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Spin-orbit-coupled Bose-Einstein condensates confined in concentrically coupled annular traps

Xiao-Fei Zhang,1,2 Rui-Fang Dong,1 Tao Liu,1 W. M. Liu,2 and Shou-Gang Zhang1,*

1Key Laboratory of Time and Frequency Primary Standards, Chinese Academy of Sciences, Xi’an 710600, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 8 October 2012; published 26 December 2012)

We investigate the ground state of spin-orbit-coupled Bose-Einstein condensates confined in concentrically
coupled annular traps within the full parameter space accounts for all the nonlinear two-body collisions and
the spin-orbit coupling. We find that depending on the ratio between interaction parameters and the strength
of spin-orbit coupling, this coupled system presents various ground-state phases. Moreover, phase transition
between radial phase separation and azimuthal phase separation can be induced by varying the strength of
spin-orbit coupling when the system is first in radial phase separation, while phase transition between phase
coexistence and azimuthal phase separation can also be realized through spin-orbit coupling when the system
is first in phase coexistence. Finally, the spin texture is studied and the results show that the meron-antimeron
pair spontaneously appears as the ground state of this coupled system. We also give an experimental protocol to
observe these phenomena in future experiments.
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I. INTRODUCTION

One of the many interesting aspects of the field of cold
atoms is that one can induce the so-called “synthetic non-
Abelian gauge fields” in real experiments [1–7]. Experiments
with the engineering of synthetic electromagnetism in ultra-
cold atomic gases has recently drawn considerable theoretical
attention [8–10], with a number of papers addressing schemes
by which to create spin-orbit (SO) coupling in pseudo spin- 1

2
and spin-1 Bose gas. Thus it opens up a new avenue to study
some uncharted territory in condensed-matter physics using
cold atomic gases, which are central to many exotic phenom-
ena such as quantum Hall effect, topological insulators, and
superconductivity [11–17]. In a very recent theoretical work,
Wang et al. have shown that the condensate wave function will
develop a nontrivial structure; depending on spin-dependent
interaction, the ground state of a homogeneous two-component
BEC with SO coupling shows a single “plane wave phase” or
a “standing wave phase” (SW) [18].

In a realistic physical system, ultracold atomic gases are
trapped by an external potential [19]. The spin-orbit-coupled
weakly interacting BECs in harmonic traps, with or without
rotation, are studied in [20–24]. For example, in Ref. [20]
quantum states with Skyrmion lattice patterns emerge spon-
taneously and preserve either parity symmetry or combined
parity-time-reversal symmetry. Furthermore, the effects of
SO coupling, confinement, and interatomic interactions are
studied in [21], where interesting phases are obtained for
different interactions.

In the absence of SO coupling, a number of properties
of the system under consideration are determined by the
single-particle energy, the intracomponent interaction, and
the intercomponent interaction. For example, in the strong
interaction region, the actual symmetry of the ground state re-
sults from competition between the intra- and intercomponent

*szhang@ntsc.ac.cn

interaction strengths. In such a system, the intracomponent in-
teraction favors the maximum possible spread of the two gases
within the system, whereas the intercomponent interaction
favors the minimization of their spatial overlap. Meanwhile,
designing various external potentials, such as toroidal trapping
potential [25–29], vertically [30] and concentrically [31]
coupled double-ring traps, single ring [32] are within current
experimental capacity. When the mixtures of Bose gases are
confined in a concentrically coupled annular trap, various
ground phases are observed by varying the interaction strength
between atoms, and the system will show a number of phase
transitions [33–36].

The extra degree of freedom is introduced when the SO
coupling is included. Thus, we pose the following question:
What is the combined effect of the nonlinear interactions and
the spin-orbit coupling on the ground state and phase transition
of the spin-orbit-coupled Bose-Einstein condensates confined
in concentrically coupled annular traps? In this paper, we aim
to answer the above question. We demonstrate numerically
that spin-orbit-coupled Bose-Einstein condensates confined in
concentrically coupled annular traps support exotic ground-
state configurations, and the spin-orbit coupling acts like a
“switch” which can induce various phase transitions between
azimuthal phase separation and phase coexistence or radial
phase separation.

The paper is organized as follows. In Sec. II we formulate
the theoretical model describing the spin-orbit-coupled Bose-
Einstein condensates confined in concentrically coupled annu-
lar traps, and briefly introduce the numerical method. Various
ground-state phases and the effect of spin-orbit coupling are
discussed in Sec. III. Then the spin texture and experimental
realization are presented in Sec. IV. Finally, in Sec. V, the
main results of the paper are summarized.

II. MODEL AND METHOD

To begin with, we consider quasi-two-dimensional spin-
orbit-coupled Bose-Einstein condensates. The model under
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consideration is Ĥ = Ĥ0 + Ĥint, where

Ĥ0 =
∫

d2r ψ̂†[−h̄2∇2/(2m) + V (r) + VSO]ψ̂,

(1)
Ĥint =

∫
d2r[g1n̂

2
↑ + g2n̂

2
↓ + 2g12n̂↑n̂↓],

where m is the atom mass and assumed to be equal for the
two components. ψ̂ = [ψ̂↑(r),ψ̂↓(r)]T denotes collectively the
spinor Bose field operators, and n̂↑ = ψ̂

†
↑ψ̂↑, n̂↓ = ψ̂

†
↓ψ̂↓. V(r)

is the external potential and will be given explicitly below. In
the present study, we consider a Rashba-type SO coupling.
In this case, VSO = −iλR(∂yσ̂x − ∂xσ̂y) with σ̂x,y,z being the
Pauli matrices and λR describes the SO coupling strength. For
simplicity, we only focus on the special case with g1 = g2 =
g > 0. Under this condition, the interaction Hamiltonian can
be rewritten as Ĥint = ∫

d2r( c0
2 n̂2 + c2

2 Ŝ2
z ) with n̂ = n̂↑ + n̂↓,

Ŝz = n̂↑ − n̂↓, c0 = g + g12, and c2 = g − g12. In a recent
work [10], a SO-coupled spin- 1

2
87Rb BEC was realized by

selecting two internal “spin” states from a spin-1 Bose gas
of 87Rb atoms with F = 1 ground electronic manifold, and
the strength of SO coupling can be controlled through optical
means. Furthermore, the first component is labeled with spin
up in the language of pseudo spin- 1

2 BECs, and spin down for
the second component. We also assume c0 > 0 and γ = c2/c0

can be either positive or negative.
In the present work we assume the spin-orbit-coupled

Bose-Einstein condensate is confined by a two-dimensional
concentrically coupled annular trap, which can be written as

V (r) = min
{

1
2mω2

0(r − R0)2, 1
2mω2

1(r − R1)2
}
, (2)

where r is the radial coordinate in cylindrical coordinates. This
two-dimensional potential can be realized by adding a very
tight trapping potential along the z axis, which completely
freezes out the degrees of freedom of the gases along this
direction. The two (overlapping) parabolas in V (r) with
frequencies ω0 and ω1 are centered at the positions with r = R0

and r = R1, hence R0 and R1 label the two minima of the
external potential, and ω0 and ω1 are the harmonic trapping
frequencies for the two different parabolas. Similar concentric
ring geometries have also been studied in semiconductor
heterostructures and the topic of electrons in quantum rings. In
order to describe the system more clearly, an intuitive picture
of the external potentials is presented in Fig. 1. Similar to

FIG. 1. (Color online) (a) Schematic of the concentrically cou-
pled annular traps. (b) The one-dimensional plot of the external
potential. r is in units of a0, and V is in units of h̄ω. The other
parameters are R0 = 2a0, R1 = 4a0, ω0 = 4ω, and ω1 = 5ω.

the work in [33], to make the product of the “width” of each
annulus times the radius of each annulus comparable to each
other, we must ensure that in the outer ring the potential is
tighter; that is, ω1 > ω0. We note that our system will show
the same qualitative behavior for different value choices of R0,
R1, ω0, and ω1, as long as ω1 > ω0. Without loss of generality,
the parameters in Fig. 1 are given as follows: R0 = 2a0 and
R1 = 4a0 with a0 = [h̄/(mω)]1/2 being the oscillator length,
ω = ω0/4, and ω1/ω0 = 5/4 (these parameters will be used
throughout this paper).

III. GROUND-STATE PHASES

Let us now consider the ground-state structure of the
spin-orbit-coupled Bose-Einstein condensates confined in
concentrically coupled annular traps. After completion of
the mean-field approximation, the Gross-Pitaevskii energy is
written as

ξ =
∫

d2r

{
h̄λR

m
[φ∗

↑(−i∂x − ∂y)φ↓ + φ∗
↓(−i∂x + ∂y)φ↑]

+ φ∗
↑

(
− h̄2

2m
∇2 + V (r)

)
φ↑ + φ∗

↓

(
− h̄2

2m
∇2 + V (r)

)
φ↓

+ c0

2
(|φ↑|2 + |φ↓|2)2 + c2

2
(|φ↑|2 − |φ↓|2)2

}
, (3)

where the concentrically coupled annular traps V (r) are
given by Eq. (2). To obtain the ground state of this coupled
system, the normalized gradient flow with backward Euler and
second-order centered finite difference discretization within
an imaginary-time propagation approach is used [37]. In our
simulations, we also start with a reasonable initial state for
the two components and propagate the wave functions in
imaginary time to make sure that we proceed to a sufficiently
large number of time steps, which guarantees that we have
reached a steady state. We find that by varying the nonlinear
interaction and the strength of the SO coupling, the system has
various ground-state structures and shows a number of phase
transitions that result from the competition between phase
coexistence and radial-azimuthal phase separation, which are
fundamentally different from the case with only one potential
minimum, that is, a single annulus, and in a sense reminiscent
of the cases in [33].

For numerical calculations, two characteristic lengths
a0 = [h̄/(mω)]1/2 and aλ = h̄2/(mλR) are introduced for the
external potential and SO coupling, respectively. Hence,
the unit of nonlinear interaction is h̄ωa2

0 = h̄2/m, and the
dimensionless SO coupling strength can be defined as λ̃SO =
a0/aλ = (m/h3)1/2λR/ω1/2. For simplification, in this work
the intercomponent interaction g12 = 55 is fixed, except that-
mentioned specifically, while the intracomponent interaction
can be changed using external magnetic or optical fields.

A. The effect of SO coupling on azimuthal phase separation

As in [33], by varying the interaction strength between
atoms, a coupled system of two-component Bose gases that
interacts with an effectively repulsive contact potential and
is loaded in a concentric double annular trap reveals a series
of ground-state phases in the ground state of the system. In
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FIG. 2. (Color online) Ground-state density and phase distributions for φ↑(ρ,θ ), φ↓(ρ,θ ), and the total density (the third column) of the
two components, for g12 = 55, g = 5, and for the spin-orbit-coupling strength λ̃SO = 0,0.2,0.5,0.7,1,2,3, corresponding to (a), (b), (c), (d),
(e), (f), and (g), respectively. Note that the fourth and fifth columns are the phases of the spin-up and spin-down components, respectively, and
the sixth column is for the pseudospin densities Sz of the total condensates. For the first row, due to the absence of spin-orbit coupling, the
ground state shows azimuthal phase separation. The peaks in the densities correspond to the minima of the inner and the outer parabolas of
the confining potential. The units of length and strength of SOC are a0 = [h̄/(mω)]1/2 and aλ = h̄2/(mλR), respectively, and the scale of each
figure is 6.4 × 6.4 in units of a0.

the following three sections, we will start from the azimuthal
phase separation regime, and perform a series of numerical
experiments to study the effect of SO coupling on the ground-
state density and phase distributions, and the phase transition
between different phases.

Shown in the first three columns of Fig. 2 are the ground-
state density distributions for n↑(ρ,θ ) = |φ↑(ρ,θ )|2 (left),
n↓(ρ,θ ) = |φ↓(ρ,θ )|2 (middle), and the total density (right) of
the two components when the system is first in the azimuthal
phase separation. Figure 2(a) shows the most simple case
when there is no SO coupling and the annular potential is
opened. In this case, the intra- and intercomponent interactions
read g12 = 55, g = 5, and the general phase separation
condition is satisfied. Meanwhile, due to the small value
of the intracomponent interaction, this repulsion interaction
between the particles cannot compensate for the stronger
confinement of the outer ring; hence the two components
occupy mainly the inner ring and the system is close to being
quasi-one-dimensional and shows azimuthal phase separation.

Figures 2(b) and 2(c) show the ground-state density
distributions when the SO coupling is opened and takes a
small value, such as λ̃SO = 0.2,0.5, for Figs. 2(b) and 2(c),
respectively. From these images we observe that the inclusion
of SO coupling induces the motion of the components in
the inner ring with unchanged density profiles. At larger SO

coupling, for example, λ̃SO = 0.7, the single lump for each
component splits into two and a stripe develops [Fig. 2(d)].

For even larger values of SO coupling, such as λ̃SO = 1,
2, and 3, more lumps appear in both inner and outer rings.
Examples of the ground-state density distributions in these
kinds of situations are shown in Figs. 2(e)–2(g), respectively.
As shown in these figures, the total density distributions of
the two-component BECs to some extent spread to the outer
ring. More important, the low density for one component is
filled with the other component. We attribute the alternatively
arranged lumps to the fact that the energy in this case is
minimal, and we refer to this phase as the SW state, discovered
in [18]. These phenomena can be understood by the fact that
the introduction of SO coupling greatly enhances the effects
of the atom-atom interactions, on one hand; and on the other
hand, the inclusion of trapping potentials quantizes the radial
motion for k and the azimuthal motion. More high energy
atoms are repelled to the outer ring, and hence form an
alternative arrangement of the two components.

More insights can be obtained if we look at the phase
distributions of the two-component BECs, which are presented
in the fourth and fifth columns of Fig. 2. Remarkably, the phase
profile of the wave function reveals that with an increase of the
strength of the SO coupling, more and more vortices appear.
This behavior is in a sense reminiscent of the cases in [18],
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FIG. 3. (Color online) Ground-state density for n↑(ρ,θ ) =
|φ↑(ρ,θ )|2 (left), n↓(ρ,θ ) = |φ↓(ρ,θ )|2 (middle), and the total density
(right) of the two components, for g12 = 55, g = 15, and for the
spin-orbit-coupling strength λ̃SO = 0,1, corresponding to (a) and (c),
respectively. The corresponding phase distributions for φ↑ and φ↓,
and the pseudospin densities Sz for the total condensates are shown
in rows (b) and (d). For the first row, due to the absence of spin-orbit
coupling, the ground state shows radial phase separation. The peaks
in the densities correspond to the minima of the inner and the outer
parabolas of the confining potential. The units of length and strength
of SOC are a0 = [h̄/(mω)]1/2 and aλ = h̄2/(mλR), respectively.

where the vortex line density increases with the increase of SO
coupling to minimize the single-particle energy.

B. The effect of SO coupling on radial phase separation

We now turn our attention from azimuthal phase separation
to radial phase separation. When the intercomponent interac-
tion is fixed and intracomponent is increased, a two-component
Bose-Einstein condensate confined in concentrically coupled
annular traps can have a phase transition, for example, from
azimuthal phase separation to radial phase separation. We
show in Fig. 3(a) this phase transition [as compared to Fig. 2(a)
in the absence of SO coupling] for the cases g12 = 55 and
g = 15. As shown in this figure, it is easy to see that one
component occupies mainly the inner ring, while the outer
ring is for the other component.

Figure 3(c) shows the ground-state density distributions
when the value of SO coupling is increased to 1. It is interesting
to notice that the locations of each component are exchanged
with the first component occupying mainly the inner ring,
while the outer ring is for the spin-down component. Since the
interaction parameters g1 = g2 = g and the particle number
N1 = N2, the results will not change under the spin-component
interchange, and the system shows radial phase separation in
both cases. We perform a series of numerical experiments; the

FIG. 4. (Color online) The same as in Fig. 3 but for λ̃SO = 0.5.
In this case, a very weak SO coupling can induce a phase transition
from radial phase separation to azimuthal phase separation.

results show that the choice of whether the up component is in
the inner ring or the outer ring is essentially random. However,
if we look at the phase distributions for the two components as
shown in Figs. 3(b) and 3(d), it is easy to see that the inclusion
of SO effect strongly changes the phases of condensates. When
the SO coupling is taken into account, not only a vortex appears
but also the velocity field is fixed by the phase profile of the
wave function. Very recently, the particle flow and condensate
wave function for weakly trapped ultracold Bose gases with
Rashba spin-orbit coupling are discussed in [38].

Figure 4 shows the density distribution when the SO
coupling takes a mediate value. In this special case, a phase
transition from radial phase separation to azimuthal phase
separation occurs. As shown in this figure, with an increase of
the value of SO coupling from zero, for example, λ̃SO = 0.5,
most atoms of the spin-up component move to the inner
ring, while the outer ring is for the spin-down component.
Meanwhile, the density distribution presents azimuthal phase
separation. Hence, the SO coupling has the same effect
of the intracomponent interaction when the intercomponent
interaction is fixed. This behavior greatly enriched the phase
diagram of the two-component BECs confined in concentri-
cally coupled annular traps, since the extra degree of freedom,
SO coupling, is introduced.

Hence we conclude that when both inter- and intracom-
ponent interactions are fixed, even a very weak SO coupling
can induce a phase transition from radial phase separation
to azimuthal phase separation. It reflects a well-known fact
that the SO coupling can help enhance the effects of the
interaction between atoms. Moreover, by further increasing the
SO coupling, radial phase separation takes place again, now
with the interchanged locations. Therefore, it is expected that
the SO coupling, like a switch, can be used to control the phase
transition between radial phase separation and azimuthal phase
separation. This property may have potential applications in
optical switches.

C. The effect of SO coupling on phase coexistence

With a further increase of the intracomponent interaction,
the system has a phase transition from radial phase separation
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FIG. 5. (Color online) Ground-state density distributions for
n↑(ρ,θ ) = |φ↑(ρ,θ )|2 (left), n↓(ρ,θ ) = |φ↓(ρ,θ )|2 (middle), and the
total density (right) of the two components, for g12 = 55, g = 60,
and for the spin-orbit coupling strength λ̃SO = 0,1,2,5, corresponding
to (a), (b), (c), and (d), respectively. For the first row, due to the
absence of spin-orbit coupling, the ground state shows coexistence
phase. The peaks in the densities correspond to the minima of the
inner and the outer parabolas of the confining potential. The units of
length and strength of SOC are a0 = [h̄/(mω)]1/2 and aλ = h̄2/(mλR),
respectively, and the scale of each figure is 6.4 × 6.4 in units of a0.

to phase coexistence, which is shown in Fig. 5(a). When the SO
coupling is opened, this time it again changes the ground-state
structure of the two components. Figures 5(b) and 6(b) show
the ground-state density and phase distributions when the SO
coupling takes a small value, such as λ̃SO = 1. Once again,
we find a similar structure as compared to Fig. 2(e). However,
there also exist subtle differences; for example, the total density
distribution is obviously different when the SO coupling is not
too large. For the azimuthal phase separation case, the total
density distribution has many lumps in both inner and outer
rings;, while it is uniformly distributed this time. As expected,
when the SO coupling increases further, for example, from
1 to 2 or 5, more lumps appear in both rings. Examples of
the ground-state density and phase distributions are shown
in Figs. 5(c), 5(d) and 6(c), 6(d), respectively, with a similar
argument discussed in Sec. III A.

Given the above analysis, we conclude that when both
intra- and intercomponent interactions are fixed, even a very

FIG. 6. (Color online) Ground-state phase distributions for φ↑
(left), φ↓ (middle), and the pseudospin densities Sz (right) for the
total condensates, under the same conditions as those in Fig. 5.

weak SO coupling can induce a phase transition from phase
coexistence or radial phase separation to azimuthal phase
separation. Thus the SO coupling is likely to play a vital
role in determining the ground-state phase of a spin-orbit-
coupled BEC confined in concentrically coupled annular traps.
It again reflects a well-known fact that the SO coupling
can help enhance the effects of the interaction between
atoms.

IV. SPIN TEXTURE AND EXPERIMENTAL REALIZATION

The spinor order parameter of the two-component BECs
allows us to analyze this system as a pseudospin- 1

2 BEC and
take it as a magnetic system [39–41]. Introducing a normalized
complex-valued spinor χ , we represent the two-component
wave functions as φ↑↓ = √

ρT (r)χ↑↓(r) with ρT (r) the total
density and the spinor satisfies |χ↑|2 + |χ↓|2 = 1. Hence, the
pseudospin density is defined as S = χ (r)T σχ (r) with σ being
the Pauli matrix. The explicit expression of S = (Sx,Sy,Sz) is
given by

Sx = (χ∗
1 χ2 + χ∗

2 χ1) = 2|χ1||χ2| cos(θ1 − θ2),

Sy = −i(χ∗
1 χ2 − χ∗

2 χ1) = −2|χ1||χ2| sin(θ1 − θ2), (4)

Sz = |χ1|2 − |χ2|2,
where θ1,2 is the phase of the wave function φ↑↓ and the
modulus of the total spin is |S| = 1. The pseudospin densities
Sz are plotted in Figs. 2, 3, 4, and 6. As shown in these figures,
the distributions of pseudospin Sz show similar structures with
the density profiles, which can be easily seen from the last
equation of Eqs. (4).

Figure 7 shows the vectorial representations of the pseu-
dospin S projected onto the x-y plane, for g12 = 55, g = 5, and
for the spin-orbit coupling strength λ̃SO = 0.7,1, correspond-
ing to (a) and (b), respectively. Here we do not plot spin texture
for the case without SO coupling, since the spin in this case
always points to the z or −z direction except for the interface
of the two components. In the presence of SO coupling,
spin texture develops after the introduction of this degree of
freedom. Figure 7(a) shows the spin texture associated with
the results of Fig. 2(d). We observe the emergence of a spin
vortex with opposite vorticity (the in-plane magnetization has
a “vortex-antivortex” structure [42]), which can de denoted as
the spin vortex lattice state studied in [43]. A similar structure
also appears in the strong SO coupling case, and we show in
Fig. 7(b), associated with the result of Fig. 2(e), this similar
spin vortex structure. Moreover, in these two cases all spin
vortices exhibit a similar structure: the central spin always
points to the ±z axis, while the others increasingly tilt and
finally lie on the xy plane, forming a circulation pattern away
from the center. We thus term this structure, shown in Fig. 7,
the meron-antimeron pair, which are intrinsical excitations
to the two-dimensional system. Here we want to point out that
the spin texture associated with the results of Fig. 5 (not shown
here for the sake of brevity) resemble those shown in Fig. 7
for the azimuthal phase separation case.

Next we turn to the radial phase separation case. Shown
in Fig. 8 are the vectorial representations of the pseudospin
S projected onto the x-y plane, associated with the results
of Figs. 3(c) and 4. It is easy to see that even when a
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(a)

(b)

FIG. 7. (Color online) The vectorial representations of the pseu-
dospin S projected onto the x-y plane, for g12 = 55, g = 5, and for
the spin-orbit coupling strength λ̃SO = 0.7,1, corresponding to (a)
and (b), respectively. The colors ranging from blue to red describe
the values of Sz from −1 to 1, and the scale of each figure is 6.4 × 6.4
in units of a0.

small SO coupling is introduced, spin texture develops and
spin vortex lattice forms. Remarkably, a giant spin vortex
appears in Fig. 8(a) associated with the results of Fig. 3(c).
As we mentioned in Sec. III B, although the coupled system
shows radial phase separation in both Figs. 3(a) and 3(c), the
phase distributions are different and thus spin texture develops.
We conclude that the spin texture and spin vortex-antivortex
pair are intrinsic to the spin-orbit-coupled Bose-Einstein
condensates confined in concentrically coupled annular
traps.

Finally, we give an experimental protocol to observe
the various ground-state structures and phase transitions in
possible future experiments. First, the SO-coupled spin- 1

2
87Rb

BECs can be realized by selecting two internal “spin” states
from a spin-1 Bose gas of 87Rb atoms with F = 1 ground
electronic manifold; then the condensates can be loaded in
a concentrically coupled annular trap. With regard to the
parameters used in the present paper, as discussed in the
typical experiment for two-dimensional spin- 1

2
87Rb atoms

[10], the strength of SO coupling is about 10 in our dimen-
sionless units, and the intra- and intercomponent interaction
strengths are about 102 ∼ 103(h̄ω⊥a2

⊥) [22,44]. However, in
realistic physical systems, the interactions between atoms

(a)

(b)

FIG. 8. (Color online) The vectorial representations of the pseu-
dospin S projected onto the x-y plane, for g12 = 55, g = 15, and
for the spin-orbit coupling strength λ̃SO = 1,0.5, corresponding to (a)
and (b), respectively. The colors ranging from blue to red describe the
values of Sz from −1 to 1, and the scale of each figure is 6.4 × 6.4 in
units of a0.

can be controlled by modifying atomic collisions, which are
experimentally feasible due to the flexible and precise control
of the scattering lengths achievable by magnetically tuning
the Feshbach resonances. Meanwhile, the strength of the SO
coupling can be precisely controlled by optics means—from no
coupling at all to strong coupling, which scales with the laser’s
intensity [10,45]. Hence, the parameters used in this study are
within current experimental capacity. To probe the different
components, we can switch off the traps and the Raman beams,
and absorption image the two different components after a time
of flight. Moreover, we also have examined the ground-state
structures in the limiting cases with intra- or intercomponent
interaction equal to zero, and for other parameters. In the two
limiting cases, we find that the two components always form
an alternative density arrangement, and more lumps appear
with increasing the SO coupling strength. Further work can be
extended to the spin-1 BECs with (or without) rotating, where
more degrees of freedom are introduced and more interesting
phenomena, such as meron, fractionalized skyrmion, giant
vortex, and topological spin texture, can occur [46].
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V. CONCLUSIONS

In summary, we have investigated a spin-orbit-coupled
Bose-Einstein condensate confined in concentrically coupled
annular traps. This system is investigated within the full
parameter space accounts for all the nonlinear two-body
collisions, together with the spin-orbit coupling. Our results
show that when the SO coupling is introduced, the system
presents a rich ground state structure. Moreover, we have
studied the effect of interplay of nonlinear interaction and
spin-orbit coupling, and found that SO coupling can enhance
the interaction effects; even a small value of SO coupling can
induce phase transition between different ground-state phases.
With regard to the emergence of spin texture in the presence of
SO coupling, our results show that a meron-antimeron pair
spontaneously appears as the ground state of this coupled
system, and more and more meron-antimeron pairs appear

with an increase of SO coupling. These phenomena open
possibilities for future applications in optical switches, and
maybe arouse interest in the study of SO-coupled BECs in
various external potentials.
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