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Ground state of spin-1 Bose-Einstein condensates with spin-orbit coupling in a Zeeman field
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We systematically investigate the weakly trapped spin-1 Bose-Einstein condensates with spin-orbit coupling
in an external Zeeman field. We find that the mean-field ground state favors either a magnetized standing-wave
phase or plane-wave phase when the strength of the Zeeman field is below a critical value related to the strength
of spin-orbit coupling. The Zeeman field can induce a phase transition between standing-wave and plane-wave
phases, and we determine the phase boundary analytically and numerically. The magnetization of these two
phases responds to the external magnetic field in a very unique manner: the linear Zeeman effect magnetizes
the standing-wave phase along the direction of the magnetic field, but the quadratic Zeeman effect demagnetizes
the plane-wave phase. When the strength of Zeeman field surpasses the critical value, the system is completely
polarized to a ferromagnetic state or polar state with zero momentum.
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I. INTRODUCTION

Spin-orbit coupling, which is generally referred to the
coupling of a particle’s spin with its degree of motion
in quantum physics, is responsible for many fundamental
physical phenomena in quantum systems, such as the spin
Hall effects and topological insulators [1]. Recently, with the
pioneering experimental realization of an artificial Abelian or
non-Abelian gauge potential in neutral atoms [2,3], an effective
spin-orbit coupling has been created in spinor Bose-Einstein
condensates (BEC) by dressing two atomic spin states with
a pair of lasers [4–8]; a result that has attracted a great deal
of attention in the condensed matter community. In particular,
the spin-orbit coupling effects can give rise to many intriguing
exotic ground states in an interacting ultracold spinor Bose
gas, such as the plane-wave (PW), standing-wave (SW),
triangular-lattice, and square-lattice phases [9–29]. Moreover,
in pseudo-spin-1/2 BEC, the combined effects of Rashba
spin-orbit coupling and rotating trap can also produce some
unusual topological patterns including the skyrmion and giant
vortex [30–32].

Generally, without spin-orbit coupling, a spinor BEC
exhibits a variety of magnetic phenomena. Taking the spin-1
BEC as an example, the mean-field ground state can be a
ferromagnetic, antiferromagnetic, or polar state [33]. Which
type of these phases is favored by the ground state depends
on the spin-dependent atomic interaction. Interestingly, an
external Zeeman field can transform these phases into each
other by tuning their magnetization and results in a rich
ground state phase diagram [34,35]. For example, a broken-
axisymmetry state can emerge as an intermediate phase in the
transition between the ferromagnetic and polar phases. Such
phase transitions reflect that the magnetic system responds to
the external magnetic field in a very unique manner. So the
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application of an external magnetic field provides a powerful
way to experimentally manipulate the magnetic behaviors of
a spinor BEC [34].

However, when the spin-orbit coupling is taken into
account, the situation changes. The ground state of spin-1
BEC now could be a PW phase occupying a single momentum
state or a SW phase formed by the coherent superposition of
two plane waves with opposite momentum [10], and these
two phases possess different magnetic properties. So it is
interesting and important to study the effects of an external
Zeeman field on these phases, which is the main contents of this
work. To make this point more transparent, in this paper, we
consider a weakly trapped two-dimensional spin-1 BEC with
Rashba spin-orbit coupling in a Zeeman field. We find that, if
the Zeeman field is not too strong, the system is in a magnetized
SW phase or PW phase, and the phase boundary immerses into
the SW phase due to the competition between Zeeman effects
and spin-dependent atomic interaction. The Zeeman field
modulates the magnetization of these two phases in different
manners. For example, the linear Zeeman field magnetizes the
SW phase, but the quadratic one demagnetizes the PW phase.
While the strength of the Zeeman field surpasses a critical
value determined by the strength of spin-orbit coupling, the
system is completely polarized to either a ferromagnetic state
or a polar state with zero momentum.

This paper is organized as follows: We first give the model
in Sec. II and discuss the single-particle ground state in
Sec. III. By using the variational approximation method and
the numerical simulation, we give the phase diagram of the
mean-field ground state and study the effects of a Zeeman
field on the magnetization of this system in Sec. IV. Finally,
we conclude our results in Sec. V.

II. THE MODEL

We consider a quasi-two-dimensional spin-1 BEC with
Rashba type spin-orbit coupling in the Zeeman field, where
the particle’s spin couples its degree of motion in the xy plane.
In the mean-field approximation, the Gross-Pitaevskii energy
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functional of such a system is of the form

E =
∫

dr

{ ∑
m

ψ∗
m

[
−h̄2∇2

2M
− pm + qm2

]
ψm

+ h̄κ

M
[ψ∗

1 (−i∂x − ∂y)ψ0 + ψ∗
0 (−i∂x − ∂y)ψ−1 + H.c.]

+ c0

2
n2 + c2

2
[(n1 − n−1)2 + 2|ψ∗

1 ψ0 + ψ∗
0 ψ−1|2]

}
,

(1)

where m = 1,0,−1 and the density distribution of the com-
ponent m reads nm = |ψm|2 with the condensation wave
function ψm, thus the total atomic density is n = ∑

m nm.
For the spin-orbit coupling term, we consider the symmetric
Rashba case κx = κy = κ , where κ is the strength of spin-orbit
coupling related to the wavelength of Raman lasers [4]. For
the interaction terms, c0 and c2 are the interaction parameters
which depend on two-body s-wave scattering lengths a0

and a2 for total spin 0, 2: c0 = 4πh̄2N (a0 + 2a2)/(3M) and
c2 = 4πh̄2N (a2 − a0)/(3M) with the atomic mass M and
total atomic number N . To avoid the collapse of the BEC
under attractive interaction, c0 is assumed to be nonnegative
throughout this paper. Moreover, p and q represent the strength
of the linear and quadratic Zeeman effects, respectively. The
strengths are determined by the magnetic field B such that
p = −gμBB and q = μ2

BB2/(4Ehf s), where g is the Landé
hyperfine factor, μB is the Bohr magneton, and Ehf s is the
hyperfine splitting. For the sake of simplicity, the external
magnetic field is assumed to be applied in the z direction, and
the values of p and q are taken to be nonnegative constants.

III. SINGLE-PARTICLE GROUND STATE

To gain some intuition, it is instructive to start our
investigations with the noninteracting Hamiltonian in the
homogeneous case. The single-particle Hamiltonian preserves
the symmetries of simultaneous spin and space rotations
around the direction of the applied magnetic field. The group
describing such symmetries is SO(2) which has discrete
subgroups Cnz [26]. The single-particle ground state in absence
of the external magnetic field is not unique so that it is
infinitely degenerate along a circular ring with radius k⊥ =
(k2

x + k2
y)1/2 = √

2κ/h̄ in two-dimensional momentum space
[10,27], where kx and ky are the components of momentum
along x and y directions, respectively. In the presence of the
Zeeman field, we first consider two simple cases in which the
linear and quadratic Zeeman effects are considered separately.
Their combined effects will be considered later.

Due to the typical Rashba spin-orbit coupling, the spin
degeneracy of spinor bosons is lifted by the spin-orbit coupling
[10], the single-particle energy spectrum splits into three
energy branches with different helicity in momentum space:

L : E0 = Ek, E± = Ek ±
√

p2 + 4κ2

M
Ek, (2a)

Q : E0 = Ek + q, E± = Ek + 1

2
q ± 1

2

√
q2 + 16κ2

M
Ek,

(2b)
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FIG. 1. (Color online) (a) Single-particle energy spectrum in
linear Zeeman field with p = 2. (b) Single-particle energy spectrum
in quadratic Zeeman field with q = 1. Note that the figures in the
bottom of (a) and (b) represent the projections of E− on the kx-ky

plane, and the white circular rings are the momentum of infinitely
degenerate ground states in E−. Furthermore, to clarify the energy
gap between these energy branches, panels (c) and (d) plot the energy
spectrums at kx = 0. In all the figures, the other parameters are the
same: M = h̄ = 1 and κ = 2.

where L and Q represent the energy spectrums in linear and
quadratic Zeeman fields, respectively. Ek = h̄2k2

⊥/(2M) is the
kinetic energy of a free particle. The subscript ± denotes
the helicity branches of spin parallel or antiparallel to the wave
vector, respectively. As shown in Fig. 1, the single-particle
ground states are in the negative helicity branch E− with
the momentums k⊥ = ( 2κ2

h̄2 − M2p2

2h̄2κ2 )1/2 in the linear Zeeman
field and k⊥ = (32κ4 − 2q2M2)1/2/(4h̄κ) in the quadratic
Zeeman field, respectively. The corresponding single-particle
eigenstates are given by

�k =

⎛
⎜⎝

α1

−α0e
iθ

α−1e
i2θ

⎞
⎟⎠ eik·r, (3)

where θ = arctan (ky/kx), and the coefficients αm satisfying∑
m α2

m = 1 are

L : α1 = 2κ2 + Mp

4κ2
, α−1 = 2κ2 − Mp

4κ2
, α0 =

√
2α1α−1,

(4a)

Q : α1 = α−1 =
√

4κ2 − Mq

4κ
, α0 =

√
2
√

4κ2 + Mq

4κ
,

(4b)

which shows that the three spin components are coupled
strongly in this energy branch.

From the results above, on the one hand, the Zeeman
effects shift the momentum of ground state compared to the
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case of no external magnetic field. All the single-particle
states with same momentum k⊥ but different azimuthal angle
in two-dimensional momentum space are degenerate ground
states; namely, the single-particle ground states are infinitely
degenerate along a circular ring with the radius k⊥ shown
in Figs. 1(a) and 1(b). Moreover, since the momentum of
the ground state should be real, we have noted that there
exists two additional restraint conditions p � 2κ2/M and
q � 4κ2/M . In particular, if the strength of the linear or
quadratic Zeeman effect takes the maximal critical value, the
circular ring of momentum in infinitely degenerate ground
states shrinks to the zero-momentum point [the center of
the ring shown in Figs. 1(a) and 1(b)] so that the system
is polarized to a nondegenerate ground state. On the other
hand, at the point of k⊥ = 0, the presence of the Zeeman field
can open an energy gap between these energy branches, as
shown in Figs. 1(c) and 1(d). In a linear Zeeman field, the gaps
between adjacent energy branches are 	+0 = E+ − E0 = p

and 	0− = E0 − E− = p. While the quadratic Zeeman field
only opens the gap 	+− = 	0− = q between the energy
branches E+ (or E0) and E−, it is gapless between E+ and E0.
These facts demonstrate that the linear and quadratic Zeeman
effects play different roles in affecting the structure of the
single-particle energy spectrum.

Let us now consider the combination effect of the linear
and quadratic Zeeman terms. For simplification, we just give
the lower-energy branch with negative helicity denoted as E−
in the single-particle energy spectrums as follows:

E− = Ek + 2q

3
+ 2	

1
3 cos

(
β + 2π

3

)
(5)

where 	 = (�3/27)1/2 with � = 4κ2Ek/M + p2 + q2/3,
β = 1

3 arccos(− �
2	

) with � = 2
27q(18κ2Ek/M − 9p2 + q2).

We have to point out that the energy in Eq. (5) is a real quantity
under the constrained condition |�

2 | < 	 related to a real
quantity β. But it can be checked that the constrained condition
is always satisfied for arbitrary p and q. Since the expression of
the energy spectrum in Eq. (5) is very complex, it is impossible
to analytically solve the momentum of the single-particle
ground state and derive the coefficient αm of the corresponding
eigenstates in Eq. (3), so we plot these quantities in Fig. 2 by
seeking the minimal value of energy [Eq. (5)] numerically. It
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FIG. 2. (Color online) (a) Change in momentum of single-particle
ground state with the linear and quadratic Zeeman effects. (b) Change
in coefficients αm of single-particle eigenstates in Eq. (3) with
the linear and quadratic Zeeman effects. In both (a) and (b), the
parameters are κ = 1 and h̄ = M = 1.

can be clearly seen that the quadratic Zeeman effect dominates
in region I, but the linear Zeeman effect dominates in region III.
In both regions I and III, the momentum of the single-particle
ground state is zero, and the corresponding coefficients αm

in the single-particle eigenstate are (0,1,0)T and (1,0,0)T ,
respectively. These results imply that the system is polarized
by the magnetic field in both regions I and III. While in region
II, the coefficient satisfies 0 < αm < 1, and the momentum of
the ground state is nonzero so that the single-particle ground
states are infinitely degenerate along a circular ring with
radius k⊥ in momentum space. Furthermore, the boundary
between the regions II and III can be analytically fixed; that
is, q/3 − p − 2 3

√
	 cos(β + 2π

3 ) = 0.

IV. MEAN-FIELD GROUND STATE IN EXTERNAL
ZEEMAN FIELD

For the spin-1 BEC with Rashba spin-orbit coupling, the
interaction effects in the absence of a Zeeman field have been
investigated extensively [10,26,27]. In the homogeneous case,
the mean-field ground state favors either the PW for c2 < 0
or the SW for c2 > 0; the former is a ferromagnetic state, but
the latter is a polar state [10]. These phases spontaneously
break the rotational symmetry about the z direction despite the
fact that the Hamiltonian is axisymmetric. In particular, these
two different phases are degenerate for c2 = 0. Now the point
is that, if a Zeeman field along the z direction is turned on,
we are inquisitive about whether an external magnetic field
can essentially change the phase diagram of the mean-field
ground state for a spin-orbit coupled spin-1 BEC. How does
the external magnetic field affect the magnetization of the
ground state? The investigation of the unique features of these
problems is the primary purpose of this section.

In two-dimensional homogeneous system, the interacting
Hamiltonian preserves the symmetries of the single-particle
Hamiltonian, and the atomic interactions can couple different
single-particle states so that the ground state, preserving
symmetry Cnz, can be approximately described by the linear
superposition of single-particle eigenstates on the degen-
erate momentum ring, � = ∑

n An�k with An satisfying∑
n |An|2 = 1, where n is a nonnegative integer [10,26]. By

substituting the ansatz into Eq. (1) to compute the energy,
we find that these high-symmetry states with n � 3 are
energetically unfavored by ground state which can be verified
by our numerical results. Thus, this fact motivates us to choose
the following ansatz for clarifying the phase diagram of the
mean-field ground state and developing a simple physical
understanding in the following discussions:

� = A�k + B�−k, (6)

where �k and �−k are two counterpropagating plane waves
in Eq. (3), and the superposition coefficients A and B are real
constants satisfying the normalization condition A2 + B2 = 1
under

∑
m

∫ |ψm|2dr = 1.
By inserting the ansatz into the mean-field energy func-

tional [Eq. (1)], we can obtain the energy expression as a
function of the parameter A:

E[A] = ξ (A4 − A2) + const, (7)
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where ξ = [2α2
0(α2

1 + 6α1α−1 + α2
−1) − (α2

1 − α2
−1)2]c2 −

(α2
1 − α2

0 + α2
−1)2c0. Note that some constants unrelated to

A in Eq. (7) are omitted. We can immediately determine the
phase diagram of the mean-field ground state by minimizing
the energy with respect to A: (i) The PW phase with A = 0
and B = 1 if ξ < 0. (ii) The SW phase with A = B = 1/

√
2

if ξ > 0. In particular, these two phases are degenerate when
ξ = 0. These results demonstrate that the external magnetic
field shifts the phase boundary from c2 = 0 to ξ (c2,p,q) = 0
due to the competition between the Zeeman effects and the
spin-dependent interaction.

To further explore the physics behind this, in what follows
we perform a detailed analysis of the phase diagram of the
ground state and investigate the effects of an external magnetic
field on the magnetic behavior of this system. We first consider
the linear and quadratic Zeeman effects separately. Their
combined effects will be considered afterward.

A. Phase diagram and magnetic behavior of ground state
in linear or quadratic Zeeman field

In the linear or quadratic Zeeman field, the phase bound-
aries are ξ = (2 − M2p2/κ4)c2 + M4p4

16κ8 (c2 − c0) or ξ = 2c2 −
M2q2

16κ4 (2c2 + c0), respectively. In the parameter spaces (c2,p)
and (c2,q), the corresponding phase diagrams of the mean-field
ground state are shown in Fig. 3. We observe that the SW
phase only exists for the case c2 > 0; the region of which
is less than the region occupied by the PW in the c2-p or
c2-q plane. More importantly, the external magnetic field can
induce the phase transition from the SW to PW when the
strength of the magnetic field surpasses the critical value
p0 = 2κ2{[(2c2

2 + 2c2c0)1/2 − 2c2]/[M2(c0 − c2)]}1/2 on the
phase boundary for the linear Zeeman effect (or q0 =
4κ2{2c2/[(c0 + 2c2)M2]}1/2 for the quadratic Zeeman effect),
where we require c0 � c2 in accordance with real experiments.
In particular, if the strength of the linear (or quadratic)
Zeeman effect attain the critical values pm = 2κ2/M (or
qm = 4κ2/M), the system can be polarized by the magnetic

0 18 36 54 72 86.4
−10

−5

0

5

10  

 

SW
PW
FS

0 36 72 108 144 172.8
−10

−5

0

5

10  

 

SW
PW
PS

q

c2

(b)(a)

c2

ξ > 0 ξ > 0

ξ < 0 ξ < 0

p

FIG. 3. (Color online) (a) Phase diagram of mean-field ground
state in linear Zeeman field. (b) Phase diagram of mean-field
in quadratic Zeeman field. The red triangles and green squares
respectively denote the SW and PW phases given by numerical results,
and the blue line is the phase boundary ξ = 0 between these two
phases. The blue circles represent the zero-momentum ferromagnetic
state (FS) in (a) and the zero-momentum polar state (PS) in (b),
respectively. The other parameters in both the figures are c0 = 100,
M = 1 and κ = 6.

field so that all the atoms will occupy the state ψ1 (or ψ0) with
zero momentum, in which the ground state is ferromagnetic
state (or polar state).

Based on the coupled Gross-Pitaevskii equations, we have
checked all the analytical predictions by using the imaginary
time evolution method to numerically look for the ground-state
solutions which can minimize the mean-field energy. A very
weak isotropic harmonic potential is included in our numerical
simulation, but it does not change the results in the homoge-
neous case. As shown in Fig. 3, these analytical predictions
given by the ansatz in Eq. (6) agree with the numerical results
very well, which demonstrates that the excellent ansatz in
Eq. (6) captures all the fundamental physics. Moreover, we
would like to point out that, although p and q should satisfy
the constrained conditions p � 2κ2/M and q � 4κ2/M in
analytical predictions, our numerical results demonstrate that
the mean-field ground states are still the completely polarized
ferromagnetic or polar states for p > 2κ2/M and q > 4κ2/M

as shown in Fig. 3.
Next, we investigate how the external Zeeman field affects

the magnetization of this system. In general, the magnetization
for spin-1 BEC is defined as M = (M2

x + M2
y + M2

z)1/2

with Mμ = ∑
mn

∫
ψ∗

m(σμ)mnψndxdy being the component
of magnetization along the directions μ = x,y,z, where the
subscripts m,n = 1,0,−1, and σμ represents the 3 × 3 spin
matrix [35]. We first use the ansatz in Eq. (6) to analytically
compute the magnitude of magnetization for the cases of
c2 < 0 and c2 > 0, respectively. The results are listed in
Table I. It can be seen that the SW and PW phases respond
to the external magnetic field in very different manners. In a
linear Zeeman field, the ground state is PW when c2 < 0;
the magnitude of magnetization always remains invariant
regardless of the external magnetic field. For the case of
c2 > 0, the system is initially in the SW phase if p < p0,
the magnitude of magnetization increases linearly from zero.
When p > p0, the system has transformed into PW and
the magnitude of magnetization undergoes a discontinuous
sudden transition from M = Mp0/(2κ2) to M = 1. In a
quadratic Zeeman field, the magnitude of the magnetization
of PW for c2 < 0 decays quadratically from M = 1 to
M = 0 with increasing strength of the magnetic field, which
implies that the quadratic Zeeman effect demagnetizes the
PW. However, for the case of c2 < 0, the quadratic Zeeman
effect can not change the magnetization of the SW phase if
q < q0. When the strength of magnetic field surpasses the
critical value q0, the system suddenly possesses magnetization

TABLE I. Expressions of magnetization in linear and quadratic
Zeeman fields, respectively. For c2 > 0, the ground state during p <

p0 or q < q0 is the SW phase, but it is the PW phase for p > p0 or
q > q0. For c2 < 0, the ground state is always PW for an arbitrary p

or q.

Linear Zeeman field Quadratic Zeeman field

c2 < 0 MPW = 1 MPW =
√

16κ4−M2q2

4κ2

c2 > 0 Mp<p0
SW = Mp

2κ2 Mq<q0
SW = 0

Mp>p0
PW = 1 Mq>q0

PW =
√

16κ4−M2q2

4κ2
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FIG. 4. (Color online) (a) Change in magnetization and atomic
distribution of the ground state with the strength of the linear
Zeeman field for the cases of c2 = 10 and c2 = −10. (b) Change
in magnetization and atomic distribution of the ground state with
the strength of the quadratic Zeeman field for the cases of c2 = 10
and c2 = −10. In both (a) and (b), the solid red and blue lines are
respectively the corresponding magnetization of c2 > 0 and c2 < 0,
which are given by the analytical results shown in Table (I). The green
lines represent the atomic numbers Nm. The red stars and blue circles
given by our numerical results are the magnetization for c2 > 0 and
c2 < 0, respectively. Moreover, the other parameters in both (a) and
(b) are the same: κ = 6, h̄ = M = 1, and c0 = 100.

M= (16κ4 − M2q2
0 )1/2/(4κ2), which demonstrates that the

phase transition from SW to PW occurs. Again, we have
verified these predictions numerically, and the results are
summarized in Fig. 4.

To further highlight the effects of Zeeman field on the
magnetization of ground state, we map the magnetization
vectors onto a sphere with radius M = 1 as shown in
Fig. 5. Before performing the analysis in detail, we introduce
the polar angle ϑ = arctan |M+|/Mz and azimuth angle
ϕ = arctanMy/Mx of the magnetization vector in spherical
coordinate frame, where M+ = Mx + iMy . In presence
of the external Zeeman field, the polar and azimuth angles
of the magnetization vector for the cases of c2 < 0 and
c2 > 0 are

c2 < 0 : ϑ = arctan

√
2α0

α1 − α−1
,ϕ = θ for (0 � p � pm),

ϑ = π

2
, ϕ = θ for (0 � q � qm), (8a)

c2 > 0 : ϑ = ϕ = undefined for (p = 0) or (0 � q < q0),

ϑ = 0, ϕ = undefined for (0 < p < p0),
(8b)

ϑ = arctan

√
2α0

α1 − α−1
, ϕ = θ for (p > p0),

ϑ = π

2
, ϕ = θ for (q > q0),

where θ = arctan (ky/kx) is determined by the momentum of
ground state. Motivated by the numerical results, we can fix
θ = π/4 in the following discussions. Note that, since the
SW phase has no magnetization when p = 0 or 0 � q < q0,
the polar and azimuth angles of the magnetization vector
are undefined in the center of the sphere. Furthermore, as
we shall see below, the magnetization of the SW phase is
along the z direction when 0 < p < p0 in a linear Zeeman
field, so the azimuth angle of the SW phase is undefined,

L:

Q:
Mx Mx

Mx Mx

My My

My My

Mz

Mz Mz

p = 0

q = 0

p = pm

q = qm

(c): c2 < 0

(b): c2 > 0

(d): c2 > 0

Mz

(a): c2 < 0

ϕ
ϑ p < p0

p > p0

q < q0 q > q0

FIG. 5. (Color online) Magnetization vector responds to the linear
(L) or quadratic (Q) Zeeman field. In panels (a)–(d), the red and
blue solid circles represent the end of vectors for c2 > 0 and c2 < 0,
respectively. Note that the direction of the magnetization vector
points to the red or blue circle from the center of the sphere.
Furthermore, the red and blue solid lines are the change trajectories of
the end of magnetization vectors for SW and PW phases, respectively.
In a linear Zeeman field, the end of the vector for c2 > 0 undergoes
a transition from the z direction to the blue line when p > p0. In
a quadratic Zeeman field, the end of the magnetization vector for
c2 > 0 undergoes the transition from the center of the sphere to the
azimuth angle direction when q > q0.

too. Figure 5 shows clearly how the external magnetic field
changes the magnetization of the two phases. For the case
of c2 < 0, the ground state is PW, the linear Zeeman effect
rotates the magnetization vector from the transverse direction
(xy plane) to the longitudinal direction (z direction) along the
meridian with azimuth angle ϕ = π/4, but the length of vector
is invariant as shown in Fig. 5(a). On the contrary, along the
azimuth angle ϕ = π/4 direction, the quadratic Zeeman effect
demagnetizes the PW in the xy plane by reducing the length of
magnetization vector from one to zero, as shown in Fig. 5(c).
For the case of c2 > 0 summarized in Figs. 5(b) and 5(d),
the system would be initially in the SW phase if p < p0 or
q < q0. In this case, the length of the magnetization vector
in a linear Zeeman field increases linearly along z direction
from zero, but it remains invariant in a quadratic Zeeman field
with M = 0. While p (or q) surpasses the critical value p0

(or q0), the SW changes into the PW so that the magnetization
vector responds to the Zeeman fields in the same manner as
in PW.

B. Phase diagram and magnetic behaviors of ground state
in combined linear and quadratic Zeeman fields

So far, we have focused on the simple case in which the
linear and quadratic Zeeman effects are dealt with separately.
Experimentally, the linear and quadratic Zeeman effects
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FIG. 6. (Color online) Phase diagram and magnetization distri-
bution for combined effects of linear and quadratic Zeeman fields.
In the phase diagram (a), the red triangles, blue circles, green
squares, and purple stars respectively denote the SW, zero momentum
ferromagnetic state (FS), PW, and zero-momentum polar state (PS)
given by the numerical results. The dark line is the phase boundary
ξ = 0 between the SW and PW phases, the blue line is the boundary
between the PS and PW phases. (b) Magnetization distribution of
the system versus p and q. In both the panels, the parameters are
c0 = 100, c2 = 10, and κ = 6.

always coincide with the presence of an external magnetic
field. The former can be effectively tuned by changing the total
spin of the system, and the latter can usually be tuned by using
a linearly polarized microwave field due to the alternating
current Stark shift [36,37]. As shown in Refs. [34,35], under
a certain range of linear and quadratic Zeeman effects, the
ground-state phase diagram of a spin-1 BEC without spin-orbit
coupling becomes much richer due to the competition between
the linear and quadratic Zeeman effects and the spin-dependent
interaction. The typical phase is the broken-axisymmetry state.
Therefore, in this subsection we investigate the phase diagram
of a spin-1 BEC with spin-orbit coupling in the combination
of linear and quadratic Zeeman effects.

We now have a situation similar to the single-particle
problem in this combination effect. Since the expression of
ξ is very complex, it is impossible to analytically fix the phase
boundary between the SW and PW phases. So we plot the
phase diagram and magnetization distribution numerically in
Fig. 6 based on the ansatz of Eq. (6). It should be pointed out
that for the case of c2 < 0, the ground state is always the PW
in the whole parameter space (p,q) due to ξ < 0. Thus, we
just consider the case of c2 > 0 in following discussions for the
sake of simplicity. From the phase diagram in Fig. 6(a), we can
see that the ground state initially favors the SW phase when the
strengths of the linear and quadratic Zeeman effects are relative
weak. However, the PW phase dominates if the quadratic
Zeeman effect goes far beyond the linear Zeeman effect.
Importantly, our numerical results show that all the atoms are
polarized to the state ψ0 in region I or to the state ψ1 in region
II, respectively. The corresponding order parameters of ground
states in these regions are �0 = (0,1,0)T and �1 = (1,0,0)T .
In these states, the momentum of the ground state is zero. All
the results above can also be equally reflected by analyzing
the magnetization of the system as shown in Fig. 6(b), which
shows that the two states �1 and �0 are ferromagnetic states
with M = 1 and polar states with M = 0, respectively.

Finally, let us consider the possibility of experimentally
observing these interesting phenomena. In the previous dis-
cussion, all the calculations are performed in arbitrary units
which are not related to real experiments. To give some real
experimental estimations, we consider a harmonic trapping po-
tential in the form of V (r) = 1

2M[ω⊥(x2 + y2) + ω2
zz

2], where
ω⊥ and ωz represent the transverse and longitudinal trapping
potential, respectively. An effective quasi-two-dimensional
system can be obtained in the limit of ωz � ω⊥, and the
reduced dimensionless parameters are

p1 = p

h̄ω⊥
, q1 = q

h̄ω⊥
, κ1 = κ√

Mh̄ω⊥
, (9a)

g0 = 4πN (a0 + 2a2)

3
√

2πζz

, g2 = 4πN (a2 − a0)

3
√

2πζz

, (9b)

where ζz = (h̄/Mωz)1/2. Note that we have chosen ζ⊥ =
(h̄/Mω⊥)1/2 and h̄ω⊥ as the length and energy scales. Ac-
cording to the real experimental values, we consider N = 104

87Rb atoms in a pancake-shaped harmonic potential with the
trapping frequencies (ω⊥,ωz) = (2π × 20Hz, 2π × 400 Hz).
In this case, the system parameters (κ1, p1, q1, g0, g2) =
(6, 0 ∼ 72, 0 ∼ 144, 100, 10) shown in Figs. 3–6 correspond
to the wavelength of Raman lasers λ � 401.82 nm with
κ ∝ h̄/λ, uniform magnetic field strength B � 0 ∼ 2.06 mG,
atomic interactions a0 � 16.27aB and a2 � 22.35aB with aB

being the Bohr radius. These system parameters are realizable
in current experiments.

V. CONCLUSIONS

Within the framework of mean-field theory, we have
systematically investigated the weakly trapped spin-1 Bose-
Einstein condensates with spin-orbit coupling in an external
Zeeman field and clarified the effects of an external magnetic
field on the system. In the single-particle case, the linear
and quadratic Zeeman effects play different roles in affecting
the structure of the single-particle energy spectrum. When
the atomic interactions are taken into account, we give the
phase diagram of the mean-field ground state, which is
mainly comprised of the magnetized standing-wave phase and
plane-wave phase. To develop a physical understanding, we
use the linear superposition of two single-particle eigenstates
with counterpropagating wave vectors as the variational ansatz
to analytically determine the phase boundary between these
two phases, which agrees with our numerical results very well.
The Zeeman field can induce the phase transition between the
standing-wave and plane-wave phases; such phase transition
can be further understood by analyzing the response of
magnetization of these two phases to an external magnetic
field. In particular, when the strength of the Zeeman field
surpasses a critical value which is related to the strength of
spin-orbit coupling, the system is completely polarized to a
ferromagnetic state or a polar state with zero momentum.
These investigations not only help to deepen our understanding
of the physics behind the interaction between a matter field and
gauge field, but also provide an effective way to manipulate
the spin-orbit coupled spinor BEC experimentally by using an
external magnetic field.
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I. B. Spielman, Nature (London) 462, 628 (2009).
[4] Y.-J. Lin, K. Jiménez-Garcı́a, and I. B. Spielman, Nature

(London) 471, 83 (2011).
[5] Y.-J. Lin, R. L. Compton, K. Jiménez-Garcı́a, W. D. Phillips,
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