
PHYSICAL REVIEW A 87, 023612 (2013)

Zitterbewegung effect in spin-orbit-coupled spin-1 ultracold atoms
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The Zitterbewegung effect in spin-orbit-coupled spin-1 cold atoms is investigated in the presence of the Zeeman
field and a harmonic trap. It is shown that the Zeeman field and the harmonic trap have significant effect on the
Zitterbewegung oscillatory behaviors. The external Zeeman field could suppress or enhance the Zitterbewegung
amplitude and change the frequencies of oscillation. A much slowly damping Zitterbewegung oscillation can be
achieved by adjusting both the linear and the quadratic Zeeman fields. Multifrequency Zitterbewegung oscillation
can be induced by the applied Zeeman field. In the presence of the harmonic trap, the subpackets corresponding
to different eigenenergies would always keep coherent, resulting in the persistent Zitterbewegung oscillations.
The Zitterbewegung oscillation would display very complicated and irregular oscillation characteristics due to
the coexistence of different frequencies of the Zitterbewegung oscillation. Furthermore, numerical results show
that the Zitterbewegung effect is robust even in the presence of interaction between atoms.
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I. INTRODUCTION

The Zitterbewegung (ZB) effect, which is characterized
by high-frequency oscillations (trembling motion) for Dirac
electrons was first predicted by Schrödinger [1]. The ZB effect
is purely a relativistic phenomenon and originates from the
interference between the positive and negative energy states of
the electron. The experimental observation of the electron ZB
has not been realized due to its high frequency (the order of
h̄ω = 2mec

2 ∼ 1 MeV) and small oscillatory amplitude (the
order of Compton wavelength of electron h̄/mec ∼ 10−12 m).
However, it is shown that there exist ZB-like effects in
graphene [2,3], superconductors [4], photonic crystal [5],
single trapped ion [6,7], and semiconductor quantum wells
[8,9]. Hence, the ZB-like effect has attracted great attention
recently, both theoretically and experimentally, in various
physics fields [10–13].

Most of these studies of the ZB effect are based on
the Dirac-like equation with spin-orbit coupling interaction.
The spin-orbit coupling interaction plays an essential role
in a lot of interesting phenomena, such as quantum spin
Hall effects, topological insulator, exotic superconductivity,
or superfluidity, etc. In recent years, the spin-orbit coupling
interaction in cold atoms have attracted great attentions both
experimentally and theoretically. The spin-orbit coupling in
two-component atoms has been created experimentally with
Raman laser beams [14–17]. The proposal to realize spin-orbit
coupling for three-component atoms has been put forward
in Ref. [18]. Using the so-called tetrapod setup scheme and
two pairs of counterpropagating laser beams, the spin-orbit
coupling in spin-1 atoms could be realized in alkali-metal
atoms. The resulting gauge potential is proportional to the
projection of angular momentum operator of spin-1 atoms
along xy plane. The ground states of the spin-orbit-coupled
Bose-Einstein condensate (BEC) have been extensively stud-
ied theoretically. For example, in the case of strong coupling
and the weak harmonic trap, the spin-orbit coupling would
result in a nontrivial ground state in BEC, such as a plane wave
phase or standing wave phase, which depends on interaction
between atoms [19–21]. For the strong coupling and the strong

harmonic trap, the half-quantum vortex phase or vortex lattice
phase develops [22–26].

The length and energy scales can be well controlled in cold
atoms. Thus, it is possible to observe the ZB-like oscillation
in cold-atom experiments. Recently, there were proposals to
simulate the ZB effect by using spin-orbit-coupled ultracold
atoms [27–30], wherein most authors focus on the ZB effect of
two-component atoms with spin-orbit coupling in free space.
Thus, the quasimomenta is a good quantum number and
the Hamiltonian can be diagonalized within the momentum
space. By using the Gaussian packet as the initial state, it is
shown that the amplitude of the ZB oscillation deceases with
time and the ZB phenomenon has a transient characteristic.
On the other hand, ZB-like phenomena are fairly common
characteristics for multilevel systems [31]. It is worthwhile
to notice that the ZB oscillation of two-component atoms has
only one single frequency. Compared with the two-component
atoms, a multifrequency ZB oscillation may appear due to
the richer energy spectrum structure in the three-component
atoms. Moreover, as shown in the present paper, the richer
energy spectrum structure in three-component atoms provides
more possibilities to stabilize the ZB oscillation of cold atoms
by utilizing the Zeeman field. The effects induced by the trap
on the ZB oscillations also need to be clarified.

In the present paper, we investigate the characteristics of the
multifrequency oscillation induced by Zeeman field and the
persistent oscillations in the presence of the external harmonic
trap in the spin-1 ultracold atoms. In Sec. II, we introduce the
general Hamiltonian of spin-1 atoms with spin-orbit coupling
and then focus on the ZB oscillatory characteristics in the
Zeeman fields. In Sec. III, the ZB oscillatory characteristics
in harmonic trap are investigated. In Sec. IV, the effect of the
interaction between atoms on the ZB oscillation is considered.
A summary is presented in Sec. V.

II. ZITTERBEWEGUNG EFFECT IN ZEEMAN FIELDS

The two-dimensional Hamiltonian of the spin-orbit-
coupled spin-1 atoms in the presence of the external Zeeman
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field and harmonic trap is [19]

H = T + Vtrap + VSO + VZ + Hint,

T =
∫

d�r�†p
2
x + p2

y

2M
�,

Vtrap =
∫

d�r�†Mω2(x2 + y2)

2
�,

(1)
VSO =

∫
d�r�†[γpxFx + γpyFy]�,

VZ =
∫

d�r�†[pFz + qF 2
z

]
�,

Hint =
∫

d�r
[
c0

2
n̂2 + c2

2
F2

]
,

where T , Vtrap, VSO, VZ , Hint are the kinetic energy,
the harmonic potential, the spin-orbit coupling interaction,
the effective Zeeman shift, and the interaction between
atoms, respectively. The spin-orbit coupling strength γ =
2πh̄sin(θ/2)/(Mλ), the effective Zeeman parameters p =
h̄(�ωl − ωZ) and q = (gμBB)2/�Ehf , where θ is the angle
between two Raman beams, and λ is the wavelength of the laser
beam, �ωl is the frequency difference between Raman lasers,
ωZ = |g|μBB is the liner Zeeman shift, g is the Landé g factor,
μB = eh̄/2me is the Bohr magneton and �Ehf the hyperfine
energy splitting [32]. The parameters (γ , p, and q) in the
Hamiltonian is tunable in cold atomic experiments [14–17].
� = (�1,�0,�−1)T , n̂ = n̂1 + n̂0 + n̂−1, F = �†

α
�Fαβ�β ,

c0 = 4πh̄2(a0 + 2a2)/3m, and c2 = 4πh̄2(a2 − a0)/3 are the
field operator, the number density operator, the angular mo-
mentum operator, the spin-independent interaction parameter,
and the spin-dependent interaction parameter, respectively. a0

and a2 are the s-wave scattering lengths corresponding to the
total spin of the two colliding bosons 0 and 2, respectively.

The Pauli spin matrices for spin-1 atoms are given by

Fx =

⎛
⎜⎝

0 1√
2

0
1√
2

0 1√
2

0 1√
2

0

⎞
⎟⎠, Fy =

⎛
⎜⎝

0 −i√
2

0
i√
2

0 −i√
2

0 i√
2

0

⎞
⎟⎠,

Fz =
⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠.

Without the external harmonic trap and interaction, the
Hamiltonian can be diagonalized in the momentum space as

H ′ =
⎛
⎝ω1 0 0

0 ω2 0
0 0 ω3

⎞
⎠, (2)

where ω1 = (p2
x + p2

y)/2m + ncosu − b/3, ω2 = (p2
x + p2

y)/
2m + ncos(u+ 4π/3) − b/3, ω3 = (p2

x + p2
y)/2m + ncos(u +

2π/3) − b/3 are roots of eigenequation Det(ωI − H ) = 0.
The corresponding eigenvectors are

|αi〉 = 1

ni

⎛
⎜⎝

−(
p2

x + p2
y

) + 2ωi(p − q + ωi)√
2(p − q + ωi)(px + ipy)

(px + ipy)2

⎞
⎟⎠ , (3)

where ni is the normalization coefficient, n = √−4p1/3,
u = arccos[−q1(−p1/3)−3/2/2]/3, p1 = c − b2/3, q1 = d −
bc/3 + 2b3/27, b = −2q, c = −(p2

x + p2
y) + q2 − p2, d =

(p2
x + p2

y)q, respectively. In general, they are the functions
of the momentum (px , py) and Zeeman parameters (p, q).

The position operator in the Heisenberg picture is [31]

�r(t) = �r(0) +
∑

k

Zk;k + t
∑

k

�VkQk +
∑

k,l �=m

ei
ωkl t

h̄ �Zk;l , (4)

where �Vk = ∂ωk

∂ �p , Qk = |αk〉〈αk| are the group velocity and the
projection operator, respectively. k, l denote the energy branch
ω1, ω2, ω3 and ωkl = ωk − ωl is the eigenenergy difference.
Zk;l = iQk

∂Ql

∂ �p is the so-called ZB amplitudes (see Ref. [31]).
The first and second terms are constants in Eq. (4). The third
term is the uniform motion and the fourth one corresponds to
the ZB oscillation. As shown in the fourth term, the position
operator usually undergoes a multifrequency oscillation. We
calculate the average value of position by using an initial wave
function of Gaussian density distribution:

|g〉 = 1√
πδ2

e
− x2+y2

2δ2 e
ik0x

h̄

⎛
⎝ 1

0
0

⎞
⎠ . (5)

The wave function expressed in momentum space is

|g〉 =
√

δ2

π
e
− δ2

2h̄2 [(px−k0)2+p2
y ]

⎛
⎝ 1

0
0

⎞
⎠ , (6)

where δ and k0 are the width and the average momentum of the
wave packet. The mean value of position is 〈�r(t)〉 = 〈g|�r(t)|g〉.

From Eq. (4), we can find that the kinetic energy of Hamil-
tonian does not contribute to the ZB oscillation. Therefore,
during the discussion of the ZB in this section, the kinetic
energy part is neglected. In this section, we take the reduced
Plank constant h̄, the spin-orbit coupling strength γ , and the
wave-packet width δ as independent fundamental units. The
other derived physical quantities, such as time, momentum,
and energy are measured by δ/γ , h̄/δ, and γh̄/δ, respectively.

We explore the following four cases according to the applied
Zeeman field.

A. The Zitterbewegung under zero Zeeman field
( p = 0 and q = 0)

Considering the initial wave packet (5), only the matrix
element of (y(t))1,1 has contribution to the the oscillation part
of the y component of the position operator. In the Heisenberg
picture, it takes the form

y(t)1,1 = px

p2
x + p2

y

cos
(
t

√
p2

x + p2
y

)
. (7)

Substituting the initial state, we calculate the mean value of
the oscillatory part of y

〈y(t)〉 =
∫ ∞

−∞

∫ ∞

−∞
d �p 1

π

pxcos
(
t
√

p2
x + p2

y

)
e−[(px−k0)2+p2

y ]

p2
x + p2

y

= 2e−k2
0 Re

[∫ ∞

0
dρe−ρ2+itρI1(2k0ρ)

]
, (8)
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where ρ =
√

p2
x + p2

y and I1(x) are variable of integration
and the modified Bessel function of first order, respectively.
In order to capture qualitative behaviors of ZB oscillation, we
assume k0 
 1, and the asymptotic formula I1(x) ≈ ex/

√
2πx

can be used [33]. The integral
∫ ∞

0 dρe(−ρ2+I tρ+2k0ρ)/
√

2k0ρ

can be evaluated using the method of steepest descents

〈y(t)〉 ≈ e− t2

4(
k4

0 + k2
0 t2

4

) 1
4

cos

(
k0t − θ

2

)
, (9)

where θ = arctan( t
2k0

) denotes a phase shift of ZB oscillation.
From Eq. (9), it is shown that in the case of k0 
 1,

the average position in the the direction perpendicular to
the average momentum k0 undergos a damping oscillation
with a single frequency. There are two factors which result
in the damping. One is the exponentially decreasing term

e− t2

4 , which originates from the increasing spatial separation
between the subpackets corresponding to the higher and lower
eigenenergy branches [34]. Because the overlap between the
subpackets gets smaller and smaller with time, the amplitude
of the oscillation gets smaller and smaller. We can identify the
nonvanishing relative group velocity between the subpackets
corresponding to different energy branches at the average
momentum v = ∂px

ω12|k0 = 1. It is anticipated that, when
the relative group velocity gets smaller, the damping would

be suppressed. The other one is the term 1/(k4
0 + k2

0 t2

4 )
1
4 ,

which results in a much slower damping compared with the
exponentially decreasing term. In the case of k0 
 1, the
exponentially decreasing term dominates the whole damping
trend before the disappearing of the ZB. Although there exists
a phase shift θ during the damping process of ZB oscillation,
we find that, in the case of k0 
 1, the effect of the phase shift
θ is not obvious before the disappearing of ZB.

For the limit of k0 � 1, the modified Bessel function can
be expanded as Taylor series I1(x) = x

2 + x3

16 + x5

384 + O(x7).
By keeping only the first linear term, we get

〈y(t)〉 ≈ 2k0e
−k2

0

∫ ∞

0
dρe−ρ2

ρcos(tρ)

= k0e
−k2

0

[
1 − tD

(
t

2

)]
, (10)

where D(x) = 1
2

∫ ∞
0 e−t2/4sin(xt)dt is the Dawson function.

We can see from Eq. (10) that there will be no integrated
ZB oscillation when the average momentum is very small [see
also panel (b) in Fig. 1]. We notice that a similar result is found
in 4 × 4 Luttiger Hamiltonian by Demikhovskii et al. [35].

From the above approximate formulas, the amplitude of ZB
oscillation y(t = 0) can be obtained for the two limit case. In
the case of the average momentum k0 � 1, it is proportional
to the average momentum. When k0 
 1, the ZB amplitude
is inversely proportional to the average momentum k0 (It
is worthwhile to notice that the amplitude of ZB in three-
component atoms is twice as large as that in two-component
atoms [33]). We numerically investigate the amplitude as a
function of the average momentum in panel (a) of Fig. 1. In
panel (a), there exists a maximum value of the amplitude on
the curve. The maximum value occurs at around k0 ∼ 1.
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FIG. 1. (Color online) (a) The amplitude of the ZB oscillation as
a function of the momentum k0 under zero Zeeman field. (b) The ZB
oscillations under zero Zeeman field for various momentum k0.

B. The Zitterbewegung under the linear Zeeman field
( p �= 0 and q = 0)

The oscillatory part of y(t) in the Heisenberg picture is

(y(t))1,1 = px

p2
x + p2

y + p2
cos

(
t

√
p2

x + p2
y + p2

)
. (11)

In principle, one could be able to get a asymptotic result
though a similar calculations as the case of zero Zeeman field.
However, the resulting expression is so long and cumbersome
that we could not get clear physical meaning from it. Inspired
by the case of zero Zeeman field, we give approximate
expression to fit the data obtained from the exact numerical
integral under conditions of k0 
 1. The approximate formula
is

〈y(t)〉 = 〈g|y(t)|g〉

= 2e−k2
0 Re

[ ∫ ∞

0
dρ

ρ2e−ρ2+I t
√

ρ2+p2

ρ2 + p2
I1(2k0ρ)

]

≈ k2
0

k2
0 + p2

e− v2
12 t2

4(
k4

0 + k2
0v2

12t
2

4

) 1
4

cos(ω12t), (12)

where v12 = ∂px
ω12|k0 = k0/

√
k2

0 + p2 is the relative group
velocity at the average momentum and ω12 =

√
k2

0 + p2 is
the energy difference between different energy branches at
the average momentum. We can see from Eq. (12) that the
amplitude is suppressed by the applied linear Zeeman field.
With the increase of the linear Zeeman field, the decaying
trend is suppressed. The reason is that with the increase of
linear Zeeman field, the relative velocity between subpackets
corresponding to different energy branches at the average
momentum v12 = k0/

√
k2

0 + p2 gets smaller. Then, the sus-
tained coherence between subpackets lead to the suppression
of decaying. For some specific parameters, we depict the ZB
oscillations with only the linear Zeeman field in Fig. 2.

C. The Zitterbewegung under the quadratic Zeeman field
( p = 0 and q �= 0)

The oscillatory part y(t)1,1of the position operator in the
Heisenberg picture is

y(t)1,1 = pxω23 cos(tω12)

2ω13
(
p2

x + p2
y

) + pxω12 cos(tω23)

2ω13
(
p2

x + p2
y

) , (13)
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FIG. 2. (Color online) Zitterbewegung oscillation in spin-1 atoms
under the linear Zeeman field. The ZB oscillation under zero Zeeman
field is plotted in the solid green line. The dashed blue and dotted red
lines are ZB oscillation under a linear Zeeman field p = 4γh̄/δ and
p = 6γh̄/δ, respectively.

where ω23 = 1
2 (q +

√
4(p2

x + p2
y) + q2), ω12 = 1

2 (−q +√
4(p2

x + p2
y) + q2), ω13 =

√
4(p2

x + p2
y) + q2.

By using the similar approximation, the average position
along the y direction is approximated by

〈y(t)〉 = 〈g|y(t)|g〉 = y12 + y23

≈ ω2,3(k0)

2ω13

e− v2
12 t2

4(
k4

0 + k2
0v2

12t
2

4

) 1
4

cos(ω12t)

+ ω12(k0)

2ω13

e− v2
23 t2

4(
k4

0 + k2
0v2

23t
2

4

) 1
4

cos(ω23t), (14)

where yij is the ZB oscillation with frequency which is
energy difference ωij between the energy branches i and j

at the average momentum. v12 = ∂px
ω12|k=k0 = k0/

√
k2

0 + q2,
v23 = ∂px

ω23|k=k0 = k0/
√
k2

0 + q2 are relative group velocities
between different energy branches at the average momentum.

In the presence of only the quadratic Zeeman field, the ZB
oscillation split into two oscillations with different amplitudes
and frequencies (see also Fig. 3). The amplitude of the ZB
oscillation with higher frequency is smaller than the other
one. Because of the equal relative group velocities at the
average momentum v12 = v23, the two ZB oscillations have
the same exponential decreasing factor and the decaying trends
for the two ZB oscillations are the same on the whole. With the
increase of the quadratic Zeeman field, the splitting of both the
amplitudes and frequencies between the two ZB oscillations
gets more evident.

D. The Zitterbewegung under both the linear and the quadratic
Zeeman fields ( p �= 0 and q �= 0)

In the presence of both the linear and the quadratic Zeeman
fields, the analytical expression of the position operator in
the Heisenberg picture is quite long and cumbersome. We
depict the ZB oscillations with some specific parameters, e.g.,
p = 1, q = 1, and k0 = 0.87 in Fig. 4. We can see that there
are usually three frequencies when both the linear and the
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FIG. 3. (Color online) Zitterbewegung oscillation under the
quadratic Zeeman field. The dashed blue and dotted red lines are
ZB oscillations corresponding to ω23 and ω12 for a quadratic Zeeman
field parameter q = 4γh̄/δ. For the sake of comparison, the solid
green line corresponding to zero Zeeman field is also plotted.

quadratic Zeeman fields exist. We find that when the relative
group velocity vij = ∂px

ωij |k0 between different eigenstates at
the average momentum approaches zero, the mean position
will damp much more slowly. As shown in the bottom panel
of Fig. 4, when the average momentum k0 is chosen near the
elliptic region and the relative velocity between subpackets
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FIG. 4. (Color online) (a) The energy spectrum under both the
linear and the quadratic Zeeman fields (p = γh̄/δ, q = γh̄/δ). The
solid green, dashed red, and dotted black lines denote the three energy
branches ω1, ω2, and ω3, respectively. The black elliptic area is the
region where the relative group velocity v12 approaches zero. (b) The
ZB oscillations for the momentum k0 = 0.87h̄/δ. The dashed red,
dotted black, and solid green lines denote the ZB oscillations with
the frequency corresponding to ω12, ω23, and ω13, respectively.
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nearly vanishes, the decaying trend of the ZB oscillation
corresponding to ω12 is suppressed greatly compared with the
two others. The scenario of slowing down damping of the ZB
oscillation could not occur in two-component atoms due to the
limitation of its relative simple energy spectrum. The slowly
damping amplitude may be favorable to the observation of ZB
in experiments.

III. THE ZITTERBEWEGUNG EFFECT
IN HARMONIC TRAP

As shown in the above section, the amplitude of ZB oscil-
lation in free space usually decays with time. In the trapped
system, the oscillatory behaviors have unique characteristics
compared with that in free space. First, due to the confinement
of trap, the atoms could not escape from the trap. Hence, the
subpackets corresponding to different eigenenergies would al-
ways keep coherent, resulting in nondecaying ZB oscillations.
Second, due to the existence of infinite energy levels in the
trap, the ZB oscillation shows very complicated features.

In this section, we adopt the natural units for harmonic os-
cillators. The length, mass, and time are measured by

√
h̄/Mω,

m, and 1/ω, respectively. The other physical quantities, such as
energy, momentum, and velocity are measured by h̄ω,

√
h̄Mω,

and
√

h̄ω/M , respectively.
Similar to that in Ref. [31], we decompose the time

evolution operator as U = e−iH t = ∑
l e

−iEl t |l〉〈l|, where |l〉
is the eigenstates of Hamiltonian and El the corresponding
eigenenergy. We generalize Eq. (3) to the trapped system and
obtain the position operator in Heisenberg picture as

�r(t) = �r(0) +
∑

k

Zk;k +
∑
k,l �=k

eiωkl t �Zk;l , (15)

where �Zk;l = |k〉〈k|�r|l〉〈l| is the so-called ZB amplitude
operator and ωkl is energy difference between eigenenergies.
To calculate the average value of position operator, the eigen-
states and eigenenergies are required. Before the numerical
calculation of the eigenequations, we discuss the symmetries
of Hamiltonian. The Hamiltonian have rotational symmetries
along z axial direction. Thus, the total angular momenta along
z direction Jz = Lz + Fz is a good quantum number. We
label the eigenstates and energies with good quantum number
jz = m. In the polar coordinates (ρ,θ ), the eigenfunction can
be written in the following form:

|ψm(ρ,θ )〉 =

⎛
⎜⎜⎜⎝

φ1(ρ) ei(m−1)θ√
2π

φ0(ρ) eimθ√
2π

φ−1(ρ) ei(m+1)θ√
2π

⎞
⎟⎟⎟⎠, (16)

with jz = m.
In addition to the rotational symmetry, there is time-

reversal symmetry in the absence of the Zeeman field. The
time-reversal operator is expressed as T = UK , with U =
exp(−iπFy) and K the complex conjugate operation. Its
matrix form is

T =
⎛
⎝ 0 0 1

0 −1 0
1 0 0

⎞
⎠ K. (17)

Then the time-reversal state can be obtained as |ψ−m(ρ,θ )〉 =
T |ψm(ρ,θ )〉 with degenerate eigenenergies E−m,l = Em,l .
The eigenstates are doubly degenerate except for the states
corresponding to m = 0.

We work with the basis of two-dimensional (2D) harmonic
oscillator, and the basis can also be introduced by two
independent operators in terms of operators of ax(y) [36],

ad = 1√
2

(ax − iay),

(18)

ag = 1√
2

(ax + iay),

where ax(y) is annihilation operators of the x(y) direction. The
position and momentum operators can be expressed in terms
of the operators in Eq. (18) and their corresponding adjoint
operators. For example, the y component of the position is
y = i

2 (ad − a
†
d − ag + a

†
g). The harmonic oscillator basis can

be written as∣∣χnd,ng

〉 = 1√
(nd )!(ng)!

(a†
d )nd (a†

g)ng |0,0〉, (19)

where |0,0〉 is the ground state of a 2D harmonic oscillator. The
2D harmonic oscillator basis can be expressed in the coordinate
space as

φn,m(ρ,θ ) = 〈�r∣∣χnd,ng

〉 = Rn,m(ρ)
eimθ

√
2π

, (20)

where n = ng , m = nd − ng , Rn,m(ρ) =
(−1)n

√
2(n!)

(n+|m|)!ρ
|m|e− ρ2

2 L
|m|
n (ρ2), L

|m|
n (x) = �n

k=0C
n−k
n+|m|

(−x)k

k!

is the associated Laguerre polynomial and Ck
n = n!

(n−k)!k! is the
binomial coefficient.

From the expression of the position operators in terms
of ag(d) and their adjoint operators, there exist an important
selection rule for ZB amplitude operators

�Zm,l;m′,l′ = |m,l〉〈m,l|�r|m′,l′〉〈m′,l′| = 0,

(m − m′ �= ±1), (21)

where l labels the eigenstates belonging to the same quantum
m. It is shown that only for m = m′ ± 1, there exist no-
vanishing ZB amplitude. From the above equation, it is
found that the second term in Eq. (15) vanishes, i.e., �Zk;k =
�Zm,l;m,l = 0.

One can express the Hamiltonian in the form of a matrix
by adopting the harmonic oscillator basis. The corresponding
eigenenergies and eigenstates can be obtained through direct
numerical diagonalization [37].

Now we investigate the ZB oscillatory characteristics in the
trap. First of all, as shown by Eq. (15), when the the initial
state is the superposition of two eigenstates, there would be an
oscillation with one single frequency which is the difference
of two eigenenergies. The amplitude of the oscillation does
not decay. This is because the components corresponding to
two eigenenergies in the initial state always keep coherent in
the trap, as stated before.

Next, we calculated the ZB oscillations when an Gaussian
wave packet with nonvanishing average momentum is used
as an initial state. The projections of the initial state onto the
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FIG. 5. (Color online) The ZB oscillations with a Gaussian wave
packet as an initial state in the trap for the wave packet width δ =√

h̄/Mω and the momentum k0 = 2
√

h̄Mω. The solid green, dashed
black, and red dash-dotted lines correspond to the spin-orbit coupling
strengths γ = 0.5

√
h̄ω/M , 2

√
h̄ω/M , and 8

√
h̄ω/M , respectively.

harmonic basis are required in the calculation the average value
of the position. The detailed calculations of the projection
are listed in the Appendix. From Eq. (15), we know that the
number of the frequencies of the oscillation involved in ZB
oscillation is usually arbitrary when the initial state is chosen
in a completely arbitrary fashion. Using the Gaussian wave
packet as the initial state, we find that there are indeed a lot of
frequencies in the ZB oscillation.

For some specific parameters, the ZB oscillations in the
trap are shown in Fig. 5. From Fig. 5, we can see that, for both
the weak and strong spin-orbit coupling, the ZB oscillations
display the harmonic oscillator characteristics within short
time interval (20 time units in Fig. 5). This is because when
the spin-orbit coupling approaches zero, the energy-spectrum
approaches the harmonic oscillator spectrum. In the case of the
strong spin-orbit limit, the eigenenergies can be approximated
by Em,n = [−γ 2 + 2n + 1 + m2/γ 2]/2, which is analogous
to the energy spectrum formula of two-component atoms
with strong spin-orbit coupling and harmonic trap [22,38].
Compared with the two-components atoms, the ground state
is not degenerate. The energy spectrum in strong spin-orbit
coupling limit form landau level-like spectrum. Thus, in cases
of both weak and strong spin-orbit coupling limit, the energy
level spacing approaches h̄ω. With the increase of the time,
the out-of-phase oscillations begin to appear. Meanwhile, the
oscillations with high-frequency begin to manifest themselves
(see the red dash-dotted line in Fig. 5).

In the presence of the intermediate-strength spin-orbit
coupling, the ZB shows quite complicatedly and irregularly
oscillatory characteristics. It is due to the complicated energy
spectrum and coexistence of oscillations with various frequen-
cies in ZB.

We explore the ZB oscillation in the presence of both the
Zeeman field and the harmonic trap. For the weak spin-orbit
coupling, the top panel in Fig. 6 shows that the ZB effect
is manifested as beat oscillation. The beat period gets larger
and larger with the increase of the linear Zeeman field. The
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FIG. 6. (Color online) The ZB oscillations in the presence of
both the harmonic trap and the Zeeman field with the wave packet
width δ = √

h̄/Mω, the average momentum k0 = 2
√

h̄Mω, and the
spin-orbit coupling strength γ = 0.5

√
h̄ω/M , respectively. The solid

green, dashed red, and black dash-dotted lines correspond to the ZB
oscillations for various Zeeman parameters (the unit of the Zeeman
parameters p and q is h̄ω).

quadratic Zeeman field usually suppresses the amplitude of
the ZB oscillation, as shown by the the middle panel in Fig. 6.
In the presence of both the linear and the quadratic Zeeman
fields, we can see that the beat period gets even much larger
compared with the case where only the linear Zeeman field
is included, as shown in the bottom panel in Fig. 6 (see the
black dash-dotted lines). For strong spin-orbit coupling, the
amplitude of the ZB oscillation is usually smaller than that of
weak spin-orbit coupling as shown in Fig. 7. At the same time
the high-frequency oscillations are manifested more evidently.

IV. EFFECT OF INTERACTION ON THE
ZITTERBEWEGUNG OSCILLATION

In this section, we numerically simulate the dynamical
evolution of the spin-orbit-coupled 23Na atoms by solving the
corresponding GP equation. Taking the axial trap frequency
ωz = 2π × 800 Hz, the transverse trap frequency ω⊥ =
2π × 90 Hz, the total number of atoms N = 104, and the
experimental values of scattering length of 23Na atoms a0 =
46aB , a2 = 52aB (aB is the Bohr radius), the corresponding
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FIG. 7. (Color online) The ZB oscillations in the presence of
both the harmonic trap and the Zeeman field with the wave-packet
width δ = √

h̄/Mω, the average momentum k0 = 2
√

h̄Mω, and the
spin-orbit coupling strength γ = 5

√
h̄ω/M , respectively (the unit of

the Zeeman parameters p and q is h̄ω).

two dimensionless interaction parameters c0 = 178.90 and
c2 = 7.16 (in natural units of harmonic oscillator). The effect
of interaction on the ZB oscillation in the trap is considered
in Fig. 8. Comparing it with Fig. 5 (without interaction),
the beat oscillation period get longer for weak spin-orbit
coupling. For intermediate and strong spin-orbit coupling
strength, the oscillatory amplitude for a long time is slightly
suppressed. Even though the ZB effect originates from the
single-particle Hamiltonian, it is still robust in the presence
of interaction between atoms. Therefore, the ZB oscillation
is a universal phenomenon in the dynamical evolution of the
spin-orbit-coupled atoms.

In this paragraph, we discuss the experimental aspects on
the ZB oscillation. The ZB oscillation is accompanied by a
damped oscillation of the probability density with time for
each component [34]. The oscillatory properties of position
operator, such as the decaying trend and the oscillatory
frequency, e.g., can be reflected by the damped oscillation of
the number of atoms. The oscillation of the number can be
obtained through a series of time-of-flight measurement for
various values of time [17]. Nevertheless, one also could use
nondestructive phase-contrast imaging technique to directly
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FIG. 8. (Color online) The ZB oscillations in the presence of
the both harmonic trap and the interaction between atoms with the
wave-packet width δ = √

h̄/Mω and the momentum k0 = 2
√

h̄Mω,
respectively.

observe the atoms in situ [39–41]. The phase-contrast imaging
is very suitable to observe the evolution of optical dense
condensate in trap. The information of the density distribution
of atoms can be extracted from the resulting image. The mag-
nitude of the ZB in ultracold atoms can be evaluated through
some typical experimental parameters. Taking 23Na atoms, for
example, one can adopt the experiment parameters, such as the
wavelength of Raman laser λ ∼ 600 nm and the angle between
two Raman beams θ = π/2, which corresponds to a spin-orbit
strength γ = √

2πh̄/(Mλ) ≈ 1.93 cm/s (M = 3.82 ×
10−26 kg for 23Na). Applying a magnetic field of B = 450 mG,
the resulting quadratic Zeeman parameter q ∼ h × 56 Hz.
The effective linear Zeeman parameter p can be tuned to the
same order of the quadratic Zeeman parameter through the
frequency difference between Raman lasers. One can prepare
a condensate of the total atoms number N = 104 in a harmonic
trap with z axial trapping frequency ωz = 2π × 439 Hz and
radial trapping frequency ω⊥ = 2π × 1.57 Hz. The BEC
has a pancakelike shape with z axial characteristic length
az ∼ 1 μm and radial wave packet width δ ∼ 50 μm. Under
the condition of the above parameters, the interaction between
atoms and the potential of the harmonic trap (∼h × 7 Hz)
are much smaller than the spin-orbit coupling interaction
energy γh̄/δ ∼ q ∼ h × 56 Hz. The amplitude of ZB can be as
large as one-half of the wave packet width δ as shown in Fig. 1
in Sec. II. The above parameters are accessible in cold-atom
experiments.

V. SUMMARY

In summary, we have investigated the ZB effect in spin-1
atoms in the presence of the Zeeman field and the external
harmonic trap. It is shown that the ZB oscillations could
be greatly affected by the external Zeeman field and the
trap. The external Zeeman field could suppress or enhance
the ZB amplitude and change the frequencies of oscillation.
In addition, multifrequency oscillations could appear in the
presence of the Zeeman field. Through adjusting both the
linear and the quadratic Zeeman fields properly, we could

023612-7



ZHANG, SONG, LIU, AND LIU PHYSICAL REVIEW A 87, 023612 (2013)

obtain a much slower damping ZB oscillation in the spin-1
ultracold atoms. In the presence of a harmonic trap, there would
be the ZB oscillation without damping and with arbitrary
number of frequencies. The ZB in the trap displays very
complicated and irregular oscillation characteristics due to its
complicated energy spectrum. Furthermore, it is shown that
the ZB oscillation is robust even in the presence of interaction
between atoms.

The present work should help us understand the roles of
external Zeeman field and trap in the ZB oscillations. The
investigation of the effects induced by the external field and
trap on ZB oscillation opens up new possibilities for the
manipulation and control of the ZB oscillation. We anticipate
the ZB effect will be detected in the widely studied cold-atom
experiments with spin-orbit coupling interactions.
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APPENDIX: THE PROJECTIONS OF THE GAUSSIAN
PACKET ONTO THE HARMONIC OSCILLATOR BASIS

In this Appendix, we give the calculation of the projections
of the initial Gaussian wave packet onto the harmonic oscillator
basis, which is required in the calculation of the average values

of the position operator. The initial wave packet reads

|g〉 = 1√
πδ2

e
− (x2+y2)

2δ2 eik0x, (A1)

where δ denotes the width of the wave packet and k0 is the
average momentum of the wave packet.

The projection onto the harmonic oscillator basis is

〈φn,m|g〉 = 2(−1)ni|m|

δ

√
n!

(n + |m|)!

×
∫ +∞

0
ρ|m|+1e−σ 2ρ2

L|m|
n (ρ2)J|m|(k0ρ)dρ, (A2)

where |φn,m〉 = Rn,m(ρ) eimθ√
2π

, σ 2 = 1
2 (1 + 1

δ2 ), and J|m|(x) is
the Bessel functions of order |m|.

The associated Laguerre polynomial consists of various
monomials. The integrals corresponding to the monomials can
be obtained through an integral identity∫ +∞

0
ρμ−1e−p2ρ2

Jν(aρ)dρ

= �
(

μ + ν

2

)
2pμ�(ν + 1)

(
a

2p

)ν

e
− a2

4p2
1F1

(
ν−μ

2
+ 1; ν+1;

a2

4p2

)
,

(A3)

where �(z) is Euler’s � function and 1F1(α; β; x) is the gen-
eralized hypergeometric functions [42]. Combining Eq. (A2)
with Eq. (A3), we can obtain the projections by summing up
all integral values corresponding to the monomials. The ZB
amplitude operators �Zk;l in Eq. (15) are also calculated within
the harmonic oscillator basis and the mean value of the position
operator can be obtained correspondingly.
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