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Frequency-selected enhancement of high-order-harmonic generation by interference of degenerate
Rydberg states in a few-cycle laser pulse
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We demonstrate that the frequency-selected enhancement of high-order-harmonic generation (HHG) can be
achieved by a few-cycle laser pulse interacting with a coherent superposition state, which is prepared by the
ground state and two degenerate Rydberg states. The degenerate states have the same orbital radius and hence
have a large overlap in the electronic density distribution. By controlling the relative phase between the two
degenerate states, the constructive or destructive interference of them can markedly change the initial density
distribution of the Rydberg electron, thereby we can manipulate the characteristics and the conversion efficiency
of HHG. Specifically, a significant enhancement in the continuous harmonics near HHG cutoff can be obtained,
hence an intense isolated pulse with a duration less than 100 attoseconds is straightforwardly generated. On
the other hand, since there exists a specific dependence of the harmonic efficiency on the relative phase of the
two degenerate states, one can expect that the relative phase may be probed by examining the corresponding
harmonic intensity. In practice, we may apply a weak static electric field in the whole dynamic process to obtain
an asymmetry electron density distribution at a large radius; hence similar HHG results can be obtained.
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I. INTRODUCTION

When intense lasers interact with atoms and molecules,
high-order harmonic can be generated as a consequence
of highly nonlinear dynamics [1–12]. The procedure of
high-order-harmonic generation (HHG) can be described by
the semiclassical recollision model [13] that consists of
three steps: the tunnel ionization of a bound electron, the
acceleration of the ionized electron in the laser field, and its
recombination with the parent ion leading to the emission of
high harmonics. HHG is a very useful source for generating
coherent soft x-ray or extreme ultraviolet (XUV) light [14–17].
It has also been used for the production of isolated attosecond
pulses or pulse trains, which opens up new opportunities for
ultrafast time-resolved spectroscopy [18–22].

For both spectroscopic applications and the optimization
of attosecond pulses, it is necessary to enhance a single
harmonic or consecutive harmonics in a certain range. Bartels
et al. [23] increased a particular harmonic order by carefully
tailoring the shape of intense laser pulses with an evolutionary
algorithm. Pfeifer et al. [24] demonstrated the enhancement
and the suppression of several selected harmonics by the
adaptive control of the driving laser pulse. They found that
the manipulation of discrete harmonic peaks can modify the
corresponding attosecond pulse trains. For some practical
applications, an isolated attosecond pulse is preferable to a
chain of attosecond pulses. Therefore, one may expect to
enhance the conversion efficiency of the continuum part in
the HHG cutoff region.

Recently, we studied HHG in an ultrashort laser pulse with
the initial state being prepared as a coherent superposition of
the ground state and a Rydberg state. It was found that the
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Rydberg electron with a large orbital radius can be accelerated
directly toward the core under the influence of a few-cycle laser
pulse, leading to the one-to-one correspondence relationship
between the initial location of the electron and the harmonic
order, and a broadband continuum spectrum around the HHG
cutoff can be generated [25,26]. In this paper, we propose a
method for selectively enhancing the continuous harmonics in
the cutoff region by using the interference of two degenerate
Rydberg states in a few-cycle pulse. Taking advantage of the
large overlap of two degenerate states in the electronic density
distribution, we show that the initial density distribution of the
Rydberg electron can be changed effectively by controlling
the relative phase of the two Rydberg states, resulting in
the obvious change of the characteristics and brightness
of HHG. In particular, our method can obviously increase
the intensity of the broadband continuum harmonics near
HHG cutoff, which produces directly an intense isolated
39-attosecond pulse with a bandwidth of 106 eV. Moreover, by
adjusting the peak intensity of the few-cycle laser or adopting
a pair of suitable degenerate states, the frequency-selected
enhancement of the continuous HHG can be obtained in a
wide frequency region, which may lead to an intense isolated
attosecond pulse with a controlled central frequency.

II. THEORETICAL METHOD

We use the three-dimensional (3D) time-dependent
Schrödinger equation (TDSE) to describe the interaction
between a linearly polarized laser pulse and a single-active-
electron atom model with the ionization potential of neon
(atomic units are used throughout, unless otherwise stated)
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where the effective nuclear charge is chosen to be Zeff =
1.2592 to reproduce the same ionization threshold as the
ground state of neon and the electric field E(t) of the laser pulse
is along the z axis. The TDSE can be solved numerically in
the spherical coordinate system by using the finite-difference
technique [27]. Our integration grid is confined in a finite
space r < 800 with the spatial step 0.1, and the time increment
is 0.007. To avoid reflections of the wave function from
the boundaries, the wave function after each time interval is
multiplied by a cos1/8 mask function, which varies from 1 to
0 in the range of 750–800 [28].

The initial state is prepared in a coherent superposition of
the ground state �1s and two degenerate Rydberg states �ns

and �np

�1s+ns+np(r,t = 0) =
√

2

5
�1se

iδ0 +
√

3

10
�ns+np, (2)

where

�ns+np = �nse
iδ + �np, (3)

n is the principal quantum number of the two Rydberg states, δ0

is the phase difference between 1s and np, and δ is the relative
phase of ns and np. We find that the results are insensitive to
variations in δ0, hence we set δ0 = 0 for simplicity throughout
this paper. The amplitudes of the degenerate Rydberg states
can be controlled by excitation of the atom in a suitable
intense laser pulse, and the phase difference δ between the
two degenerate states can be controlled by a dc electric field,
which causes a Stark splitting of degenerate Rydberg states
for a short time. Ryabtsev et al. [29] have demonstrated
experimentally that such a process can be realized by using
quantum interferometry of degenerate Rydberg states.

Degenerate states have the advantage of having the same
orbital radius and hence have a large overlap in the electronic
density distribution. For example, 6s and 6p atomic states have
the same radius around 50 a.u. and greater amplitude near the
radius region, as shown in Fig. 1. Therefore, the constructive
or destructive interference of 6s and 6p may be achieved by

FIG. 1. (Color online) The plots of (a) 6s and (b) 6p atomic wave
functions, and the radial distributions (c) for 6s (red dotted curve)
and 6p (black solid curve).

controlling their relative phase δ. In the following, we consider
three cases as δ = 0, π/2, and π . The coherent superposition
of 6s and 6p states is given by

�6s+6p = �6se
iδ + �6p

=
√

1

4π
R6s(r)eiδ +

√
3

4π
R6p(r) cos θ, (4)

where θ is the angle between the radial direction and the
+z axis, R6s (R6p) is the radial component of the 6s (6p)
wave function. In the case of δ = 0, the superposition state
is �6s+6p = �6s + �6p, thereby the electron probability is
expressed as

|�6s+6p|2 = |�6s |2 + |�6p|2 +
√

3

2π
R6s(r)R6p(r) cos θ. (5)

As depicted in Fig. 1(c), R6s and R6p have almost
the same magnitude but opposite sign. At the same time,
cos θ is positive (negative) in the regions 0◦ < θ < 90◦ and
270◦ < θ < 360◦ (90◦ < θ < 270◦). Therefore, there exists
a destructive (constructive) interference between 6s and 6p

in the +z (−z) side, which results in an obvious decrease
(enhancement) of the initial electronic density distribution, as
shown in Fig. 2(a). On the contrary, for the case of δ = π , the
superposition state is �6s+6p = �6p − �6s , the corresponding
electron probability can be expressed as

|�6s+6p|2 = |�6s |2 + |�6p|2 −
√

3

2π
R6s(r)R6p(r) cos θ. (6)

Thus, there exists a significant increase (decrease) of the
initial electronic density distribution in the +z (−z) side, as
presented in Fig. 2(g). Furthermore, in the case of δ = π/2,
the superposition state is �6s+6p = �6p + i�6s , thereby the
electron probability is given by

|�6s+6p|2 = |�6s |2 + |�6p|2. (7)

This indicates that there is no interference between 6s and
6p, and the initial density distribution of the electron is still
symmetrical in the +z and −z sides, as shown in Fig. 2(d).

III. FREQUENCY-SELECTED ENHANCEMENT OF HHG
AND ISOLATED ATTOSECOND PULSE GENERATION

We first investigate the evolution process of the super-
position state �1s+6s+6p exposed to an infrared laser pulse.
The laser’s electric field is E(t) = E0 sin2(πt/τ ) sin(ωt + ϕ),
where the laser frequency is ω = 0.056, the carrier envelope
phase is ϕ = 0, the peak intensity is 3.5 × 1015 W cm−2, and
the pulse duration is τ = 5.5 fs � 2T , where T is the optical
cycle of the driving laser field. Figure 2 shows the electronic
density distributions at time t = 0 [Figs. 2(a), 2(d), and 2(g)],
0.45T [Figs. 2(b), 2(e), and 2(h)], and 0.9T [Figs. 2(c),
2(f), and 2(i)] at the relative phase δ = 0 [Figs. 2(a)–2(c)],
π/2 Figs. 2(d)–2(f)], and π Figs. 2(g)–2(i)], respectively. As
presented in Fig. 2, although the initial electronic density
distributions for the three relative phase cases are different, the
dynamic processes of the Rydberg electrons in the laser pulse
are consistent. Specifically, the electron first moves toward
the −z direction, then is pulled back by the laser field to the
core and accelerated toward the +z direction as the laser field
changes its direction. On the other hand, the Coulomb focusing
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FIG. 2. (Color online) Electronic density distribution of the superposition state �1s+6s+6p with the relative phase (a)–(c) δ = 0, (d)–(f) π/2,
and (g)–(i) π by a 5.5-fs 800-nm laser pulse at the time (a),(d),(g), t = 0, (b),(e),(h), t = 0.45T , and (c),(f),(i), t = 0.9T , where T is the laser
cycle. The peak intensity of the pulse is 3.5 × 1015 W cm−2. The directions of the laser electric field are marked by the arrows.

effect on the Rydberg state is weak because of the large radius
of the Rydberg state. Therefore, under the interaction of the
linearly polarized laser pulse, the largest part of the electronic
density undergoes an oscillation and finally is ionized without
collision with the core; and only the electron with its density
located approximately on the z axis can effectively collide with
the core and has a dominant contribution to HHG.

To understand the collision process more clearly between
the electron and the core on the z axis, we also study the
time evolution of the electronic density distribution along the
polarization direction of the driving laser pulse. Figure 3 shows
the contour plots of the time-dependent electronic density
distributions on the z axis for δ = 0, δ = π/2, and δ = π . One
can observe that the electron initially spreads in the region
|z| � 70, and then is oscillated by the driving laser field. For
the case of δ = 0, the electron dominates initially on the −z

axis, as depicted in Fig. 3(a). Specifically, the electron initially
along the −z axis first moves away from the core, then can
be accelerated by the laser field toward the core, and collides
with the core only once at about t = 1.0T . Because of the
long acceleration time of the colliding electron, higher-order
harmonic can be generated when the electron recombines with
the core. On the contrary, for the case of δ = π , the electron
dominates initially on the +z axis, as presented in Fig. 3(c).
In particular, the electron initially located on the +z axis first

moves toward the core and then collides with the core twice at
about t = 0.57T and t = 0.75T with smaller kinetic energies,
which results in the lower-order-harmonic generation. From
Figs. 3(a) and 3(c), we find that the initial electronic density
along the −z (+z) axis for δ = 0 (δ = π ) is apparently
enhanced compared with that for δ = π (δ = 0). Therefore,

FIG. 3. (Color online) Time evolution of the electronic density
distribution on the z axis for the superposition state �1s+6s+6p

under different relative phase. The dotted lines are typical classical
trajectories.
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FIG. 4. The kinetic energy of the Rydberg electron at the colliding
instant as a function of the initial position Z0. The open triangle and
solid circle lines in (a) show the kinetic energy originating from the
first and second collisions, respectively. The laser parameters are the
same as those in Fig. 2.

the higher(lower)-order harmonics will be enhanced in the
case of δ = 0 (δ = π ). The above results indicate that the
frequency-selected enhancement of HHG may be obtained by
changing the initial condition of the Rydberg electron.

The time evolution of the Rydberg electron can also be
predicted by the classical trajectories in a combined interaction
of Coulomb and laser field, which can be calculated by using
a Newtonian equation. The initial position of the electron is
set at Z0 and the initial velocity is taken to be zero due to the
small kinetic energy of the Rydberg electron. The dotted lines
in Fig. 3 are the typical classical trajectories with Z0 = 50
and Z0 = −50, which agree well with the corresponding
evolution of the electronic density distribution by the 3D
quantum calculations. In terms of this classical model, we
also calculate the kinetic energy of the Rydberg electron at the
colliding instant as a function of the initial position. As shown
in Fig. 4(a), when the initial position of the electron is located
in the region from 15 to 55, because the electron collides with
the core twice, there exist two kinetic energies corresponding

FIG. 5. (Color online) Harmonic spectra from the superposition
state �1s+6s+6p by a 5.5-fs 800-nm laser pulse. The relative phase δ

between the 6s and 6p states is set as 0 (blue solid curve) π (red
dashed curve), respectively. The laser parameters are the same as
those in Fig. 2.

FIG. 6. Dependence of the harmonic intensity on the relative
phase δ. The laser parameters are the same as those in Fig. 2.

to the two collisions for each initial position. Specifically,
the solid circle line (open triangle line) of the kinetic energy
originates from the second (first) collision. The kinetic energy
of the solid circle line changes from 0.08UP to 1.45UP , which
corresponds to the lower-order harmonics from 25th to 220th.
On the other hand, when the initial position of the electron
changes from −15 to −60, the electron collides with the core
only once in the few-cycle laser pulse, and the corresponding
kinetic energy changes from 2.13UP to 3.21UP , as presented
in Fig. 4(b). As a result, we can obtain a broadband continuum
harmonic spectrum from 317th to 470th order.

Figure 5 shows the harmonic spectra for the case of δ = 0
(blue solid curve) and δ = π (red dashed curve). It can be
seen that, compared to the case of δ = π , the intensities of
the harmonics near the cutoff region for the case of δ = 0
are increased by more than two orders of magnitude, and the
lower-frequency part of the harmonic spectrum is decreased
by more than one order of magnitude. This result testifies
that the frequency-selected enhancement of HHG can be
achieved by controlling the interference of two degenerate
Rydberg states in a few-cycle laser pulse. From the above
calculations, it can be noticed that the harmonic efficiency
is closely related with the relative phase δ between 6s and
6p Rydberg states. In Fig. 6, taking the 37th (355th) order
harmonic as an example, we examine the dependence of the

FIG. 7. Temporal profiles of the isolated attosecond pulses by
superposing the harmonics from 350th to 420th. The laser parameters
are the same as in Fig. 2.
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FIG. 8. (Color online) Harmonic spectra from the superposition
state �1s+ns+np with n = 4 (black dashed curve), 6 (red solid curve),
and 9 (blue dot-dashed curve) under the relative phase δ = 0,
respectively. The laser parameters are the same as in Fig. 2.

harmonic intensity on the relative phase δ. One can see that
the intensity of the 37th (355th) order harmonic is gradually
enhanced (decreased) as the relative phase increases from 0 to
π . This arises from the increase (decrease) of the electronic
density along the +z (−z) axis caused by the interference of
6s and 6p atomic states. The dependence of the relative phase
on the harmonic intensity may open another route to examine
the relative phase of degenerate states by HHG.

Taking advantage of the interference of two degenerate
states, we can selectively enhance the broadband continuum
harmonics near the cutoff of the HHG spectrum. Since
only one trajectory contributes to these harmonics, one can
expect that an isolated pulse with high intensity can be
generated. Figures 7(a) and 7(b) depict the temporal profiles
of the attosecond pulses obtained from the continuous spectra
corresponding to the blue solid (δ = 0) and red dashed (δ = π )
curves in Fig. 5, respectively. In the case of δ = 0, an intense
isolated 39-attosecond pulse with high signal-to-noise ratio is
produced by filtering the harmonics from 350th to 420th order.
Moreover, the intensity of the isolated pulse is approximately
two orders of magnitude higher than that of the case δ = π .

Next, we would like to point out that the selective
enhancement of continuum harmonics in different frequency
regions can also be realized by changing the peak intensity
of the driving laser field and/or adopting a pair of suitable
degenerate states, which may lead to intense attosecond pulses
with different central frequencies. Figure 8 shows the HHG
spectra with n = 4 (black dashed curve), 6 (red solid curve),
and 9 (blue dot-dashed curve) under the relative phase δ = 0
and the same laser parameters as in Fig. 2. In the present
atom-laser condition, our results indicate that the HHG cutoff
is increased with the principal quantum number n. By selecting
the harmonics in the continuous regions, isolated attosecond
pulses can be produced. Figure 9(a) presents the attosecond

FIG. 9. (Color online) The (a) duration, (b) intensity, and
(c) central frequency of attosecond pulse as a function of the principal
quantum number, respectively. The attosecond pulse is achieved by
superposing the continuum harmonics near the cutoff region.

pulse duration as a function of the principal quantum number
n. It is found that an isolated pulse with a duration less than
80 attoseconds can be obtained in the range from n = 4
to 8, and the minimum duration of the attosecond pulse is
achieved at n = 6. Figure 9(b) shows the n dependence of the
attosecond pulse intensity, where the maximum value of the
intensity also appears at n = 6. In our current laser condition,
the radial distribution of n = 6 can simultaneously ensure the
wider bandwidth and the higher intensity of the continuum
harmonics [26]. Therefore, n = 6 is the optimal quantum
number for the generation of an attosecond pulse, as depicted in
Figs. 9(a) and 9(b). Figure 9(c) shows that the central frequency
of the attosecond pulse is increased with n, which indicates
that our method can produce an attosecond pulse in a wide
frequency range by altering n. In addition, our simulations
also show that one isolated pulse with a duration less than 45
attoseconds can be generated by the driving laser pulse with
an intensity ranging from 2.5 × 1015 W cm−2 to 5.5 × 1015 W
cm−2. The central frequency of the corresponding attosecond
pulse changes from 280th to 630th order harmonic.

IV. DISCUSSION AND CONCLUSION

To experimentally realize the asymmetric initial electronic
density distribution along the z axis and the frequency-selected
enhancement of the continuous HHG, we may apply a
combined field of a UV pump laser pulse, a static electric
field, and a femtosecond driving laser to interact with the
atom [29]. Here, the electric field of the combined field can
be expressed as

E(t) =

⎧⎪⎨
⎪⎩

ẑEs + ẑEpsin2
(

πt
τp

)
sin(ωpt), 0 � t � τp,

ẑEs, τp � t � τp + τd,

ẑEs + ẑEf sin2
[π(t−τp−τd )

τf

]
sin[ωf (t − τp − τd )], τp + τd � t � τp + τd + τf ,

(8)
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FIG. 10. (Color online) Electronic density distribution for the
static electric field along the (a) +z and (b) −z directions. The
amplitude of the static electric field is 1.72 × 106 V cm−1, the time
delay between the pump laser and the driving pulse is 8.0 fs.

where Ep, ωp, and τp are the amplitude, frequency, and
pulse duration of the UV pump laser, respectively; Es is the
amplitude of the static electric field; Ef , ωf , and τf are the
amplitude, frequency, and pulse duration of the femtosecond
driving laser, respectively; τd is the time delay between the
pump laser and the driving pulse.

First, the ground state of the single-active-electron atom
model with the ionization potential of neon is excited to a
Rydberg state by the pump laser pulse, then this Rydberg
state is split by the weak static electric field and forms a
superposition of the ground state and the Rydberg states. Here,
the pump pulse frequency ωp = 0.77 a.u., and its intensity
is 4.0 × 1013 W cm−2 with the pulse duration τp being 90
optical cycles; the amplitude Es of the static electric field is
1.72 × 106 V cm−1. Second, by controlling the time delay
τd between the pump laser and the driving laser pulse, an
asymmetric electronic density distribution along z axis can be
realized. Figures 10(a) and 10(b) show the electronic density
distribution with the time delay τd = 8.0 fs for the static
electric field along +z and −z directions, respectively. One can
see that the electronic density distribution is very similar as that
shown in Figs. 2(a) and 2(g). Finally, the driving laser, which is
turned on with a time delay τd = 8.0 fs, interacts with the atom
with the two initial states presented in Figs. 10(a) and 10(b),
the continuum harmonic spectra can be generated, as shown by
the solid blue and dashed red curves in Fig. 11(a), respectively.
Here, the intensity of the driving laser is 2.5 × 1015 W cm−2.
By superposing the harmonics from 280th to 320th in both
cases, the isolated pulses with duration 88 and 90 attoseconds
can be produced, as presented by Figs. 11(b) and 11(c),
respectively. One can see that the intensity of the single
pulse in Fig. 11(b) is enhanced approximately one order of
magnitude compared to that in Fig. 11(c). This result agrees
qualitatively with that shown in Fig. 7. Especially, we should
mention that the static electric field is turned on during the

FIG. 11. (Color online) (a) Harmonic spectra for the two prepared
initial states evolved by the static field along +z (blue solid curve)
and −z (red dashed curve) directions. (b),(c), Temporal profiles of
the single attosecond pulses by filtering the harmonics from 280th to
320th in two cases, respectively, are shown. The peak intensity of the
few-cycle laser is 2.5 × 1015 W cm−2, the other laser parameters are
the same as in Fig. 2.

entire HHG process. This is possible since the amplitude of the
static electric field is much weaker than that of the few-cycle
laser pulse, and thus the influence of the static electric field on
HHG is of no significance.

In summary, we have proposed a method for the frequency-
selected enhancement of HHG by controlling the interference
of two degenerate Rydberg states in a few-cycle pulse. The
advantage of using degenerate states is that the interference
of them can effectively change the initial density distribution
of the Rydberg electron, thereby we can control the charac-
teristics and the intensity of HHG. Specifically, our scheme
can enhance the broadband continuum harmonics near the
cutoff of harmonic spectrum, and an intense isolated pulse with
duration less than 100 attoseconds is generated by superposing
some properly selected continuous harmonics. Moreover, the
intensity of the continuum spectrum is sensitive to the relative
phase of the two degenerate Rydberg states, which may open
a new way to measure this relative phase by HHG.
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