector.

The dynamics of a BEC at nonzero temperatures can be
described by the SPGPE [32–34], which is based on the
assumption that the system can be treated as a condensate
band in contact with a thermal reservoir comprising of all
noncondensed particles. The condensate band is described by
the truncated Wigner method [35] including the projected
c-field method, while the noncondensate band is by the
quantum kinetic theory [36,37]. A direct generalization to the
spinor BECs with SOC leads to the following set of coupled
SPGPEs [38]:

d�j = P
{

− i

h̄
ĤGP

j �j+ γj

kBT

(
μ − ĤGP

j

)
�j

}
dt + dWj ,

(2)

where T and μ denote the final temperature and chemical po-
tential, γj is the growth rate for the j th component, and dWj is
the complex-valued white noise associated with the condensate
growth, which is characterized by the fluctuation-dissipation
relation 〈dW ∗

i (x,t)dWj (x
′
,t)〉 = 2γj δij δC(x − x

′
)dt , where

δC is the Dirac δ function for the condensate band field [32].
Note that the projection operator P restricts the dynamics of

FIG. 1. (Color online) Snapshots of the density profiles, (a) |�−1|2, (b) |�0|2, (c) |�1|2, and (d) |�|2, of a spinor BEC of 87Rb during quench.
The strengths of the SOC are Vx = 1, Vy = 2 and the final temperature is kBT = 2. The axes of directions are indicated in the bottom right
corner. The rightmost column shows the phase profile of equilibrium state. The final particle numbers are N±1 ≈ 7.44 × 103, N0 ≈ 1.45 × 104.
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the spinor BEC in the lower energy region below the cutoff
energy ER .

The numerical procedures for solving SPGPEs are de-
scribed as follows. First, the initial state of each �j is sampled
by using the grand-canonical ensemble for an ideal spin-1 Bose
gas characterized by chemical potentials μj,0 at a temperature
T0 below the critical temperature. The spatial dependence of
the initial state can be specified as a linear combination of plane
waves with discretized momentum k = 2π (nx,ny)/L (nx , ny

∈ Z and L is the size of the system); that is, �j (t = 0) =∑ER

k aj,kψk(r), where ψk(r) are the plane-wave solutions. The
condensate band lies below the energy cutoff ER > Ek =
h̄2|k|2/2m. The distribution is specified by aj,k = (Nj,k +
1/2)1/2ηj,k, where Nj,k = {exp[(Ej,k − μj.0)/kBT0] − 1}−1

and ηj,k are the complex Gaussian random variables with
moments 〈ηj,kηj,k′ 〉 = 〈η∗

j,kη
∗
j,k′ 〉 = 0 and 〈ηj,kη

∗
j,k′ 〉 = δkk′ .

Second, to simulate the thermal quench, we let the SPGPEs
evolve for a short while by keeping T = T0, μ = μj,0 for all j

to obtain a high temperature initial thermalized state, and then
alter the temperature and chemical potential to the given final
values T < T0 and μ > μj,0. For simplicity, we shall consider
a two-dimensional isotropic trap, U (r) = mω2(x2 + y2)/2,
such that the length, time, and energy can be respectively
scaled in units of

√
h̄/mω, ω−1, and h̄ω in our simulations.

III. RESULTS AND DISCUSSIONS

We first study the condensation of 87Rb (gs < 0) in the
presence of SOC. The initial state is sampled at kBT0 = 500,
μj,0 = 2 and we set ER = 50.5, μ = 25, h̄γj /kBT = 0.05
(j = ±1,0) for two final temperatures, kBT = 2, 10. In this
paper, we consider the in-plane coupling, that is, Vx,Vy 
= 0
and Vz = 0 for a two-dimensional system of finite size. The
domain of computation has a dimension of 20.05 × 20.05
and is discretized by a square grid of 128 × 128 points
on the xy plane with lattice spacing �x = �y ≈ 0.157.
In the experiment of [2], the SOC strength can be tuned
by varying the wavelength of the laser field and the angle
between the two laser beams. For example, for two laser
beams with wavelength λ = 804.1 nm intersecting with an
angle of π/12, the corresponding SOC strength is 1.25 in the
dimensionless unit and when the intersecting angle is changed
to π/6, the corresponding SOC strength becomes 3.08. In
the following simulations, we begin with the condition of
|Vx | 
= |Vy |. In Fig. 1, the stripe structures develop presently
in the density and phase profiles of each component during
condensation. The stripes in the density profiles fade away
gradually while the system approaches equilibrium. On the
other hand, the stripe structures in the phase profiles retain
persistently, which are exactly the plane-wave (PW) state
discovered in Ref. [11]. The evolution of the spin texture is
shown in Fig. 2. Clearly, spin domains form shortly after the
quench starts. The domain walls are composed of arrays of
spin vortices, which drift outward and disappear eventually.
When the system reaches equilibrium in the PW state, the
spins align uniformly on the xy plane. The PW state is
stable at higher temperatures despite that the density profiles
and the spin texture may fluctuate noticeably, as shown in
Fig. 3. The PW state appears exclusively when |Vx | 
= |Vy | or
|Vx | = |Vy | = V < 0.8. When |Vx | = |Vy | = V > 0.8 [39],
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FIG. 2. (Color online) Snapshots of the ŝ texture caused by the
results shown in Fig. 1. Arrays of spin vortices (merons) of same
handedness appear as domain walls in (b), which drift away towards
the periphery of the condensate as shown in (c) and (d).

periodic structures, which are caused by the formation of
grids of dark soliton in �±1 and vortex lattice in �0, may
appear in the equilibrium density profiles of all components

FIG. 3. (Color online) The equilibrium density profiles, (a)
|�−1|2, (b) |�0|2, (c) |�1|2, and (d) the ŝ texture, of the spinor BEC
of 87Rb at kBT = 10. The strengths of the SOC are Vx = 1, Vy = 2.
The final particle numbers are N±1 ≈ 7.95 × 103, N0 ≈ 1.46 × 104.
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FIG. 4. (Color online) Snapshots of the density profiles, (a) |�−1|2, (b) |�0|2, (c) |�1|2, and (d) |�|2, of a spinor BEC of 87Rb during
quench. The strengths of the SOC are Vx = Vy = V = 1.8 and the final temperature is kBT = 2. The axes of directions are indicated in the
bottom right corner. The rightmost column shows the phase profiles of equilibrium state. The final particle numbers are N±1 ≈ 7.21 × 103,
N0 ≈ 1.42 × 104.

as shown in Fig. 4. We first consider the case of kBT = 2,
as shown in Fig. 5(a), where the spin texture consists of
two interlacing square lattices of spin vortex with opposite
vorticities. Such a configuration will be denoted as the spin
vortex lattice (SVL) state. When V > 0.8, the simulations will
end up in the equilibrium configuration of either PW or SVL

FIG. 5. (Color online) (a) The three-dimensional orientation for
the equilibrium ŝ texture associated with the results of Fig. 4. The
color of the arrow indicates the magnitude of sz. (b) The topological
charge density σ of the equilibrium spin texture. (c) The associated
spin-density distribution |S(r)|.

states. However, the probability for the appearance of SVL
state decreases as V increases. When V > 4, the SVL state can
scarcely appear in the simulations. Comparing the energies of
PW and SVL states from the numerical results, the SVL state is
shown to have a higher energy than the PW state. In the SVL
state, all spin vortices exhibit similar structure: The central
spin always points to the z axis, while the others increasingly
tilt and finally lie on the xy plane, forming a circulation pattern
(either left-handed or right-handed) away from the center. The
topological charge density, σ = s · (∂xs × ∂ys)/4π , is plotted
in Fig. 5(b) and the vortices with left (right)-handed circulation
correspond to a positive (negative) topological charge density.
This is exactly the Mermin-Ho vortex [40–42], or meron [43].
Integrating σ over the primitive unit cell, we identify that
Q = ∫

unit cell σd2r = ±1/2, which corresponds to the merons
and antimerons, respectively. Due to the FM nature of the
condensate, a meron and its neighboring counterpart will
pair up to form vortex-dipole so as to lower the energy. The
meron-antimeron pair has been predicted as the lowest energy
excitation in the bilayer quantum Hall systems [23]. Since
meron and antimeron are simply mirror images of each other,
we do not distinguish them in the following paragraphs unless
their distinction needs to be explicitly addressed.

Alternatively, the SVL state can be visualized as the mosaic
of vortex-quadrupoles consisting of four mutually adjoining
merons and antimerons [see Fig. 5(a)]. From Fig. 5(c), we
find that the spin density |S(r)| vanishes in the center of
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FIG. 6. (Color online) The equilibrium density profiles, (a)
|�−1|2, (b) |�0|2, and (c) |�1|2, of a spinor BEC of 87Rb at kBT = 10
with Vx = Vy = V = 1.8. The densities of all components fluctuate
considerably in comparison with those in the lower-temperature case
shown in Fig. 4. The final particle numbers are N±1 ≈ 7.66 × 103,
N0 ≈ 1.41 × 104.

each vortex-quadrupole, indicating that a polar-core vortex
is located thereat. Hence, the SVL state is actually consisted
of interlacing lattices of Mermin-Ho vortices and polar-core
spin vortices. We notice that the formation of the SVL state
with merons and polar-core spin vortices has been predicted
for a highly polarized and fast-rotating FM spinor BEC [31].
Nonetheless, the SVL states in both cases are of different
essence. In [31], the SVL state arises as the lowest-energy
state under rotation at zero temperature while the one in our
case is the result of a SOC and Kibble-Zurek mechanism.
Moreover, the latter is a metastable excited state, which marks
an evidence for the importance of nonequilibrium dynamics. In
the case of the higher final temperature, kBT = 10, the thermal
fluctuations distort the lattice structures of all components as
well as the magnetization of the condensate, as shown in Figs. 6
and 7, respectively. It can be clearly seen from the topological
charge density plotted in Fig. 7(b) that the crystalline order
of the merons is more vulnerable to the thermal fluctuations,
which dissolves at higher temperatures.

To gain more insight into the SVL state, it is constructive
to examine the properties of SVL states in momentum space.
In Fig. 8, the equilibrium density |�0(p)|2 is plotted for SVL
states at different temperatures. The other two density profiles,
|�±1(p)|2, are not plotted for they have the same pattern

FIG. 7. (Color online) (a) The three-dimensional orientation for
the equilibrium ŝ texture associated with the results of Fig. 6. The
color of the arrow indicate the magnitude of sz. (b) The topological
charge density σ of the equilibrium spin texture. (c) The associated
spin-density distribution |S(r)|.

FIG. 8. (Color online) The corresponding equilibrium density
profiles in momentum space for the SVL states shown in (a) Fig. 4
and (b) Fig. 6, respectively.

as that of |�0(p)|2. We find that the density distribution is
sharply peaked at p ≈ ±1.76ex , ±1.76ey at lower temperature.
This suggests that the equilibrium state might consist of
four PWs with p = ±q,±q′, where q · q′ = 0 and |q| = |q′|.
The counterpropagating modes with p = ±q, ±q′ form two
orthogonal standing waves that superimpose to generate the
periodic structures in all density profiles in Fig. 3. In the limit of
weak trapping, it was shown that the one-particle Hamiltonian,
p2/2m + V p · F, is minimized by |p| = V [11,12]. This
agrees with the aforementioned numerical result, in which
|p| = 1.76 ≈ V = 1.8. As a result,

�±1(p) =
√

Ne∓iθ

4

[
− δ(2)

(
p−V q

|q|
)

− δ(2)

(
p+V q

|q|
)

∓ δ(2)

(
p−V q′

|q′|
)

∓ δ(2)

(
p+V q′

|q′|
)]

, (3)

and

�0(p) =
√

N

8

[
δ(2)

(
p−V q

|q|
)

− δ(2)

(
p+V q

|q|
)

+ iδ(2)

(
p−V q′

|q′|
)

− iδ(2)

(
p+V q′

|q′|
)]

, (4)

where θ = tan−1(qy/qx), and δ(2) denotes the two-dimensional
Dirac δ function. Consequently, we obtain

S(r) = (cos θ cos u sin v + sin θ sin u cos v,

cos θ sin u cos v − sin θ cos u sin v, cos u cos v), (5)

where u = V (x cos θ + y sin θ ) and v = V (−x sin θ +
y cos θ ). The above analytical results fairly reproduce the
spin texture plotted in Fig. 5(a) in spite of the presence of
trapping potential. The meron and polar cores are centered at
rmeron/polar=R(θ )dmeron/polar, where R(θ ) is the rotation matrix
on xy plane, dmeron = (n,l)π/V , and dpolar = (n + 1/2,l +
1/2)π/V , with n,l being integers. It should be noted that the
merons are centralized around the vortex cores of �0. In our
simulations, PW and SVL states appear alternatively, and their
probabilities of appearance depend on the magnitude of V .
Using the imaginary time propagation method, the SVL state is
shown to have a higher energy than the PW state. Analytically,
the energies of PW and SVL states for a homogeneous spinor
BEC can be calculated by making use of Eqs. (3) and (4). As
PW and SVL states both yield the same minimized energy
for the single-particle Hamiltonian with a fixed N , we only
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FIG. 9. (Color online) Snapshots of the equilibrium density profiles, (a) |�−1|2, (b) |�0|2, (c) |�1|2, and (d) |�|2, for a spin-polarized spinor
BEC of 23 Na. The axes of directions are indicated in the bottom right corner. The strengths of the SOC are Vx = Vy = V = 1.5 and the final
temperature is kBT = 2. The rightmost column shows the phase profiles of equilibrium state. The final particle numbers are N1 ≈ 9.26 × 104,
N0 ≈ 1.09 × 104,N−1 ≈ 1.01 × 103, corresponding to a magnetization ratio of M/N ≈ 0.87.

need to consider the interacting part. It is straightforward
to show that both PW and SVL states lead to the identical
density-density interaction energy and thus the only difference
is the spin-exchange term. As a result, the spin-exchange
interaction energy per particle, εspin = gsρ

∫
S2(r)d2r , is gsρ

and 3gsρ/4 for PW and SVL states, respectively, where
ρ = |�| 2 is the total particle density. Since gs < 0 in the
current case, the SVL state has a higher energy accordingly.

The SVL state is sustained by the vorticity produced by
the combining effect of SOC and thermal noises. We note
that, unlike the zero-temperature Gross-Pitaevskii equation
in which the total particle number N is fixed, the chemical
potential μ is fixed in our simulations. From the numerical
results, we find that both N and the number of mass vortices
in �0 increase as V increases. Since PW and SVL states
are gapped by an amount of energy proportional to the total
particle density, it is expected that there exists a threshold
Vc, beyond which the SVL will barely emerge. This implies
that the PW state prevails over the SVL state in the large
V limit. The value of Vc can be estimated by considering
a homogeneous spinor BEC, in which the core size of the
mass vortex nucleating in �0 is ξ0 ∼ (h̄2/2mρ0gn)1/2, where
ρ0 = |�0|2. The instability of SVL state occurs when the lattice
constant is comparable to ξ0, as each polar core will partially
overlap with the cores of contiguous merons. Accordingly,
we have Vc ∼ (2π2mρ0gn/h̄

2)1/2. By the same token, if the

size of the condensate is smaller than the lattice constant, the
condensate is not able to accommodate SVL, which occurs
when V < 0.8 in our numerical simulations in a trap. Note
that the above derivation of Vc is restricted to the cases of
homogeneous systems at nearly zero temperature. On the other
hand, one may consider that, for some Vc the energy difference
becomes much larger than the energy scale associated with
thermal fluctuations at a given simulation temperature, and
thus the probability of observing SVL becomes vanishingly
small. However, the determination of Vc becomes irrelevant
at higher temperatures since then the SVL state can no longer
be described exactly as a superposition of four momentum
eigenstates at nonzero temperatures.

We now consider the spinor BEC of 23Na (gs > 0) with
SOC by using the same parameter setting in our investigations
for the spinor BEC of 87Rb. It is found that no spin texture
will be created in the condensate if the AFM spin-1 gas
is unpolarized initially. This finding is consistent with that
in Ref. [11]. In Fig. 9, the equilibrium density and phase
profiles of a spin-polarized AFM spinor BEC are shown for
the lower temperature, kBT = 2. Note that the polarization
ratio is M/N ≈ 0.87, indicating that the atoms are mainly
condensed in the state mF = 1. The corresponding equilibrium
spin texture for this spin-polarized state is shown in Fig. 10(a).
Comparing with that of a meron, the spin texture in Fig. 10(a)
is configured in a quite opposite manner; the spins in the
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FIG. 10. (Color online) The equilibrium ŝ texture and the as-
sociated spin-density distribution |S(r)|, for different numbers of
inverted merons in a spinor BEC of 23Na at kBT = 2. The results
for a single inverted meron are shown in (a) and (b), while those for
the three inverted merons are shown in (c) and (d). The final particle
numbers are N1 ≈ 8.32 × 104, N0 ≈ 1.95 × 104, N1 ≈ 2.21 × 103,

corresponding to a magnetization ratio of M/N ≈ 0.77.

outermost region always point to the +z direction, while
the inner ones become tilted gradually and eventually lie
on the xy plane, forming a circulation pattern around the
polar core region within which the spin density vanishes.
Such a configuration corresponds to a topological charge of
Q = −1/2. In Fig. 11, the stereographic projections for a
meron and the texture of Fig. 10(a) are plotted. By inverting
the sphere in Fig. 11(a) and mapping the spins onto the entire
plane, as shown in Fig. 11(b), we see that the same spin texture
shown in Fig. 10(a) is resumed. We thus term the structure
in Fig. 9(a) as the inverted meron. In Figs. 10(c)–10(d),
three inverted merons with distorted cores are formed with
M/N ≈ 0.77. It is easy to verify that the single isolated
inverted meron has a lower energy. Moreover, the isolated
inverted meron are robust against the thermal fluctuations,
which can be created in a highly polarized spin-orbit coupled
AFM spinor BEC at higher temperatures, as shown in Fig. 12.

We note that the meron-like excitations in our results are
intrinsic to the two-dimensional system. It would be interesting
to verify whether the emergence of these fractional topological
excitations is related to the Berezinskii-Kosterlitz-Thouless

FIG. 11. (Color online) (a) Schematic plot for the stereographic
projection of the spin textures onto the two-dimensional sphere S2

for (a) meron and (b) inverted meron.

FIG. 12. (Color online) The equilibrium density profiles, (a)
|�−1|2, (b) |�0|2, (c) |�1|2, and (d) the ŝ texture, of a spinor BEC of
23Na with Vx = 1, Vy = 2, and kBT = 10. The final particle numbers
are N1 ≈ 9.06 × 104,N0 ≈ 1.3 × 104,N1 ≈ 2.24 × 103, correspond-
ing to a magnetization ratio M/N ≈ 0.84.

(BKT) transitions. Very recently, the finite-temperature prop-
erties of spin- 1

2 interacting bosons with SOC in two dimensions
have been studied [44]. In particular, the BKT transitions
in such a system have been well characterized by drawing
the analogy between the effective low-energy Hamiltonian
and certain particular many-body states proposed for some
well-investigated condensed-matter systems. Unfortunately, it
is less likely that we can do such mappings for our more
complicated model. To explore the underlying BKT physics
in our current theoretical model, we may follow the approach
used in [45] by identifying that what kind of topological defects
can be thermally activated and proliferate near the onset of
superfluid transition at finite temperatures.

IV. CONCLUDING REMARKS

In summary, we have investigated the nonequilibrium
dynamics of spin-1 BECs with SOC in the limit of rapid
quench. Crystallization of merons and polar core vortices are
predicted to arise in the FM spinor BEC. Likewise, isolated
inverted merons can be created in the highly polarized AFM
spinor BEC. Our studies provide a method to create nontrivial
structure of merons and thus an opportunity to probe into the
fundamental properties of skyrmionlike matter.

It is important to assume in our investigations that the
spin-1 Bose gas must undergo a rapid temperature quench to
enforce the formation of topological defects. In our theoretical
model the dynamics has a crucial dependence on the spins,
and hence a quench event is said to be “rapid” if the height
of the optical dipole trap is ramped faster than the flip of a
spin. In the current case, the dominating spin-related energy is
the SOC, which is characterized by a frequency of 103 Hz. To
fulfill a rapid quench, a ramping rate of one order higher,
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say, 104 Hz would be required. However, a fast ramping
always leads to a large loss of particles. To remedy such an
undesirable consequence during the evaporative cooling, the
precooling method, which enables one to capture more atoms
for compensating the particle loss during the rapid quench,
will be useful. Consequently, one may cool the atoms in the
magnetic optical trap down to a temperature above the onset of
condensation and then reload the atoms into the optical dipole
trap for the rapid evaporative cooling.
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