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By exploring the spin-orbit-coupled rotating pseudo-spin-1/2 Bose-Einstein condensates with the stochastic
projected Gross-Pitaevskii equations, we prove the existence of the circular-hyperbolic skyrmion, which possesses
two extreme values of Sz. The nonequal intraspecies interactions and interspecies interactions cause the two
components to be wholly disproportionate when the system reaches the equilibrium state. The circular-hyperbolic
skyrmion results from the vortex-dipole structure. For the miscible condensates, the increase of spin-orbit
coupling enhances the creation of the circular-hyperbolic skyrmion, and makes them link one after another
locally. In particular, the circular-hyperbolic skyrmion even can form a chain when the spin-orbit coupling is
only in one direction. For the immiscible condensates, the hyperbolic skyrmion occurs at the center, while the
circular-hyperbolic skyrmion occurs at the outskirts of the condensates. The increase of the spin-orbit coupling
restricts the creation of the hyperbolic skyrmion and enhances the creation of the circular-hyperbolic skyrmion.
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I. INTRODUCTION

Spin-orbit interaction couples the spin and momentum
degrees of freedom, which plays an important role in real-
izing some new physics such as the spin-Hall effect [1,2],
topological insulator [3–5], etc. Recently, spin-orbit coupling
(SOC) in Bose gases of 87Rb atom has been observed in
experiments [6,7] with the synthetic non-Abelian gauge fields.
The SOC effect of the Bose gases provides a new platform for
the new physics and the method of manipulating the quantum
system, which has attracted much attention [8–15]. For atoms
with internal degrees of freedom, their collision interactions
generally contain spin dependence, which determines the var-
ious ground-state phases. Without SOC, the two-component
Bose-Einstein condensates (BECs) can be of either phase
separation or phase mixture. The inclusion of SOC induces
competition with spin-dependent interactions, in addition to
modifying the single-particle spectra of a spinor BEC. As
a result, a spin-dependent interaction in turn influences the
atomic spatial motion, leading to a variety of density patterns
even in the ground state [8–13], such as the stripe phase and
the plane-wave phase in the nonrotation BECs.

In this paper, we consider the ultracold bosons with SOC
and the rotation under a quenching process. Generally, the
combination of SOC and the rotation can cause various
vortex lattices [14,15]. For example, Xu et al. [14] found that
increasing the SOC strength would favor a triangular vortex
lattice in the fast rotating BECs. Zhou et al. [15] showed
that if the trapping potential is strong and the interaction is
relatively weak, then a half-quantum vortex lattice is formed
under rotation. Many properties of the vortices’ structure have
been studied, but the properties of the skyrmion, which may
concern the vortices in these rotating BECs and is important
in our understanding of those systems, have not won enough
attention. Furthermore, almost all of the theoretical research,
including the above two rotating cases, consider that the
intraspecies interactions of both spin-up and spin-down are
equal, i.e., g1 = g2. This implies that the two components

are completely identical. In a real system, the Zeeman shift
induces different energies for particles. Competition of the
virtually different intraspecies interaction causes the particles
to be disproportionate. Thus, the equal intraspecies interaction
(g1 = g2) conflicts with the real competition of particle
interactions. So it is of interest to study the more realistic
conditions.

The skyrmions are topological solitons, which were origi-
nally proposed in the 1960s in nuclear physics by Skyrme to
account for baryons as a quasiparticle excitation with spins
pointing in all directions to wrap a sphere [16,17]. Skyrmions
have been observed in many condensed-matter systems, such
as liquid 3He-A [18], quantum Hall systems [19], liquid
crystals [20], and helical ferromagnets [21,22]. Generally,
spins of skyrmions are antiparallel to the applied magnetic field
at the skyrmion centers and are parallel at their peripheries. For
a skyrmion with a topological charge of one, the spin-vector
of the skyrmion sweeps the whole unit sphere.

In the two-component BEC, the nonsingular skyrmion is
related to the Mermin-Ho coreless vortices [23]. Roughly
speaking, the skyrmion is an excitation that can be created
out of the ground state, in which all of the spins are aligned, by
reversing the average spin in a finite region of space [24,25].
Meanwhile, the arrows of the skyrmions can either form a
circular pattern, point to the outside, or point into the center in
the two-dimensional plane [26,27]. Typically, the skyrmion is
centrosymmetric. It will be interesting to determine if there are
some other cases in the two-component BEC with SOC, and
to address questions such as: Are there other configurations
for a skyrmion? How many different configurations does the
skyrmion have? Since a skyrmion is viewed as the reverse of
the local spin, are there other types of skyrmions present, such
as the noncentrosymmetric configuration?

The purpose of this paper is to summarize the types
of skyrmions and discover other skyrmion configurations.
By analyzing the solution of the skyrmion and classifying
the basic configuration of the skyrmion, we find that some
two-extreme-value skyrmions are ignored in the previous
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investigation. We estimate the properties of the two-extreme-
value skyrmion. Our numerical experiment, which considers
the condensate with SOC, proves the scenario and we find
the circular-hyperbolic skyrmion, which indeed has two
different extreme values. The circular-hyperbolic skyrmions
encircle the center of the system and can form some chains
locally. These properties indicate the difference between the
circular-hyperbolic skyrmion and the normal skyrmion. The
distribution of the circular-hyperbolic skyrmion is different
from that of the normal skyrmion.

The paper is organized as follows: In Sec. II, we analyze
the skyrmion solution and obtain seven different skyrmion
configurations. Meanwhile, the analysis implies the presence
of the two-extreme-value skyrmion. In Sec. III, we introduce
our model, the stochastic projected Gross-Pitaevskii equations,
and some initial conditions for our simulations. In Sec. IV, we
present our main results and some explanations. In Sec. IV A,
we use SOC to induce the vortices and circular-hyperbolic
skyrmion in the rotating miscible Bose-Einstein condensates.
We illuminate the relationship between the vortex structure
and the circular-hyperbolic skyrmion. Meanwhile, we design
an experimental scheme, which remains SOC only in the y

direction, to obtain the circular-hyperbolic skyrmion chain. In
Sec. III B, we show that the circular-hyperbolic skyrmion can
occur in the immiscible BECs when the strength of the SOC is
strong enough. Meanwhile, along the radius, the hyperbolic
skyrmion will transfer to the circular-hyperbolic skyrmion
according to the density distribution of the two BECs. A
summary of the paper is presented in Sec. V.

II. ANALYSIS OF THE PRESENCE OF
TWO-EXTREME-VALUE SKYRMION

We assume there is a skyrmion solution (Sx , Sy , Sz) where
|S|2 = 1. For example, we can use Eqs. (1) to represent the
skyrmion [27],

Sx = 4λxe−(x2+y2)/2

x2 + y2 + 4λ2e−(x2+y2)/2
,

Sy = −4λye−(x2+y2)/2

x2 + y2 + 4λ2e−(x2+y2)/2
, (1)

Sz = x2 + y2 − 4λ2e−(x2+y2)/2

x2 + y2 + 4λ2e−(x2+y2)/2
.

We know that the topological charge Q is a very important
value to characterize the spin texture. The topological charge
is defined by Q = 1

4π

∫
S · ( ∂S

∂x
× ∂S

∂y
)dxdy and the topological

charge density is defined as q(x,y) = 1
4π

S · ( ∂S
∂x

× ∂S
∂y

). A
skyrmion has the topological charge |Q| = 1. We have noted
that if the solution (Sx , Sy , Sz) can describe a skyrmion,
then the solution (Sx , −Sy , Sz) also satisfies the condition
to present a skyrmion. The topological charge |Q| of the two
skyrmions is equal. Similarly, (−Sx , Sy , Sz), (Sx , −Sy , −Sz),
etc. satisfy the condition to construct a corresponding skyrmion
with topological charge |Q| = 1. Thus, the addition of the
minus on the spin vector causes a different skyrmion. In fact,
this operation causes eight different skyrmion configurations.
Furthermore, if we exchange Sx , Sy , and Sz, then the topo-
logical charge |Q| is also conserved [28]. This operation can

cause six configurations. Meanwhile, the topological charge
density |q(x,y)| is unchanged under both operations. Thus,
combining the two simple operations, we can obtain 48
skyrmion configurations. However, some configurations have
similar properties. Thus, we can view them as the same type
of skyrmion.

Figures 1(a)–1(g) shows seven types of skyrmions with the
above operations by using Eqs. (1). The title of each figure
indicates the corresponding spin vector. We can name them
radial-out skyrmion, radial-in skyrmion, circular skyrmion,
hyperbolic skyrmion, hyperbolic-radial(out) skyrmion,
hyperbolic-radial(in) skyrmion, and circular-hyperbolic
skyrmion, respectively. We find that other skyrmion
configurations can be presented by the seven basic
configurations [Figs. 1(a)–1(g)] with the rotation, the
image with the y axis, and the exchange of the color. For
example, the skyrmion in Fig. 1(h) is the same type as that
in Fig. 1(g). When we rotate Fig. 1(g) −π/2 anticlockwise,
and exchange the color of the arrows and image with the y

axis, we can obtain Fig. 1(h). We can present Fig. 1(h) as
−g′(−π/2), where g denotes that Fig. 1(h) is the same type
as Fig. 1(g), the − symbol denotes the exchange of the color
of the arrows (an imaging with the x-y plane), and g′ denotes
the imaging with the y axis. Table I shows all of the skyrmion
configurations from Fig. 1. The column headings indicate the
plus and minus of the three spin vectors, and the first column
is the form of the three spin vectors of Eqs. (1).

The skyrmion is the spin defect. The outer arrows in
Figs. 1(a)–1(d) are standing up. Meanwhile, the skyrmions
in Figs. 1(a)–1(d) have only one extreme value. These figures
factually show the normal skyrmion which has appeared in
many previous studies [26,27]. However, the ambient arrows
in Figs. 1(e)–1(h) are accumbent in the x-y plane. These
skyrmions have two extreme values of Sz: a minima and
a maximum. Figure 1(e) is a combination of a radial-out
structure and a hyperbolic one. Thus we can call it the
hyperbolic-radial(out) skyrmion. Similarly, Fig. 1(f) indicates
a hyperbolic-radial(in) skyrmion. Figure 1(g) can be viewed as
a combination of a circular and a hyperbolic structure. Hence
we can call it the circular-hyperbolic skyrmion. Figure 1(h)
also plots a circular-hyperbolic skyrmion since it has a similar
configuration to Fig. 1(g).

With Eqs. (1), the vectors (±Sx , ±Sy , ±Sz) and (±Sy , ±Sx ,
±Sz) produce 16 skyrmions, which have only one extreme
value. Meanwhile, they can be characterized by Figs. 1(a)–1(d)
with the rotation, the image with the y axis, and the exchange
of the color. There are 32 two-extreme-value skyrmions, which
can be presented by Figs. 1(e)–1(g) with the rotation, the image
with the y axis, and the exchange of the color. Furthermore, we
summarize all of the possible configurations of the skyrmion
in Table I using Figs. 1(a)–1(g). Now, we can conclude that
it is possible to realize the two-extreme-value skyrmions. At
least we have obtained the configuration to characterize them.
The two-extreme-value skyrmion must not result from the
vortex-core structure (Mermin-Ho vortex) simply since it is not
centrosymmetric. Figures 1(e)–1(g) imply that some special
structure induces the two-extreme-value skyrmion. And we
can guess that it should be some dipole structure. If it is related
to the dipole structure, such as the Anderson vortex (rather
than the normal Anderson vortex [33,34]), then it would be
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FIG. 1. (Color online) Configuration of the skyrmion with Eqs. (1), where λ = 0.5. The subfigures indicate the mode of the spin
vectors: (a) radial-out skyrmion, (b) radial-in skyrmion, (c) circular skyrmion, (d) hyperbolic skyrmion, (e) hyperbolic-radial(out) skyrmion,
(f) hyperbolic-radial(in) skyrmion, (g) circular-hyperbolic skyrmion I, and (h) circular-hyperbolic skyrmion II. The color of each arrow indicates
the magnitude of Sz.

anisotropic. The two-component BECs should couple with
each other to form the dipole structure. But how can we prove
the presence of the two-extreme-value skyrmion in BECs?
In the following content, we illuminate the method for creating
the two-extreme-value skyrmions and explain the nontrivial
phenomena.

III. STOCHASTIC PROJECTED GROSS-PITAEVSKII
EQUATIONS FOR PSEUDO-SPIN-1/2 BECS WITH

SPIN-ORBIT COUPLING

In real experiments, the zero temperature cannot be fully
achieved. So the ultracold Bose gases are only partially
condensed, with the noncondensed thermal cloud providing
a source of dissipation and leading to damping excitations.
Meanwhile, the evaporative cooling is a critical operation to
obtain the condensate. Thus, it is necessary to refer to the finite-

temperature effect and a quenching process. The development
of the stochastic projected Gross-Pitaevskii equation (SPGPE)
gives us a way to describe the quenching process. The explicit
formalism of the SPGPE has been presented in Refs. [29–32],
and here we merely outline the particular method we use in this
work. Generally, the SPGPE method divides the system into
the coherent region and the incoherent region. This division is
made by a projection operationP , which restricts the dynamics
of the BEC in the coherent region. The dynamics of the
pseudo-spin-1/2 BECs can be described by the form

d�j = P
{
− i

h̄
Ĥj�jdt + γj

kBT
(μ − Ĥj )�jdt + dWj

}
,

(2)

where T is the final temperature, kB is the Boltzmann
constant, μ is the chemical potential, γj is the growth rate

TABLE I. The configuration of the skyrmion when we exchange the spin vectors and add minus to the vectors. The first column indicates
the form of the spin vector of Eqs. (1). The column headings show the sign of the spin vector. The letter stands for the subfigure in Fig. 1, the
radian in brackets denotes the counterclockwise rotation of the subfigure with the value, the ′ symbol denotes the mapping with y axis, and the
− symbol denotes the exchange of the color (mapping with x-y plane).

(+, + ,+) (−, + ,+) (+, − ,+) (+, + ,−) (−, − ,+) (−, + ,−) (+, − ,−) (−, − ,−)

(Sx,Sy,Sz) d(π/4) b a −d(π/4) d(−π/4) −b −a −d(−π/4)
(Sy,Sx,Sz) c d(−π/2) d −c c′ −d(−π/2) −d −c′

(Sx,Sz,Sy) e f (π/2) −e(π ) −e −f (−π/2) −f (π/2) e(π ) f (−π/2)
(Sz,Sy,Sx) −f f (π ) −e(−π/2) f e(π/2) −f (π ) e(−π/2) −e(π/2)
(Sz,Sx,Sy) g −g(π ) −g′(π ) −g g′ g(π ) g′(π ) −g′

(Sy,Sz,Sx) g(π/2) −g′(−π/2) −g(−π/2) −g(π/2) g′(π/2) g′(−π/2) g(−π/2) −g′(π/2)
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FIG. 2. (Color online) The densities and phases for the pseudo-spin-1/2 BEC of 87Rb with SOC κ when the system reaches the equilibrium
state. (a) κ = 0.2, (b) κ = 0.5, (c) κ = 1.0, and (d) κ = 3.0. Here, � = 0.5ω, a1 = 101.8aB , a2 = 0.8a1, and a12 = 0.5a1. Note that the fifth
column is the phase of the spin-down component, and the sixth column is the phase difference of the two components. The atom numbers
(N↑, N↓) are approximately (2.55 × 104, 3.95 × 104), (2.82 × 104, 4.09 × 104), (3.31 × 104, 4.43 × 104), and (6.30 × 104, 7.28 × 104),
respectively. The units of length and strength of the SOC are

√
h̄/(mω) and

√
h̄ω/m, respectively.

for the j th component, and dWj is the complex Gaussian
noise. Meanwhile, �j (j = ↑, ↓) denotes the macroscopic
wave function of the atoms condensated in the spin-up and
spin-down state, respectively, and

Ĥ↑�↑ =
[
−h̄2∇2

2m
+ V (r) + (g1|�↑|2 + g12|�↓|2)

]
�↑

−�L̂z�↑ + (κxpx − iκypy)�↓,

Ĥ↓�↓ =
[
−h̄2∇2

2m
+ V (r) + (g2|�↓|2 + g12|�↑|2)

]
�↓

−�L̂z�↓ + (κxpx + iκypy)�↑, (3)

with the coupling constants g1 = 4πh̄2a1
m

, g2 = 4πh̄2a2
m

, and

g12 = 4πh̄2a12
m

. The trap potential is V (r) = mω2(x2 + y2)/2.
� is the rotation frequency, L̂z [L̂z = −ih̄(x∂y − y∂x)] is
the z component of the orbital angular momentum, and κx ,
κy denotes the strength of the SOC in the x, y direction,
respectively. Meanwhile, px and py are the momentum
operator in the x and y direction, respectively.

In Ref. [7], Lin et al. introduced a method to realize the
SOC with BECs of 87Rb. They select two internal “spin” states
from within the 87Rb 5S1/2, F = 1 ground electronic manifold,

and label them pseudo-spin-up and pseudo-spin-down. A pair
of λ0 = 804.1 nm Raman lasers, intersecting at θ = 90◦ and
detuned by δ from Raman resonance, couple these states with
strength �T . �T and δ give rise to effective Zeeman fields
along ẑ and ŷ, respectively. The SOC term results from the
laser geometry, and the strength of the SOC is set by λ0 and θ .

In numerical simulations, we choose the pseudo-spin-1/2
BECs of 87Rb, where the mass of atom is m = 144.42 ×
10−27 Kg. To obtain the initial states of each �j for evolution
according to Eqs. (2), we sample the grand canonical ensemble
for a free ideal Bose gas with the temperature T0 and the
chemical potential μj,0. Meanwhile, the condensate band

must lie below the energy cutoff ER > Ek = h̄2|k|2
2m

. Note that
k = 2π (nx,ny)/L, where nx , ny are integers and L is the
size of the computation domain. To simulate the quenching
process, the final temperature and the chemical potential of
the noncondensate band are altered to the values T < T0

and μ > μj,0. Furthermore, we use the oscillator unit in the
numerical computations. The length, time, and energy are

scaled in units of
√

h̄
mω

, ω−1, and h̄ω, respectively. In all
of the simulations, the trapped frequency ω = 200 × 2π , the
total number of the modes is nx and ny = 280, the energy
cutoff is chosen at nxc and nyc = 140, the initial temperature
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FIG. 3. (Color online) Spin texture of the pseudo-spin-1/2 BEC of 87Rb with � = 0.5ω, a1 = 101.8aB , a2 = 0.8a1, and a12 = 0.5a1. The
color of each arrow indicates the magnitude of Sz. (a) κ = 0.2, (b) κ = 0.5, (c) κ = 1, and (d) κ = 3.0. The red and black spots are the center
of the vortices formed by the spin-up and spin-down components, respectively. Note that we only mark the vortices in the y > 0 region in order
to illuminate the spin texture and the position of the vortices clearly. The units of length and strength of the SOC are

√
h̄/(mω) and

√
h̄ω/m,

respectively.

T0 is 12 nK, the final temperature T is 5 nK, and we use
γj

kBT
= 0.03.

IV. RESULTS AND EXPLANATIONS

Generally speaking, almost all of the previous studies about
BECs with SOC consider the equal contact interactions such
as g1 = g2 = g12, or only g1 = g2 as well as adjustment
of the interspecies interaction g12 [8–15]. Theoretically, the
interaction strengths g1, g2, and g12 are tunable by adjusting
the s-wave scattering lengths a1, a2, and a12 through Feshbach
resonances. To explore the potential nontrivial phenomena,
we now perform our experiments with a1 �= a2 �= a12. This
consideration results in the population imbalance and induces
some new physics. Since we consider the interactions g1 �=
g2 �= g12, the interspecies interaction plays an important role
in determining the evolution of the two condensates. We must
note that the two condensates consist of different components
with the same mass m. Based on previous investigations,
we can naturally divide the evolution into two cases: the
miscible case where g12 � √

g1g2 and the immiscible case
where g12 >

√
g1g2.

A. Vortex-dipole and circular-hyperbolic skyrmion in rotating
miscible BECs with spin-orbit coupling

We first consider the case g12 � √
g1g2, where g1 > g2 >

g12. We take BECs of 87Rb as an example and assume
a1 = 101.8aB , a2 = 0.8a1, and a12 = 0.5a1. We set our model
with μj,0 = 5h̄ω, μ = 35h̄ω, κx = κy = κ and the rotating fre-
quency � = 0.5ω. Figure 2 displays the densities and phases
obtained under the equilibrium state with various strengths
of SOC. Just as previous experiments about the rotating
BECs [29,30], there are some vortices in both components.
The first and second columns are the density of the spin-up
and spin-down components, respectively. The third column
denotes the total density of the BECs, and the fourth column is
the density difference of the two components. The fifth column
indicates the phase of the spin-down component. Like the
vortex lattice in a single-component BEC, there are some lines
where the phases change discontinuously from red to blue,
which corresponds to the branch cuts between the phases −π

and π . The ends represent phase defects. All of the lines extend
to the outskirts of the BECs where the density of the BECs
is almost negligible, and end with another defect which offers
neither the energy nor the angular momentum to the system.
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FIG. 4. (Color online) Topological charge density of pseudo-spin-
1/2 BEC of 87Rb with � = 0.5ω, a1 = 101.8aB , a2 = 0.8a1, and
a12 = 0.5a1. (a) κ = 0.2, (b) κ = 0.5, (c) κ = 1.0, and (d) κ = 3.0.
(e) A scheme of the vortex dipole; the red and black surfaces
denote the densities of the spin-up and spin-down components,
respectively. The cyan surface is the total density of the BECs. The
units of length and strength of the SOC are

√
h̄/(mω) and

√
h̄ω/m,

respectively.

Generally speaking, the phases increase clockwise and then
cut between the values −π and π . The sixth column shows the
phase difference between the two components. In [26,27], the
“vortex molecule” has been discussed with the fixed phase
difference of 2π . The unfixed phase difference in Fig. 2
indicates that the vortices do not form the so-called vortex
molecule.

For a very weak SOC (κ = 0.2), the distribution of the
vortices is relatively even. The relative proportional spacing
of the vortices is destroyed as the SOC increases. When κ is

−10 −5 0 5 10
0

100

200

300

400

500

y

D
en

si
ty

 

 

|Ψ↑|2

|Ψ↓|2

|Ψ↑|2+|Ψ↓|2

(g)

FIG. 5. (Color online) The densities and phases for the pseudo-
spin-1/2 BECs of 87Rb when the system reaches the equilibrium
state, where � = 0.5ω, κx = 0, κy = 1, and μ = 35h̄ω. (a) Density
of the spin-up component, (b) density of the spin-down component,
(c) total density of the BECs, (d) phase profile of the spin-up
component, (e) phase difference of the two components, (f) density
difference of the two components, and (g) density profile of the
pseudo-spin-1/2 BECs in Figs. 5(a)–5(c), where x = 0. Here, a1 =
101.8aB , a2 = 0.8a1, and a12 = 0.5a1. The atom numbers (N↑, N↓)
are approximately (2.98 × 104, 4.26 × 104). The units of length and
strength of the SOC are

√
h̄/(mω) and

√
h̄ω/m, respectively.

greater than 1, some vortices tend to link one after another
and form vortex lines locally from the center. Meanwhile,
the particle number of the spin-up component is less than
that of the spin-down component. As the SOC increases, the
population imbalance tends to decrease. Thus, SOC restricts
the population imbalance caused by the competition of contact
interactions. In the third column, we can distinguish the local
minima. The density difference of the spin-up and spin-down
components shows that the two components form some dipoles
locally. Especially for κ = 3, we can see some dipoles link one
after another locally.

In our model, the particle number depends on the system
itself. We do not fix the particle number and the ratio.
Meanwhile, the rotation frequency is much less than ω. Thus,
we do not obtain the giant vortex in the center of the system
like those in Refs. [14,15].
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FIG. 6. (Color online) Spin texture of pseudo-spin-1/2 BECs of 87Rb with � = 0.5ω, κx = 0, κy = 1, and μ = 35h̄ω. (a) a1 = 101.8aB ,
a2 = 0.8a1, and a12 = 0.5a1. The black and red spots are the centers of the vortices formed by the spin-up and spin-down components,
respectively. Note that we only mark the vortices in the y > 0 region in order to illuminate the spin texture and the position of the vortices
clearly. (b) Spin texture with Eqs. (6), where c1 = c2 = 6. (c) Enlarged plot of the radial-out and hyperbolic skyrmion in Fig. 5(a). (d) Radial-out
and hyperbolic skyrmion transferred into the circular skyrmion under the transformation of the (Sx,Sz,−Sy). The units of length and strength
of the SOC are

√
h̄/(mω) and

√
h̄ω/m, respectively.

We now discuss the spin texture in the above experiments.
The spin texture [26,27,33,34] is defined by

Sx = (�∗
↑�↓ + �∗

↓�↑)/|�|2,
Sy = −i(�∗

↑�↓ − �∗
↓�↑)/|�|2, (4)

Sz = (|�↑|2 − |�↓|2)/|�|2.
Figure 3 shows the spin texture of the miscible case with
various strengths of SOC. Some circular-hyperbolic skyrmions
encircle the center in Figs. 3(a)–3(d). We mark the positions
of the vortices with color spots only in the region y < 0.
Obviously, the circular structures are related to the vortices
of the spin-up component and the hyperbolic structures are
related to the vortices of the spin-down component. Thus, they
can be viewed as the vortex-dipole structure. Figure 4(e) shows
a scheme of the vortex-dipole structure with the densities. The
red, black, and cyan colors denote the spin-up component,
spin-down component, and their sum, respectively. If we draw
a line through the circular part and the hyperbolic part of

the skyrmion, the line passes through the center. Meanwhile,
the center is a circular structure in Figs. 3(a) and 3(c), but
a hyperbolic structure in Fig. 3(d). These properties mean
the difference of one between the number of vortices in the
two components. Furthermore, the arrows form a big circular
pattern in the whole BECs.

The corresponding topological charge densities are dis-
played in Figs. 4(a)–4(d), respectively. We first point out
the difference between the circular-hyperbolic skyrmion and
the meron pair. For the meron pair, the topological charge
density is distributed anisotropically so that the distribution
is elongated along the direction of polarization of the meron
pair [26,27,33,34]. When the SOC is very weak (κ = 0.2),
the topological charge density tends to be elongated along the
radius. This indicates that the “circular-hyperbolic skyrmions”
process the properties of the circular-hyperbolic meron pair.
When SOC increases, the elongated effect of the topological
charge density disappears. Thus, we can view the spin texture
in Figs. 4(a) and 4(b) as the mixtures between circular-
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FIG. 7. (Color online) The densities and phases for the pseudo-spin-1/2 BECs of 87Rb with SOC κ when the system reaches the equilibrium
state. (a) κ = 0.2, (b) κ = 1.0, (c) κ = 2.0, and (d) κ = 3.0. Here, � = 0.5ω, a1 = 101.8aB , a2 = 0.8a1, and a12 = 1.2a1. Note that the fifth
column is the phase of the spin-down component, and the sixth column is the phase difference of the two components. The atom numbers (N↑,
N↓) are approximately (500, 5.34 × 104), (0.95 × 104, 4.81 × 104), (2.54 × 104, 4.39 × 104), and (4.11 × 104, 5.05 × 104), respectively. The
units of length and strength of the SOC are

√
h̄/(mω) and

√
h̄ω/m, respectively.

hyperbolic skyrmions and circular-hyperbolic meron pairs.
The spin texture should be the circular-hyperbolic meron
pairs when κ = 0. References [26,27] obtained the meron
pairs without SOC and pointed out that the texture can
form the “circular-hyperbolic” pair, while the spin textures
are circular-hyperbolic skyrmions when κ � 1. The circular-
hyperbolic skyrmions tend to link one after another and form
the circular-hyperbolic skyrmion arrays, especially when the
SOC is strong enough (κ = 3).

We indeed find the circular-hyperbolic skyrmion, which
is related to the vortex dipole. In Fig. 2 (third column),
we can detect some local minima of the total densities.
Furthermore, we also find that the phase difference between
the two components is not the fixed value of 2π . Thus, the
coupling of the vortex of the two components does not come
from the phase, but from the SOC. Certainly, the vortex dipole
is not the coreless Anderson vortex (vortex molecule) [26,27],
which does not have the singularity. Therefore, the rotation
factually only causes the creation of the vortices. SOC induces
the coupling of the vortex formed by different components.

In the above experiments, the SOC is isotropic, where
κx = κy . We can deduce that if we turn off the SOC in one
direction but maintain it in the other direction, then the big
circular structure would be broken. The circular-hyperbolic

skyrmion should link to form a chain. Now, we perform
the experiment with BECs of 87Rb, where κx = 0, κy = 1,
� = 0.5ω, a1 = 101.8aB , a2 = 0.8a1, a12 = 0.5a1, μj,0 =
5h̄ω, and μ = 35h̄ω. Figure 5 shows the densities and phases
under the equilibrium state. We can see that the vortices form
a chain in the center along the y axis. Furthermore, some
vortices distribute relatively equal in other region of the BECs.
Figure 5(g) is the density profile along the y axis, where x = 0.
It shows that the vortices of the two components interlace with
each other. Meanwhile, the total density is concavo-convex.

Figure 6 shows the spin texture of BECs with SOC only
along the y axis. In Fig. 6(a), the circular-hyperbolic skyrmions
link one after another and form a chain. The main direction of
the arrows is down in the region x < 0, and is up in the region
x > 0. We can use the following equations to approximately
present the center chain of the circular-hyperbolic skyrmion:

S0x = 2 sin(5y)
√

1 + ec1x sin2(c2y)

ec1x + e−c1x + sin2(c2y)
,

S0y = ec1x − e−c1x − sin2(c2y)

ec1x + e−c1x + sin2(c2y)
, (5)

S0z = 2 cos(5y)
√

1 + ec1x sin2(c2y)

ec1x + e−c1x + sin2(c2y)
.
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FIG. 8. (Color online) Spin texture of pseudo-spin-1/2 BECs of 87Rb with � = 0.5ω, a1 = 101.8aB , a2 = 0.8a1, and a12 = 1.2a1.
(a) κ = 1.0, (b) the corresponding topological charge density of Fig. 8(a), (c) κ = 2.0, and (d) κ = 3.0. The units of length and strength
of the SOC are

√
h̄/(mω) and

√
h̄ω/m, respectively.

Figure 6(b) is the spin texture with Eqs. (5). Comparing
it with Fig. 6(a), the formation of the two spin textures is
very similar. This indicates that Eqs. (5) can approximately
describe the skyrmion chain in our simulation. Figure 6(c)
is an enlarged plot of the hyperbolic-radial(out) skyrmion at
(−2.5,1). With the transformation (S0x,S0z,−S0y), we obtain
Fig. 6(d), which is a typical circular skyrmion. In [27], the
asymmetric vortex molecule is studied and is found to have a
phase difference of 2π . The vortex molecule is induced by the
phase coupling. Here, we find that the vortex dipoles do not
have the phase coupling of 2π . The vortex dipole derives from
the SOC. Accordingly, we do not view the texture to be the
“radial-hyperbolic” pair of merons, but the radial-hyperbolic
skyrmion.

We obtain Eqs. (5) to characterize the skyrmion chain
intuitively according to the properties of Fig. 6(a). In the
region of x < 0, the main direction of the arrows is pointing
down, while in the region of x > 0, the arrows point up.
These properties indicate that the spin vector S0y can be
approximately described by a function (tanh x). Meanwhile,

the circular-hyperbolic skyrmion chain along the y axis shows
a periodic change only in the y axis. The simplest periodical
function along the y axis is sin cy. Thus, we couple the
two functions and obtain S0y . According to the condition
|S0x |2 + |S0z|2 = 1 − |S0y |2, we can obtain an expression,
2
√

1+ec1x sin2(c2y)
ec1x+e−c1x+sin2(c2y) . S0x and S0y should be related to the ex-
pression. Similarly, the simplest couple is the sine and cosine
function. Therefore, we obtain Eqs. (5).

B. Vortex-dipole and circular-hyperbolic skyrmion in rotating
immiscible BECs with spin-orbit coupling

We now study the immiscible BECs with SOC under the ro-
tating and rapidly quenched experiment. We assume the atom
is 87Rb, where a1 = 101.8aB , a2 = 0.8a1, and a12 = 1.2a1.
The initial and final chemical potentials are μj,0 = 5h̄ω and
μ = 35h̄ω, respectively. The rotating frequency is � = 0.5ω.
Figure 7 shows the densities and phases of the immiscible case
with isotropic SOC, where κx = κy = κ . The two components
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are the phase separation without SOC. Compared with Fig. 2,
the population imbalance is considerably larger when the
SOC is weak (κ = 0.2). This is understood because the
more the spin-up component is, the higher the energy of
the system is, due to the interaction energy. The immiscible
property causes the outer spin-up component to be easily
kicked out as the noncondensate. Thus, the mixtures play
like a single condensate and the vortex lattice is hexagonal.
When the strength of the SOC is increased, the spin-up
component increases. But it mainly occurs at the outskirts
of the system, while the spin-down component locates at the
center. SOC plays a role in pulling the spin-up component into
the center of the system. When the SOC is up to 3, the two
components look like they are completely mixed. Then, the two
components are of the same order of magnitude. Therefore,
the competition between the interspecies and intraspecies
interaction causes the population imbalance, while the SOC
restricts the disproportion.

If we examine the density difference of the two components
(the fourth column), we find that the pattern changes from the
spots lattice into the dipole lattice when the SOC varies from
0.2 to 3. Meanwhile, the emergence of the dipole starts from
the outskirts of the system. Because the spin-up component
tends to locate at the outskirts of the system, the dipole easily
occurs at the outskirt region of the system [see Figs. 7(c) and
7(d)]. By increasing the SOC, more spin-up component is
pulled into the system and the dipoles extend into the center.
Furthermore, there is a trend that the disfigurement in the BEC
changes from the hole into the stripe as the SOC increases
(see the total density). Our experiments also imply that the
population imbalance exists in real experiments.

Figure 8 shows the spin texture of the immiscible case
with various strengths of SOC. In Fig. 8(a), most of the
arrows stands up. In fact, the big arrow circle occurs in
the outskirts of the system. The hyperbolic skyrmion occurs
in the center, while the circular-hyperbolic skyrmion is
formed at the outskirts. Figure 8(b) is the corresponding
topological charge density of Fig. 8(a). Here, the topological
charge density has not been elongated at all. Thus, the spin
texture is the typical circular-hyperbolic skyrmion, hyperbolic
skyrmion, etc. As the SOC increases, more spin-up component
is pulled into the center, and more hyperbolic skyrmion
transfers into the circular-hyperbolic skyrmion. Thus, we can
see a transformation between the circular-hyperbolic skyrmion
and the hyperbolic skyrmion as the radius decreases.

We do not show the spin textures when κ < 1 because the
particle number of the spin-up component is much less than
that of the spin-down one. The pseudo-spin-1/2 BECs behave
like the single-component one. Although some spin-up atoms
locate at the center of the vortex formed by the spin-down
component, the particle number is so little that we prefer to
view the whole BECs as the single-component one.

The above experiments focus on the isotropy system. We
can turn off the strength of the SOC in the x direction and
maintain it in the y direction. In Fig. 4, we only set the SOC
in the y axis and turn off the SOC in the x direction with the
miscible BECs. We can see that the vortices form an array
in the center along the y axis. Figure 9 shows the results of
the immiscible case. In Fig. 9(a), some spots distribute with
the hexagonal lattice. In fact, there are some vortices formed

FIG. 9. (Color online) The densities and phases for the pseudo-
spin-1/2 BECs of 87Rb when the system reaches the equilibrium state,
where � = 0.5ω, κx = 0, κy = 1, and μ = 35h̄ω. (a) Density of the
spin-up component, (b) density of the spin-down component, (c) total
density of the BECs, (d) phase profile of the spin-up component,
(e) phase profile of the spin-down component, and (f) density
difference of the two components. Here, a1 = 101.8aB , a2 = 0.8a1,
and a12 = 1.2a1. The atom numbers (N↑, N↓) are approximately
(6.5 × 103, 4.94 × 104). The units of length and strength of the SOC
are

√
h̄/(mω) and

√
h̄ω/m, respectively.

by the spin-up condensate. But the density is so low that it is
hard to distinguish them from the density. Here, the vortices
do not form the array along the y axis, but distribute relatively
equal. The spots formed by the spin-up condensate locate at
the vortices formed by the spin-down condensate. According
to Fig. 9(f), no dipole structure occurs in this system. Certainly,
the spin-up component is so little that the vortices in the
mixture play like those in the single-component BEC. Thus,
the vortices lattice is hexagonal in Fig. 9(b).

The difference between Fig. 4 and Fig. 9 comes from the
interspecies interactions. Because the two components are
immiscible, the spin-up component cannot collect near the

FIG. 10. (Color online) Spin texture of pseudo-spin-1/2 BECs
of 87Rb with � = 0.5ω, κx = 0, κy = 1, μ = 35h̄ω, a1 = 101.8aB ,
a2 = 0.8a1, and a12 = 1.2a1. The units of length and strength of the
SOC are

√
h̄/(mω) and

√
h̄ω/m, respectively.
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FIG. 11. (Color online) The scheme of phase diagrams of the
products in pseudo-spin-1/2 BECs with a12 (a1 �= a2) and the SOC
strength κ (κx = κy = κ). The rotation frequency is � = 0.5ω. The
unit of strength of the SOC is

√
h̄ω/m.

center. It mainly distributes in the vortices that are formed by
the spin-down component. So, only the hyperbolic skyrmion
lattice occurs in Fig. 10. The arrow around the hyperbolic
skyrmion is standing up in Fig. 10. This is the principal
difference between the hyperbolic skyrmion and the circular-
hyperbolic one, where the arrows around the skyrmion are
horizontal or vertical.

Figure 11 is the scheme of the phase diagram of the pseudo-
spin-1/2 BECs with various products in our experiments. SOC
plays an important role in inducing the circular-hyperbolic
skyrmion. When a12 � √

a1a2, SOC (�1) causes the vortex of
different components to couple with each other and form the
circular-hyperbolic skyrmions. If the SOC is too weak (∼0),
then the topological charge density is easy to elongate along
the vortex pair. The spin texture is a meron pair. Between
the two cases, we observe the hybrid of a circular-hyperbolic
skyrmion and a circular-hyperbolic meron pair. When a12 >√

a1a2 and SOC is weak (<1), the BECs are easily imbalanced
because of the phase separation and the competition between
the different intraspecies interactions. So the BECs behave
like the single-component one with the vortices. For stronger
SOC (>1), we obtain the circular-hyperbolic skyrmion in the

outskirts of the BECs and the hyperbolic skyrmions remain in
the center. Certainly, the circular-hyperbolic skyrmion would
not appear if the rotation is too weak to excite the vortices.

Our study mainly focuses on the creation of the nontrivial
type of skyrmion. We start with the analysis of the possibility
of the circular-hyperbolic skyrmion according to the normal
skyrmion solution. Our analysis indicates that the normal
skyrmion solution can change into four single-center skyrmion
configurations and three two-center skyrmion configurations.
Generally speaking, by exploring the rotating BECs with SOC,
we find the two types of skyrmions: the circular-hyperbolic
skyrmion and the hyperbolic-radial skyrmion.

V. CONCLUSION

We have studied systematically the circular-hyperbolic
skyrmion in the rotating pseudo-spin-1/2 BECs with SOC.
Some interesting phenomena are found. We find that the
circular-hyperbolic skyrmion lattice can occur in the miscible
BECs with SOC. Unlike the normal skyrmion, which has
only one center, the circular-hyperbolic skyrmion has two
centers and is related to the vortex dipole. The stronger the
SOC is, the more likely the circular-hyperbolic skyrmions
tend to link one after another and form chains. We also
design an experimental scheme with SOC only in the y

direction to obtain a single circular-hyperbolic skyrmion chain,
while in the immiscible BECs, the phase-separation effect
causes the circular-hyperbolic skyrmions mainly to occur in
the outskirts of the BECs. In the center of the BECs, the
hyperbolic skyrmion occurs. By increasing the strength of the
SOC, more spin-up component is pulled into the center and
the appearance of the circular-hyperbolic skyrmion becomes
easier. Our study provides the experimental conditions to
observe these phenomena in future experiments.
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