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Feynman relation of Bose-Einstein condensates with spin-orbit coupling
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We find that the Feynman relation of Bose-Einstein condensates with spin-orbit coupling, which relates the
energy of excitations, the static structure factor in condensed phase, and the dispersion of free bosons, is not
satisfied in the whole momentum space. The dispersion is highly anisotropic and more divergent in the infrared
limit compared to that without spin-orbit coupling because of spontaneous breaking of the O(2) symmetry of
the ground state. And the dispersion also exhibits time reversal asymmetry for plane-wave condensates, which is
condensed on a momentum with a finite value. We also find that larger spin-orbit coupling makes the excitations
out of condensates more coherent.

DOI: 10.1103/PhysRevA.86.043632 PACS number(s): 03.75.Mn, 05.30.Jp, 03.75.Hh, 05.30.Rt

I. INTRODUCTION

Spin-orbit coupling (SOC) plays a crucial role in a
variety of physical systems ranging from atoms and nuclei
to topological insulator [1] and spintronics [2]. By controlling
atom-light interaction, one can generate an artificial external
nonabelian gauge potential coupled to neutral atoms [3–7]
which takes the form of Rashba-Dresselhaus SOCs, familiar
in semiconductor physics [8,9]. Recently, a system of spin-
orbit-coupled ultracold bosons was realized by Lin et al. [10].
New quantum states may be anticipated in these systems
[11–22]. Interesting density patterns have been observed in the
theoretical simulations for the condensates, with Refs. [18–20]
and without Refs. [21–24] rotation.

With the presence of two-dimensional isotropic Rashba
SOC, the ground state of free bosons is a ring with |k| = λ

in momentum space [13,14], which has infinite degeneracy,
where λ is the strength of the SOC. Taking into account s-wave
scattering processes between bosons, the full Hamiltonian of
the system possesses O(2) symmetry in momentum space.
Mean-field analysis [13] shows that the interactions between
bosons break the O(2) symmetry of the ground state and lift
the infinite degeneracy. In this approximation, it is found that
bosons prefer to condense at single momentum on the ring if
the interactions between particles satisfy g↑↑g↓↓ > g2

↑↓, where
g↑↑ and g↓↓ are the strengths of interactions between the same
components of the bosons, and g↑↓ is that between different
components of the bosons. In this case, the condensate has
plane-wave (PW) order. When g↑↑g↓↓ < g2

↑↓, bosons prefer
to condense at two points with opposite momenta on the
ring. This gives the striped phase (SP). The properties of
the excitations over the condensates have been discussed
intensely. These include the dispersion relations [18,25–28],
superfluid critical velocity [25], mapping of the system to
the chiral magnetism [18], effective scattering vertex using
renormalization-group analysis [15], and effect of excitations
on the stability of condensates [26,27].

However, the relation between the energy of the fluctuations
and the corresponding correlation functions has not been
investigated. In bosonic condensed systems without SOC,

*hepszjzj@gmail.com

there is a simple Feynman relation between the energy of the
excitations ωk and the static structure factor S(k) at the same
momentum [29]:

ωk = ε0(k)

S(k)
, (1)

where ε0(k) is the dispersion for free bosons. In this paper,
we investigate whether the Feynman relation still holds
when SOC is introduced. We find that the excitations over
condensates consist of two bands. And due to breaking of the
O(2) symmetry of the ground state, the dispersion is highly
anisotropic and more divergent in the infrared limit than
that without SOC. The dispersion also breaks time reversal
symmetry because the bosons are condensed onto a single
momentum with a finite value. SOC enhances the coherence
of bosons and the effect is more significant when its strength
is larger. The Feynman relation is not applicable in the whole
momentum space.

This paper is organized as following: We map the La-
grangian of the system to a nonlinear σ model which has been
modified by SOC in Sec. I. In Secs. II and III, the dispersion
relation for the excitations and the static structure factor are
obtained, respectively. Based on these results, we find that
the Feynman relation is not applied in the whole momentum
space. Part IV is a summary of this work.

II. MODIFIED NONLINEAR σ model

A. Model

The model of a two-dimensional homogeneous boson
system with the presence of SOC is written in Lagrangian
form as

Z =
∫

[d�∗,d�]e−L,

L =
∫ β

0
dτdr�∗(r,τ )

(
∂τ − h̄2

2m
∇2 + 2iλ∇ · σ − μ

)
�(r,τ )

+ 1

2
g

∫ β

0
dτd2rn(r,τ )2, (2)

where �(r,τ ) = (ψ↑(r,τ ),ψ↓(r,τ )). �(r,τ ) are boson fields.
They are complex numbers in a path integral scheme due to
the bosonic properties of the particles. �∗(r,τ ) are complex
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conjugates of fields �(r,τ ). n(r,τ ) = �∗(r,τ )�(r,τ ) is the
density of bosons. r and τ are the space and imaginary time
coordinates. β = 1

kBT
, where kB is the Boltzmann constant

and T is the temperature of the system. In this paper, we
consider the zero-temperature case. The spin indexes ↑,↓ are
pseudospins, which usually refer to degenerate bands, such as
in [30]. λ is the strength of SOC. It couples the psedudospins
with the movement directions of bosons. μ is the chemical
potential of the system. m is the mass of bosons. g = 4πah̄2/m

is the positive interacting coupling constant fixed by the s-wave
scattering length a. In this paper, we consider the symmetric
point for particle-particle interactions; that is, the interaction
strength between different spins are the same as that between
the same spins. In typical experimental situations, the strengths
of spin-dependent interactions are always much lower than
those for spin-independent terms [10]. We expect that the result
derived with symmetric interactions should also be applicable
to cases where the interactions are not symmetric but PW order
is still preferred. We set h̄ = 2m = 1 for simplicity.

B. Modified nonlinear σ model

In boson systems without SOC, the method of the nonlinear
σ model has been proved successful [31]. With SOC, we write
the bosonic field �(r,τ ) into its amplitude ν(r,τ ) = √

n(r,τ )
and phase z(r,τ ),

�(r,τ ) = ν(r,τ )z(r,τ ), (3)

where z(r,τ ) are complex two-component vectors under the
constraint |z|2 = 1. In terms of ν and z, the Lagrangian in
Eq. (2) can be written as

L =
∫

dτdr
[
ν2z∗∂τ z + (∇ν)2 + ν2∇z∗∇z

+ 2iλz∗
↑z↓ν∇−ν + 2iλz∗

↓z↑ν∇+ν

+ 2iλν2z∗∇ · σz − μν2 + 1

2
gν4

]
. (4)

Here, ∇± ≡ ∇x ± i∇y . It is a nonlinear σ model modified
by SOC. The nonlinear effects caused by the particle-particle
interactions are, for the most part, contained in the constraint
|z| = 1.

III. DISPERSION FOR EXCITATIONS OVER
PLANE-WAVE CONDENSATES

The mean-field approximation cannot distinguish whether
the condensates have PW or SP order when g↑↑ = g↓↓ = g↑↓.
However, after taking into account Gaussian fluctuations,
the authors of Ref. [26] find that the condensates with PW
order have a lower ground-state energy than those with
SP order. So they predict that the condensates prefer PW to SP
order.

Based on their result, in this paper we study the properties of
the excitations over condensates with PW order. We choose a
coordinate system such that the momentum of the condensates
is located on the kx axis with coordinates kx = −λ and
ky = 0. The corresponding wave function of the condensate is
�0(r,τ ) = ν0

1√
2
e−iλx(1,1)T (see Eq. (3) in Ref. [13]), where

ϕk = arg(kx + iky) = π and ν0 is the square root of the density
of the condensates n0, ν0 = √

n0. Then the boson fields can be
written as

�(r,τ ) = [ν0 + δν(r,τ )]e−iλx+iθ

(
cos

(
π
4 + φ

)
e−i

ξ

2

sin
(

π
4 + φ

)
ei

ξ

2

)
. (5)

Here, δν(r,τ ) are density fluctuations over the condensates and
θ (r,τ ) are the corresponding phase fluctuations, while φ(r,τ )
are spin fluctuations and ξ (r,τ ) are the corresponding phase
fluctuations.

We substitute the above expression into the Lagrangian,
Eq. (4), and expand it in orders of fluctuations. In the
zeroth order, the Lagrangian for the condensates is L0 =
βV (−(μ + λ2)n0 + 1

2gn2
0), which takes a minimum value at

n0 = μ+λ2

g
. This means that it must satisfy μ + λ2 > 0 for

bosons to condense. Interestingly, for negative μ the bosons
do not condense in the case without SOC, but they do with the
inclusion of large enough SOC.

The Lagrangian for fluctuations of quadratic order
after taking Fourier transformation is L′ = ∫

dkdωV

(−k,−ω)T M(k,ω)V (k,ω), with V (k,ω) ≡ (θ (k,ω),ξ (k,ω),
φ(k,ω),δν(k,ω))T , and

M(k,ω) =

⎛
⎜⎜⎜⎜⎝

n0k
2 −in0λky 0 −ω

√
n0

in0λky n0
(

k2

4 + λ2
) −n0

(
ω
2 − 2iλkx

)
0

0 n0
(

ω
2 − 2iλkx

)
n0(k2 + 4λ2) 2i

√
n0λky

ω
√

n0 0 −2i
√

n0λky k2 + mν

⎞
⎟⎟⎟⎟⎠ , (6)

where k = |k|. Above, δν is gapped with mass mν = 2gn0.
In the mean-field approximation mν = 2(μ + λ2), and it
does not depend on g. Matrix elements with ω reflect the
Heisenberg uncertainty relation between amplitude and phase
fluctuations. The δν,θ section is composed of density-wave
(DW) excitations. It becomes soft for a momentum around
k = (0,0), The φ,ξ section is composed of spin-wave (SW)
excitations. It goes soft around k = (2λ,0). Differently from

the case without SOC, the two sections δν,θ and φ,ξ are bound
together by SOC.

We must emphasize that the fluctuations are over con-
densates with momentum k = (−λ,0). This means that the
momenta of the above fluctuations have been shifted by −λ in
the kx direction. The realistic momenta for the soft modes are
around (±λ,0). In this paper, we use the relative momentum
unless otherwise specified.
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A. Overall band structure

The dispersion relations of the fluctuations are determined
by the poles of the corresponding propagators. These are
just the solutions of the equation DetM(k,ωk) = 0, where the
analytic continuum iω → ωk + iδ has been taken. It has

ω4
k + bω3

k + cω2
k + dωk + e = 0. (7)

Here, for simplicity, the detailed expression for the coefficient
is omitted. The four roots of this quartic equation are the same
as the solutions of the following two quadratic equations:

ω2
k + f1+ωk + f2+ = 0, ω2

k + f1−ωk + f2− = 0, (8)

f1± = b ±
√

8y + b2 − 4c

2
,

(9)

f2± = y ± by − d√
8y + b2 − 4c

,

where y is any real solution of the cubic equation,

8y3 − 4cy2 + (2bd − 8e)y + e(4c − b2) − d2 = 0. (10)

By careful analysis, we find that if ωk is a solution of the
first Eq. (8), then −ω−k is also a solution of the second Eq. (8).
This particle-hole symmetry is also shown in Bose-Einsteain
condensates (BECs) without SOC. For BECs without SOC,
both the path integral method and the BdG equation method
give hole solutions. It is purely a consequence of mathematical
disposal, and the “holes” do not exist physically. So solutions
with a negative value are neglected. Here with SOC, for the
same reason, we neglect solutions with a negative value.
Therefore, we only need to solve the second Eq. (8), for it
gives a non-negative ω(k) in the whole momentum space.
This is different from the result using the hydrodynamical
method [25] but agrees with the Bogoliubov method [26].

The overall band structure for excitations is shown in Fig. 1,
where the momenta are in units of λ. The upper band ω+

k is
gapped for all momenta. The lower band ω−

k is somewhat flat
in the ky direction. Because the coefficient e in Eq. (7) is 0
only at momenta (0,0) and (2λ,0), ω−

k are gapless only at these
two points. This means that the condensation lifts the infinite
degeneracy of the ring ground state to twofold. The additional
breaking of the O(2) symmetry of the ring-shaped ground state
makes the dispersion of the Goldstone modes more singular in
the infrared limit compared to that without SOC. This is the
reason for the flatness of the band, and the flattest direction is
the ky direction.

Because mν does not depend on the value of the particle-
particle interaction strength g, we find that the dispersion does
not rely on the value of g. However, for large enough g there
will be three-body losses and the situation is different [33],
and our calculation is limited to weak enough interactions g.

The mapping of the lower band ω−
k onto the kx-ω−

k plane
shows asymmetry about kx = λ, as shown clearly in the lower
panel in Fig. 1. We must emphasize that the momenta have
been shifted by −λ in the kx direction, so the dispersion at
the realistic momentum is asymmetric about kx = 0. This is a
reflection of the breaking of the time reversal symmetry due to
the fact that the bosons are condensed onto a single point of the
ring in momentum space. By contrast, for BECs without SOC,
ωk = ω−k, and the time reversal symmetry is maintained.
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FIG. 1. (Color online) Top: Dispersion of the upper band ω+
k and

lower band ω−
k . ω+

k is gapped for all momenta. ω−
k has some kind

of flatness in the ky direction. There are two soft modes. One is
the density wave located around k = (0,0), and the other is the spin
wave located around k = (2,0). Bottom: Dispersion of ω−

k mapped
onto the kx-ωk plane. The positions for the soft modes are clearly
shown. The momenta have been scaled in units of λ, and ω±

k in units
of h̄2λ2/2m.

B. Dispersion for soft modes

The excitations become soft around k = (0,0) and k =
(2λ,0), which are DW and SW, respectively. Now we consider
the dispersion of these soft modes in the kx and ky directions.
We choose ky = 0 in the kx direction and kx = 0,2λ in the ky

direction. The result is shown in Fig. 2.
In the kx direction with ky = 0, the θ,δν and φ,ξ sec-

tions are decoupled. We only need to solve two quadratic
equations to obtain the dispersion. For k = (kx,0), the φ,ξ

section is gapped, while the θ,δν section has the dispersion
Ek = |kx |

√
k2
x + mν . At small kx it is linear in kx . For

k = (2λ + kx,0), the θ,δν section is gapped, while the φ,ξ

section is gapless, with dispersion Ek ∼ k2
x . In the ky direction

with kx = 2λ and kx = 0, from numerical calculations we
find that the dispersion is quadratic in ky for both DW and
SW excitations. This can also be obtained analytically by
calculating the expression of coefficient e in Eq. (7) which
equals the multiplication of four roots.

In summary, the dispersion of DWs around k = (0,0)
is linear in kx at fixed ky = 0, and quadratic in ky at
fixed kx = 0. Note that the dispersion for free bosons,
ε0(k) = (

√
(kx − λ)2 + k2

y − λ)2, near the condensation point
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k = (0,0) has ε0(kx,0) ∼ k2
x and ε0(0,ky) ∼ k4

y

4λ2 . We see that
the dispersion for excited states over condensates is just
approximately the square of the one in the free boson case
in these two directions. This is the same as that without
SOC. SWs around k = (2λ,0) have an anisotropic quadratic
dispersion in the kx and ky directions. For a two-component
boson system without SOC, the SW section is decoupled
from the DW section, which makes the SWs behave like free
bosons [32]. However, SOC induces scattering processes with
momentum exchange q � (±2λ,0), which couple the DW and
SW sections together. As a result, the SW excitations are no
longer free bosons. Because of the highly infrared divergence
of the SW modes, there is the natural question of the effect of
these SW excitations on the stability of the condensates. The
result needs detailed calculation of the depletion. We leave
this to further work.

IV. STATIC STRUCTURE FACTOR AND
FEYNMAN RELATION

A. Static structure factor

The static structure factor S(k) is the Fourier transform of
the pair distribution function

N

V
S(k) =

∫
ddr 〈δn(r)δn(0)〉 eik·r, (11)

where V is the volume of the system, N is the total number
of bosons, and δn(r) is the density fluctuations over the
mean density of bosons n̄ = N/V . It measures the strength
of scattering pairs of atoms out of the condensates to form the
so-called quantum depletion [34]. There is

N

V
S(k) = 〈δn(k)δn(−k)〉 � 4n0〈δν(k)δν(−k)〉 = 2n0

β

∞∑
n=−∞

eiωnδ
+ k2(k2 + 4λ2)2 − 4λ2k2

y(k2 + 4λ2) − k2(iωn + 4λkx)2

(iωn − ω+
k )(iωn + ω+

−k)(iωn − ω−
k )(iωn + ω−

−k)
, (12)

where δ+ is an infinite small positive number. ωn = 2πnT are
the frequencies of bosons at a finite temperature where n is
the integer number. k is the relative momentum against the
condensed point (−λ,0). We assume weak interactions such
that the interaction-induced quantum depletions are small and
n0 � N

V
.

The expression of S(k) shows that it is symmetric with
respect to the kx and ky axis. The result with kx > 0,ky > 0 is
shown in Fig. 3. We see that S(k) decreases as the momentum k
becomes small, where the DW becomes soft. And it becomes 0
at the condensed point k = 0. This means that the correlation
goes to 0 where the quantum coherence is the largest. S(k)

FIG. 2. Top: Dispersion of the lower band ω−
k along the kx

direction at ky = 0. Bottom: Dispersion of the lower band ω−
k

along the ky direction: (left) kx = 2; (right) kx = 0. We see that
around k = (2,0), the dispersion is quadratic and anisotropic in two
directions. And around k = (0,0), it is linear in the kx direction and
quadratic in the ky direction. The momenta have been scaled in units
of λ, and ω−

k in units of h̄2λ2/2m.

remains finite and featureless as the momentum SW becomes
soft.

When k is small, S(k) is linear in kx at ky = 0 and quadratic
in ky at kx = 0, as shown in Fig. 3. Like the behavior of the
dispersion, in these two directions S(k) at momenta near the
condensation point are just the square of the dispersion for free
bosons. For a high momentum, the static structure factor goes
to unity just as for free bosons.

Now we discuss the change in the static structure factor
with a change in the SOC strength. The result is shown in

0
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0

0.5

1

0

0.2

0.4

0.6

0.8
S(k)

ky

kx

FIG. 3. (Color online) The static structure factor S(k). Momenta
have been scaled in units of λ. Top: S(k) goes to 0 at k = (0,0), where
the density-wave modes become soft. It becomes unity at a larger k,
which has the same behavior as free particles. Bottom: (Left) S(k)
vs kx at ky = 0; (right) S(k)/ky vs ky at kx = 0. We see that S(k) is
linear in the kx direction and quadratic in the ky direction.
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FIG. 4. (Color online) The static structure factor S(k) mapped
onto the kx-ky plane. The chemical potential μ = −0.5 here. We
see that increasing the spin-orbit coupling strength λ reduces
the static structure factor and, hence, makes the bosons more
coherent.

Fig. 4 for a negative chemical potential and in Fig. 5 for a
positive chemical potential. We find that enhancing λ reduces
the static structure factor in a larger region of momenta. This
is a reflection of the enhancement of the two processes of
exciting opposite relative momenta; here the relative momenta
are momenta relative to the momentum of condensates [35].

B. Feynman relation

In a one-component boson system, the Feynman relation,
Eq. (1), holds true in the whole momentum space [36]. It is
a reflection of the f -sum rule [29]. However, a multiple-band
structure can make this simple relation exist only at a special
momentum where the scattering processes between the lowest
band and the condensates dominate [37].

With SOC, the excitations consist of two bands. In addition,
the dispersion is highly anisotropic and time reversal symmetry
is broken. For weak interactions with n0 � N

V
, by putting the

FIG. 5. (Color online) The static structure factor S(k) mapped
onto the kx-ky plane. The chemical potential μ = 0.1 here. We see
that increasing the spin-orbit coupling strength λ reduces the static
structure factor and, hence, makes the bosons more coherent.

FIG. 6. (Color online)
ε0(k)
S(k) −ω−

k

ω−
k

is the relative error of the Feynman

relation ω−
k = ε0(k)

S(k) in boson systems with spin-orbit coupling. Here

ε0(k) = (
√

(kx − λ)2 + k2
y − λ)2 is the dispersion for free bosons.

There is symmetry for ky ↔ −ky , so only the ky > 0 case is shown
in the diagram. We see that the Feynman relation is not satisfied
around the “ring” in the momentum space.

dispersion for free bosons ε0(k) = (
√

(kx − λ)2 + k2
y − λ)2 in

Eq. (1), we find that the Feynman relation does not apply in
the whole momentum space (see Fig. 6).

In Fig. 6, the relative error of the Feynman relation,
ε0(k)
S(k) −ω−

k

ω−
k

,
is calculated and is mapped onto momentum space. There is
symmetry for ky ↔ −ky , so only the ky > 0 case is shown.
We see that the Feynman relation is not satisfied around the
“ring” in the momentum space. The energy of the free bosons
is 0 on the ring in the momentum space. However, due to
condensation of bosons onto a single point of the ring, the
energy of excitations on the ring is increased except at the
two points (0,0) and (2λ,0). And the static structure factor is
0 only at the condensed point (0,0). So the naive Feynman
relation, Eq. (1), is clearly no longer applicable. In the same
reason, we expect that the relation is not satisfied for general
particle-particle interactions.

Furthermore, by setting the SOC strength λ to 0 in the
Lagrangian, Eq. (4), it can be calculated easily that the static
structure factor S(k) and dispersion of excitations ωk satisfy
the Feynman relation, Eq. (1). So the violation of the Feynman
relation found in this work is not due to the fact that we are
dealing with a two-component system. It is purely an effect of
the existence of SOC.

V. DISCUSSION

We calculate the dispersion relation ωk and static structure
factor S(k) for Bose-Einstein condensation with SOC for two
dimensions at zero temperature. SOC leads to a gapped band
ω+

k and another band ω−
k with two anisotropic gapless modes.

One is the DW, with a linear dispersion in the direction of
the vector for PWs and a quadratic dispersion perpendicular
to this direction. It is more divergent in the infrared limit
than in cases without SOC. The other is the SW, with an
anisotropic quadratic dispersion in both of these directions.
The anisotropy is due to breaking of the O(2) symmetry of the
ground state. Time reversal symmetry is also broken for the
dispersion because of condensation onto a single momentum
with a finite value. The static structure factor S(k) becomes
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0 at the momentum where the DW becomes soft, while it
remains finite at the momentum of the spin excitation. We
also see from the static structure factor that SOC enhances
the coherence of excitations out of condensates with opposite
relative momenta; here the relative momenta are momenta
relative to the momentum of condensates. It is interesting
to study the corresponding quantum squeezed states [38,39].
Near the condensation momentum and on the kx and ky axes,
the dependences of ωk and S(k) on the momentum are the
squares of the dispersion for free bosons. This relation is just
the same as that without SOC. It may be a general characteristic
of BECs.

In the presence of SOC, the dispersion of the excitations
is quite complex. And the Feynman relation, which relates
the energy of excitations, the corresponding static structure
factor in the condensed systems, and the dispersion of free
bosons, is not satisfied in the whole momentum space. Such a
violation should be also expected for general particle-particle

interactions, because the condensation induces an increase in
the degeneracy of the ground state.

Experimentally, Bragg spectroscopy can be used to measure
the static structure factor and also the dispersion of excitations
[33,40,41]. So the result in this paper can be checked. The
behavior of the static structure factor when the strength of the
SOC is changed and, also, the g independence of the dispersion
relation with weak enough particle-particle interactions g can
be checked as well.
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[2] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323

(2004).
[3] A. M. Dudarev, R. B. Diener, I. Carusotto, and Q. Niu, Phys.

Rev. Lett. 92, 153005 (2004).
[4] J. Ruseckas, G. Juzeliünas, P. Öhberg, and M. Fleischhauer,
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[40] H. P. Büchler, P. Zoller, and W. Zwerger, Phys. Rev. Lett. 93,
080401 (2004).

[41] S. Hoinka, M. Lingham, M. Delehaye, and C. J. Vale,
arXiv:1203.4657.

043632-6

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevA.81.053403
http://dx.doi.org/10.1103/PhysRevA.81.053403
http://dx.doi.org/10.1103/PhysRevLett.99.110403
http://dx.doi.org/10.1103/PhysRevLett.99.110403
http://arXiv.org/abs/arXiv:1205.3483
http://dx.doi.org/10.1103/PhysRev.100.580
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevLett.104.073603
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1103/PhysRevA.84.061604
http://dx.doi.org/10.1103/PhysRevA.84.061604
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.107.200401
http://dx.doi.org/10.1103/PhysRevLett.107.200401
http://dx.doi.org/10.1103/PhysRevA.84.063624
http://dx.doi.org/10.1103/PhysRevA.84.063624
http://dx.doi.org/10.1103/PhysRevA.84.063604
http://dx.doi.org/10.1103/PhysRevA.84.063604
http://dx.doi.org/10.1103/PhysRevA.83.053602
http://dx.doi.org/10.1103/PhysRevA.84.011607
http://dx.doi.org/10.1103/PhysRevA.84.011607
http://dx.doi.org/10.1103/PhysRevLett.108.010402
http://dx.doi.org/10.1103/PhysRevLett.108.010402
http://dx.doi.org/10.1103/PhysRevLett.107.270401
http://dx.doi.org/10.1103/PhysRevLett.107.270401
http://arXiv.org/abs/arXiv:1109.5811
http://dx.doi.org/10.1103/PhysRevA.85.023615
http://dx.doi.org/10.1103/PhysRevA.85.023615
http://dx.doi.org/10.1103/PhysRevA.84.043622
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/10.1103/PhysRev.94.262
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/PhysRevLett.85.5030
http://dx.doi.org/10.1103/PhysRevLett.85.5030
http://dx.doi.org/10.1103/PhysRevLett.101.135301
http://dx.doi.org/10.1103/PhysRevLett.83.2876
http://dx.doi.org/10.1103/PhysRevLett.83.2876
http://dx.doi.org/10.1103/PhysRevA.67.053609
http://dx.doi.org/10.1103/PhysRevA.67.053609
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1038/35051038
http://dx.doi.org/10.1038/35051038
http://dx.doi.org/10.1103/PhysRevLett.93.080401
http://dx.doi.org/10.1103/PhysRevLett.93.080401
http://arXiv.org/abs/arXiv:1203.4657



