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Vortex chain in anisotropic spin-orbit-coupled spin-1 Bose-Einstein condensates
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We investigate the rotating spin-1 Bose-Einstein condensates with anisotropic spin-orbit coupling by using
the damped projected Gross-Pitaevskii equation. The anisotropic spin-orbit coupling can cause some vortices to
form the vortex chain, where the vortices link up with each other in a line. The formation of the vortex chain
starts from very small rotation frequency and coexists with more remanent vortices with the increasing rotation
frequency. By increasing the anisotropy of the spin-orbit coupling, the creation of the vortex chain is enhanced,
accompanied by the emergence of several types of vortex chain and other vortex configurations. When the vortices
of the mF = −1 and mF = +1 components are of synchronous phases, such vortex configurations do not cause
any topological excitation in the spin texture.
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I. INTRODUCTION

The Mermin-Ho [1] and Anderson-Toulouse [2] coreless
vortices are examples of topological excitations that can
be realized in spinor Bose-Einstein condensates (BECs).
The difference between the Mermin-Ho vortices and the
Anderson-Toulouse vortices comes from the magnetization at
the boundary. The axisymmetric Mermin-Ho and Anderson-
Toulouse vortices in the spin-1 BECs have been investigated
by several authors [3–10]. It was found that the three
components (mF = 1,0,−1), with different phase winding
numbers 〈0,1,2〉, respectively, are arranged to be effectively
phase separated in the radial direction with a concentric
structure. Note that the vortex in spin-1 BECs can be described
with the phase winding number 〈a,b,c〉 according to the
wave function (φ1,φ0,φ−1) [3–6]. On the other hand, there
are some nonaxisymmetric vortex configurations [5], such as
the 〈1,1,1〉 vortices and the 〈1,1,−1〉 vortices. Such vortex
configurations have attracted great research interest [3–10] and
have motivated further exploration on other possible vortex
configurations in spin-1 BECs.

Recent advances of synthetic magnetic fields [spin-orbit
(SO) coupling] techniques [11,12] on BECs have stimulated
considerable interest in exploring the exotic vortical structures
hosted by such systems. For example, Xu et al. [13] have found
that increasing SO-coupling strength would favor a triangular
vortex lattice in fast rotating BECs. Further, the half-quantum
vortex lattice is predicted in SO-coupled BECs under rotation if
the trapping potential is strong and the interaction is relatively
weak [14]. Very recently, Liu et al. have found the three-vortex
configurations of the vortex lattice in SO-coupled spin-1 BECs
[15]. It is interesting to explore how SO coupling produces
unknown types of vortex configurations other than the SO
coupling effect itself [16–24]. The anisotropic SO-coupled
BECs were first discussed in Ref. [25]. With the anisotropic SO
coupling, the ground-state phase diagrams are found to have
much richer structures than those obtained using mean-field
couplings [26]. However, it remains unclear how anisotropic
SO coupling affects the vortex configurations in the spin-1
BECs.

Generally speaking, the vortices formed in each component
of the spinor BECs have a more or less uniform spatial
distribution [13–15,27–31]. It is unusual for some vortices to
link up with each other in a line in the BECs. Furthermore, the
vortex configurations can induce some topological excitations
of the spin texture, such as the skyrmion and the meron [4,6–8].
Liu et al. have already shown that the half-skyrmion relates
to a special three-vortex structure with SO coupling [15]. The
mechanism for the topological excitation of spin texture is
not well understood. It is not known whether all the vortex
configurations in the spin-1 BECs can induce the nontrivial
spin texture. Therefore, a systematical illumination on this
subject is desirable.

In this paper, we mainly focus on another special vortex
configuration: the vortex chain. In previous investigations,
the vortex chain phenomenon has been found in the SO-
coupled pseudospin-1/2 BECs [14,23,24]. However, a full
understanding on this phenomenon has not been realized. In
particular, the structure of the vortex chain in the spin-1 BECs
should be more complicated than that in the pseudospin-1/2
BECs. Here, the anisotropic SO coupling is used to induce the
vortex chains and other vortex configurations in the rotating
spin-1 BECs. We find the vortex chain results from the
superposition of the counterpropagating plane-wave phases
of BECs. The strength of the anisotropic SO coupling can
adjust the structure of the vortex chain as well as other vortex
configurations. We develop a method to characterize the vortex
configuration according to the winding number, the component
of BECs, and the relative position of vortices. Furthermore,
our results indicate the condition for the vortex configuration
to induce the nontrivial spin texture, such as skymion.

The paper is organized as follows: the damped projected
Gross-Pitaevskii equations and some initial condition for our
simulations are introduced in Sec. II. In Sec. III we consider
various rotation frequencies to produce the vortex chain in
the anisotropic SO-coupled spin-1 BECs, and we explain the
mechanism of the creation of the vortex chain. In Sec. IV we
discuss the effect of anisotropic SO coupling on the vortex
chain. In Sec. V a description for characterizing the vortex
chain as well as the various vortex configurations is given. In
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Sec. VI the relationship between the vortex configuration and
the spin texture is systematically explored. A summary of our
results is presented in Sec. VII.

II. DAMPED PROJECTED GROSS-PITAEVSKII EQUATION
FOR ANISOTROPIC SPIN-ORBIT-COUPLED

SPIN-1 CONDENSATES

The dynamics of F = 1 spinor BECs with SO coupling can
be described by the following coupled nonlinear Schrodinger
equations:

ih̄
∂�j

∂t
=

[
−h̄2∇2

2m
+ mω2(x2 + y2)

2
+ gn|�|2

]
�j

+ gs

∑
α=x,y,z

∑
n,k,l=0±1

(F̂α)jn(F̂α)kl�n�
∗
k �l

− �L̂z�j +
∑

α=x,y

∑
n=0±1

κα(F̂α)jnpα�n, (1)

where �j (j = 0,±1) denotes the macroscopic wave function
of the atoms condensed in the spin state |F = 1,mF = j 〉,
m the mass of atom, ω the trapped frequency, F̂α=x,y,z the
spin-1 matrices, � the rotation frequency, L̂z = −ih̄(x∂y −
y∂x) the z component of the orbital angular momentum, pα =
−ih̄ ∂

∂α
(α = x,y) the momentum operator, and κα denotes the

strength of SO coupling which carries the unit of velocity. Note
that the coupling constants gn = 4πh̄2(2a2+a0)

3m
, gs = 4πh̄2(a2−a0)

3m

come from the density-density and spin-exchange interactions,
respectively.

Generally, in real experiments the ultracold Bose gases
are only partially condensed with the noncondensed thermal
cloud which provides a source of dissipation and causes
the effect of damping [32,33]. Meanwhile, it is a critical
operation to obtain the BECs with the evaporative cooling
which can be approximately viewed as a quenching process.
Here, we use the damped projected Gross-Pitaevskii equation
(PGPE) [34] to describe the quenching process. We note the
stochastic PGPE [30,34,35] can describe a quenching process
in a finite-temperature BECs. When the “thermal fluctuations”
have been removed by the damping effect, a possible energetic
ground state would occur. This treatment can be called as the
damped PGPE, which has been introduced by Rooney [34]
when they have a comparison of the stochastic PGPE, damped
PGPE, and PGPE.

The damped PGPE can be obtained by neglecting the noise
term according to the corresponding stochastic PGPE [34].
Similarly to the stochastic PGPE, the system is divided into
the coherent region with the energies of the state below ER and
the noncoherent region with the energies of the states above
ER . The damped PGPE is written as

d�j = P
{
− i

h̄
Ĥj�jdt + γj

kBT
(μ − Ĥj )�jdt

}
, (2)

where Ĥj�j denotes the right-hand-side part of Eq. (1), T the
final temperature, kB the Boltzmann constant, μ the chemical
potential, and γj the growth rate for the j th component. The
projection operator P is used to restrict the dynamics of the
spin-1 BECs in the coherent region. The damped PGPE is
equal to the limit case of zero temperature in the stochastic

PGPE. In this scenario, all of the finite-temperature physics
normally present in the PGPE theory is lost.

In numerical simulations, we use the spin-1 BECs of
87Rb [36] with γj

kBT
= 0.03 and the trapped frequency ω =

200 × 2π . The unit of length, time, energy, and strength of SO
coupling correspond to

√
h̄/(mω) (≈0.76 μm), ω−1 (≈0.8 ×

10−3 s), h̄ω, and
√

h̄ω/m (≈0.96 × 10−3 m/s), respectively.
The initial state of each �j is generated by sampling the
grand-canonical ensemble for a free ideal Bose gas with the
chemical potential μj,0 = 3.6h̄ω. This sampling would bring
some initial thermal noise to break symmetry and give the true
energetic ground state once the thermal fluctuations have been
removed by the damping. Meanwhile, the condensate band
must lie below the energy cutoff ER > Ek = h̄2|k|2

2m
. Note that

k = 2π (nx,ny)/L, where nx , ny are integers and L is the size
of the computation domain. Furthermore, the total number of
modes is nx , ny = 300, and the energy cutoff is chosen at
nxc, nyc = 150. To simulate the quenching process, the final
chemical potential of the noncondensate band are altered to
the new values μ = 25h̄ω > μj,0(j = 0,±1).

III. EFFECT OF ROTATION FREQUENCY ON CREATION
OF VORTEX CHAIN IN SPIN-ORBIT-COUPLED

SPIN-1 BECS

First, with the fixed SO coupling strengths, κx = 1 and
κy = 0, we aim to study the influence of the rotation frequency
on the formation of the vortex chain in the spin-1 BECs
of 87Rb [36]. We choose μj,0(j = 0,±1) = 3.6h̄ω and μ =
25h̄ω. Figure 1 displays the densities and phases obtained
under the equilibrium state with different rotation frequencies.
The vortices can be identified in the phase image of each
component of the BECs. For the case of the lowest rotation
frequency (� = 0.2ω), all the vortices form a line along the x

axis and completely traverse the whole BECs [see Fig. 1(a)].
This new interesting configuration is referred to as the vortex
chain, which essentially differs from the symmetric and equal
distribution of vortices in the rotating BECs. With the rotation
frequency � = 0.3ω, more vortices are excited, and there are
also several vortices appearing on both sides of the center
vortex chain, following a relatively symmetrical distribution
[see Fig. 1(b)]. The number of vortices in the off-vortices-chain
region increases with the rotation frequency � [see Fig. 1(c)].
As compared with the coreless vortices that have been reported
in Refs. [4,6–8], the maximum value of the total densities is
not at the origin of the coordinate plane. Because of the vortex
chain, some local minima of the total densities along the x axis
can be distinguished [see the fourth column].

Figure 2 illustrates the position of the vortices shown in
Fig. 1. As shown in Fig. 2, the vortices of the mF = ±1
components are overlapped in the vortex chain, and the vortices
of the mF = ±1 components and the vortices of mF = 0 are
arranged alternately in a line along the x axis. The vortices
of the three components are coupled in the regions off the x

axis, consisting of the three-vortex structure [15]. The phase
difference shown in Fig. 1(a) tends to be zero, which means that
the mF = −1 and mF = 1 components are synchronous when
the system reaches the equilibrium state. The phase differences
shown in Figs. 1(b) and 1(c) also tends to be zero except
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FIG. 1. (Color online) Effect of rotation frequency on the densities and phases of the anisotropic SO-coupled spin-1 BECs of 87Rb when the
system reaches the equilibrium state. (a) � = 0.2ω, (b) � = 0.3ω, and (c) � = 0.5ω. Here, κx = 1.0, κy = 0, a0 = 101.8aB , and a2 = 100.4aB .
Note that the fifth and sixth columns are the phases of mF = −1 and mF = 1 components, respectively. The atom numbers (N−1, N0, N1)
approximately are (3.5 × 103, 7.0 × 103, 3.5 × 103), (4.1 × 103, 7.3 × 103, 3.6 × 103), and (4.8 × 103, 9.1 × 103, 4.9 × 103), respectively.
The length unit and strength of SO coupling are 0.76 μm and 0.96 × 10−3 m/s, respectively.

in the region where the off-x-axis vortices locate. Figure 2
also indicates the patterns of the vortex distributions under the
anisotropic SO coupling of κx = 1 and κy = 0. The vortices
will first distribute along the x axis as far as they can until the
repulsive force between them is so strong that the remaining
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FIG. 2. (Color online) Effect of rotation frequency on the position
of vortices in the anisotropic SO-coupled spin-1 BECs of 87Rb
in Fig. 1. The asterisks (∗), circles (◦), and stars (�) are the
position of vortices formed by the mF = −1, mF = 0, and mF =
+1 components, respectively. (a) � = 0.2ω, (b) � = 0.3ω, and
(c) � = 0.5ω. The length unit and strength of SO coupling are
0.76 μm and 0.96 × 10−3 m/s, respectively.

vortices prefer to appear on both sides of the x axis in an
approximately symmetric manner.

Figure 3 illustrates the profiles of the vortex chain shown
in Figs. 1(a)–1(c). As shown in Fig. 3(a), the mF = −1 and
mF = 1 components are of the same density profiles along
the x axis. When the rotation frequency increases up to 0.3ω,
the density profiles of the mF = −1 and mF = 1 components
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FIG. 3. (Color online) Effect of rotation frequency on the profiles
of the vortex chain in the the anisotropic SO-coupled spin-1 BECs
of 87Rb in Fig. 1. (a) � = 0.2ω, (b) � = 0.3ω, and (c) � = 0.5ω.
The length unit and strength of SO coupling are 0.76 μm and 0.96 ×
10−3 m/s, respectively.
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tend to differ. Meanwhile, the vortices continuously and
homogeneously distribute along the x axis so we have to
view them as a whole: the vortex chain. It is obvious that the
vortex chain expands over the whole BECs in the three cases in
Fig. 1. Furthermore, the numbers of vortices in the three vortex
chains increase as the rotation frequency increases. Note that
the number of vortices in a chain is finite and intrinsic at
the equilibrium state with all the considered parameters. We
cannot change the intrinsic number of vortices in the chain
artificially unless the parameters are changed. Although the
fast rotation can cause larger [37] BECs where more vortices
would be stored along the x axis to form the chain, we do not
discuss the limit rotation frequency in this study.

The formation of the vortex chain derives from the
anisotropic spin-orbit coupling. Similarly to the formation of
vortex lattice in the spin-0 scenario, the rotation effect induces
the creation of the vortices in the case of the SO-coupled spin-1
BECs. Thus, we observe some lines where the phases change
discontinuously from red to blue in the fifth and sixth columns
of Fig. 1, which corresponds to the branch cuts between the
phases −π and π . The ends represent phase defects, i.e.,
the vortex. All the lines extend to the outskirts of the BEC,
where the density of the BEC is almost negligible, and end
with another defect which offers neither the energy nor the
angular momentum to the system. The additional anisotropic
SO coupling terms cause the decrease of the system’s energy.
The κy term in the equation of motion does not affect the
system’s energy (κy = 0). The energy contributions of the
additional anisotropic spin-orbit terms depend on κx , which
is not zero in the equation of motion. In order to lower more
energy, the gradient of phase should remain mainly on the
x direction. Therefore, it would cause the plane-wave phase
following the x direction if there is no rotation and creation
of vortices. In the presence of vortices, the plane-wave phase
is changed to form a circle [see the fifth column in Fig. 1(a)]
and has to follow the x direction mainly. Thus, the vortices are
forced to distribute along the x axis. Therefore, we observe
the vortex chain along the x axis with the anisotropic SO
coupling (κx = 1, κy = 0) in Fig. 1. For the anisotropic SO
coupling with κx = 0 and κy = 1, the vortices distribute along
the y axis.

We find that the vortex chain phenomenon occurs even
when the rotation frequency is as small as � = 0.02ω. Without
rotation, the BECs degenerate into the plane-wave phase [16,
18,19,22] under the equilibrium state. We do not fix the ratio of
the three components in the dynamical process, so the mixture
ratio of the three components depends on the system itself.

We now give a physical explanation about the vortex chain
in the small rotation limit. The vortex chain results from
two plane-wave phases with opposite momenta. It is well
known that the SO-coupled BECs sustain the plane-wave
phase [16,18,19,22]. The phase gradient of the ground state
with the plane-wave phase is along the orientation of the SO
coupling. The demarcation lines between the discontinuous
−π and π phases end at the boundary of the BECs, where
the densities approach zero. However, when the BECs are
rotated, the spatial distribution of phases changes. For the case
of isotropic SO coupling, the gradients of the phase encircle the
center, following the emergence of the vortices [15]. Figure 4
shows the phase’s gradients of the mF = −1 component in

FIG. 4. (Color online) The phase’s gradient of mF = −1 compo-
nent in Fig. 1(a). (a) ∂θ−1

∂x
and (b) ∂θ−1

∂y
. The length unit and strength

of SO coupling are 0.76 μm and 0.96 × 10−3 m/s, respectively.

Fig. 1(a). The curves come from the interface between the
values 0 and 2π . The value of ∂θ−1

∂x
does not approach 0,

and ∂θ−1

∂y
approaches 0 in the off-x-axis region. Instead, the

properties of ∂θ−1

∂x
approach 0 and ∂θ−1

∂y
does not approach 0

along the x axis. This indicates that the gradients of the phase
mainly continue in the same direction and the counterdirection
of the anisotropic SO coupling. The phases form a whole
circle as the arrows indicate in Fig. 1(a) (the fifth column).
The demarcation lines between the discontinuous −π and π

phases then have to start from the domain wall of the two
opposite plane-wave phases and end at the outskirts of the
BECs. Therefore, the vortex chain occurs although the rotation
frequency is very low.

IV. EFFECT OF STRENGTH OF ANISOTROPIC
SPIN-ORBIT COUPLING ON THE VORTEX CHAIN

We now consider the influence of the strength of the
anisotropic SO coupling on the vortex chain. The rotation
frequency is fixed to be � = 0.5ω, and all other parameters are
the same with Fig. 1 except the strength of the anisotropic SO
coupling. Figure 5(a) indicates that no vortex chain is obtained
for κx = 0.1 and κy = 0. Several vortices of the mF = −1,0,1
components appear along the x axis for κx = 0.5 and κy = 0,
as shown in Fig. 5(b). The phase difference in the seventh
column shows that there is no synchronization of the phases.
The vortex chains become clearer for each component for
κx = 1.5 and κy = 0, as shown in Fig. 5(c), and the phase
difference along the x axis is zero. In addition to the vortices
on the x axis, other vortices distribute approximately parallel
to the x axis. The phase difference of the off-x-axis vortices
near y = ±5 approaches 0. This differs from those near the
y = ±2.5 region. These results indicate that the stronger the
anisotropic SO coupling, the more the regions of the mF = −1
and mF = 1 components tend to evolve synchronously.

Figure 6 shows the corresponding vortex positions in Fig. 5.
It further displays the effect of the anisotropic SO coupling on
the vortices. Figure 6(a) indicates that the relatively weak
anisotropic SO coupling (κx = 0.1 and κy = 0) indeed cannot
induce the vortex chain in Fig. 5(a). Figure 6(b) shows a vortex
chain where the vortices of the mF = −1 component do not
overlap with those of the mF = 1 component in Fig. 5(b).
Furthermore, except the vortex chain along the x axis, all other
vortices form the three-vortex structure, just as that in Ref. [15].
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FIG. 5. (Color online) Effect of anisotropic SO coupling on the densities and phases of the rotating spin-1 BECs of 87Rb when the system
reaches the equilibrium state. (a) κx = 0.1 and κy = 0. (b) κx = 0.5 and κy = 0. (c) κx = 1.5 and κy = 0. Here � = 0.5ω, a0 = 101.8aB , and
a2 = 100.4aB . Note that the fifth and sixth columns are the phases of mF = −1 and mF = 1 components, respectively. The atom numbers
(N−1, N0, N1) approximately are (5.4 × 103, 5.3 × 103, 5.5 × 103), (4.9 × 103, 7.5 × 103, 4.8 × 103), and (5.2 × 103, 1.05 × 104, 5.4 × 103),
respectively. The length unit and strength of SO coupling are 0.76 μm and 0.96 × 10−3 m/s, respectively.

Figure 6(c) indicates that the vortex chain in Fig. 5(c) is similar
to that in Fig. 1. The anisotropic SO coupling can cause the
vortices of different components to overlap with each other.
The off-x-axis vortices near y = ±5 completely overlap, but
the off-x-axis vortices near y = ±2.5 do not. Such a difference
is because of the different densities at y = ±5 and y = ±2.5.

−5 0 5

−5

0

5

x

y

(a)

−5 0 5

−5

0

5

x

y

(b)

−5 0 5

−5

0

5

x

y

(c)

FIG. 6. (Color online) Effect of anisotropic SO coupling on the
position of vortices in the rotating spin-1 BECs of 87Rb in Fig. 5. The
asterisks (∗), circles (◦) and stars (�) denote the position of vortices
formed by the mF = −1, mF = 0, and mF = +1 components,
respectively. (a) κx = 0.1 and κy = 0. (b) κx = 0.5 and κy = 0.
(c) κx = 1.5 and κy = 0. The length unit and strength of SO coupling
are 0.76 μm and 0.96 × 10−3 m/s, respectively.

In fact, this effect is caused by the trap potential, strength of
SO coupling, and so on. Near the center, the density is bigger
than that at the boundary. When the three vortices overlap, it
will offer more energy and angular momentum to the system.
Thus, the completely overlapped three vortices easily appear
at the boundary of the BECs (low-density region).

The density profiles along the x axis are plotted in Fig. 7.
The vortex chain indeed does not occur along the x axis in

−5 0 5
0

100

200

x

D
en

si
ty

 

 
(a)

−5 0 5
0

100

200

x

D
en

si
ty

 

 
(b)

|Ψ
−1

|2

|Ψ
0
|2

|Ψ
1
|2

Total

−5 0 5
0

100

200

x

D
en

si
ty

 

 
(c)

FIG. 7. (Color online) Effect of anisotropic SO coupling on the
profiles of vortex chain in the rotating spin-1 BECs of 87Rb in Fig. 5.
(a) κx = 0.1 and κy = 0. (b) κx = 0.5 and κy = 0. (c) κx = 1.5 and
κy = 0. The length unit and strength of SO coupling are 0.76 μm and
0.96 × 10−3 m/s, respectively.

063630-5



LIU, YU, GOU, AND LIU PHYSICAL REVIEW A 87, 063630 (2013)

FIG. 8. (Color online) Effect of anisotropic SO coupling on the densities and phases of the rotating spin-1 BECs of 87Rb when the system
reaches the equilibrium state. (a) κx = 1.0 and κy = 0.7. (b) κx = 1.5 and κy = 1.2. Here � = 0.5ω, a0 = 101.8aB , and a2 = 100.4aB . Note
that the fifth and sixth columns are the phases of the mF = −1 and mF = 1 components, respectively. The atom numbers (N−1, N0, N1)
approximately are (4.7 × 103, 9.4 × 103, 5.6 × 103) and (5.5 × 103, 1.12 × 104, 6.1 × 103), respectively. The length unit and strength of SO
coupling are 0.76 μm and 0.96 × 10−3 m/s, respectively.

Fig. 5(a), because some minimum values in Fig. 7(a) do not
approach zero at all. Figure 7(b) indicates that the minimum
values of the three components are separated from each other.
When SO coupling of κx is up to 1.5, the property of the
density profiles is similar to that in Fig. 3, where the density
profiles of the mF = −1 and mF = 1 components are equal
in Fig. 7(c). According to the results of Figs. 3 and 7, we can
conclude that the anisotropic SO coupling tends to equalize
the density profiles of the mF = −1 and mF = 1 components
in the vortex chain, but the fast rotation effect causes the slight
deviation.

Further, the formation of the vortex configuration is
investigated for different κy with the other parameters being
the same with Figs. 1(c) and 5(c), respectively, in order to
explain the influence of κy on the vortex chains. As shown
in Figs. 8(a) and 9(a), the vortex chain is not observed for
κy = 0.7, whereas in Figs. 8(b) and 9(b), the vortex chain is
observed for κy = 1.2. Figure 9(c) further plots the density
profile of the vortex chain in Fig. 8(b). By comparing Fig. 9(c)
with Figs. 3 and 7, the total density profile is not smooth.
Meanwhile, the vortex chain locates at the center of the BECs,
not traversing the whole BECs. Therefore, not only κx but also
κy of the anisotropic SO coupling can control the formation of
the vortex chain.

We have also performed simulations with the antiferro-
magnetic BECs of 23Na, where gs > 0. We find that the
vortex chain phenomenon can occur as long as the anisotropic
SO coupling of κx (κy = 0) is strong enough. Compared
with Ref. [24], which also uses the anisotropic SO coupling,
the mechanism for obtaining the vortex chain is the same.
However, the structure of the vortex chain in the spin-1 BECs
is indeed more complicated than that in the pseudospin-1/2
BECs, where the vortices interlacedly array to form a chain.

V. VORTEX CHAINS AND THE RELATED VORTEX
CONFIGURATION

Figures 1–9 have shown the vortex chain phenomena
induced by the anisotropic SO coupling in spin-1 BECs,
where the vortex chain is always accompanied by various

vortex configurations. In Refs. [3,5], vortices are characterized
by the winding numbers of three components (ψ1,ψ0,ψ−1),
when the vortex number of each component is no more
than 1. However, this characterization is not appropriate to
describe the vortex chains in this paper. For characterizing
the vortex configuration more conveniently, we write down
the winding numbers for every component, and at the same
time we use the subscript 1 to denote that the vortices
overlaps completely, i.e., the minima of the density profile
of the (ψ1,ψ0,ψ−1) components are at the same position, and
the subscript 3 if the minimum density region of the three
vortices is completely separated. For example, in this way, we
characterize the Mermin-Ho and Anderson-Toulouse coreless
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FIG. 9. (Color online) (a) The position of vortices in rotating
spin-1 BECs of 87Rb in Fig. 8(a). The asterisks (∗), circles (◦), and
stars (�) are the position of vortices formed by the mF = −1, mF = 0,
and mF = +1 components, respectively. (b) The position of vortices
in rotating spin-1 BECs of 87Rb in Fig. 8(b). (c) The profile of vortex
chain in Fig. 8(b). The length unit and strength of SO coupling are
0.76 μm and 0.96 × 10−3 m/s, respectively.
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vortices as (10,2−1)1 or (01,10,2−1)1 [3,5], where, in the
bracket, 01 denotes the mF = 1 vortex with winding number
0, 10 denotes the mF = 0 vortex with winding number 1, 2−1

denotes the mF = −1 vortex with winding number 2, and the
subscript 1 out the bracket means that the two vortices overlap.
In addition, the nonaxisymmetric 〈1,1,1〉 vortices in Refs. [3,5]
can be presented as (11,10,1−1)3, i.e., the three components
contain a vortex with winding number 1, respectively, and they
locate at three separated positions. Likewise, we characterize
the three-vortex structure reported in Ref. [15] as 〈1−1,10,11〉3.
We use the angle brackets (parenthesis) to indicate the vortices,
where the total density has (does not have) a local minimum
at the region of the vortices.

With this description, the vortex chain in Figs. 1(a)–1(c) and
3(c) can be characterized by 〈〈1−1,11〉1,10〉2 × n, where the
overlapped vortices of the mF = −1 and mF = 1 components
are denoted by 〈1−1,11〉1. The separation of the 〈1−1,11〉1

vortices and the 10 vortices is described by the subscript
2, and ×n denotes that there are n 〈〈1−1,11〉1,10〉2 vortex
configurations linking one after another to form a chain. The
vortex chain in Fig. 5(b) can be written as [〈11,10,11〉3 +
〈1−1,10,1−1〉3] × n.

The off-x-axis vortex configuration in Fig. 2(b) can be
presented as the 〈1−1,10,11〉3 vortices. In Fig. 6(c), the vortex
configuration near y = ±5 can be written as the 〈1−1,10,11〉1

vortices, due to the minimum densities of the three components
located at the same position. Generally, the total density
profile always tends to be nonsingular and continuous although
the vortices occur in the spin-1 BECs [30]. However, the
〈1−1,10,11〉1 vortices are an unusual case, behaving like a
singular vortex in the single-component BEC.

Our results show that the phases of the mF = −1 and mF =
1 components always tend to be synchronous in the developed
vortex-chain structure, such as the 〈〈1−1,11〉1,10〉2 × n vortex
chain obtained by the combination of anisotropic SO coupling
and rotation shown in Figs. 1(a)–1(c), 2(a)–2(c), 5(c), and 6(c).
Even in the region near such developed vortex chains, where
the vortex configuration can be described by the 〈1−1,10,11〉1

vortices, the phases of the mF = −1 and mF = 1 components
also tend to be synchronous, which is shown in Figs. 2(c) and
6(c). As shown in Fig. 6, as κx increases from 0.5 to 1.5, the
formation of the vortex chain is changed noticeably, where
[〈11,10,11〉3 + 〈1−1,10,1−1〉3] × n vortex structure develops
into the 〈〈1−1,11〉1,10〉2 × n vortex chains. As we have already
known, the vortices of different components usually are not
overlapped, which is energetically favorable, when the SO
coupling interaction is absent. We find that κy also influ-
ences the formation of the vortex chains through comparing
Figs. 6(c) and 9(b). With the same κx as Fig. 6, κy is increased
to 1.2 in Fig. 9(b); therefore, the anisotropy in the x direction
becomes weaker in Fig. 9(b) as compared with Figs. 6(c).
Due to the decreased anisotropy, we find that the vortex
chain is fragmented, which is described by 〈11,10,1−1〉3 × 2 +
〈11,10〉2 + 〈1−1,11〉1 + 〈10,11〉2 + 〈1−1,10,11〉3 × 2. Corre-
spondingly, the 〈1−1,10,11〉1 vortices configurations become
the 〈1−1,10,11〉3 configurations, where the phases of the
mF = −1 and mF = 1 components around the vortices tends
to be nonsynchronous. For clarity, we summarize the results
in Table I. The first column shows the strength of anisotropic
SO coupling and the rotation frequency, the second column

indicates the characterization of the vortex chain, the third
column shows some other vortex configurations, and the fourth
column shows the figures where the vortex chain appears.

Similarly, the vortex chain in the pseudospin-1/2 BECs
[14,24] can be approximately presented by 〈1↑,1↓〉2 × n. In
Ref. [23], Radić et al. solve the dimensionless GP equations
[Eqs. (22)] and obtain the vortex chain (the line of vortices)
along the x axis, where the total density at minima is close to
but not exactly equal to zero. This property implies the vortex
formed by the two condensates should overlap with each other.
So the chain can be written as 〈1↑,1↓〉1 × n. Our dynamical
Eqs. (1) uses the anisotropic SO coupling on the x-y plane,
where the σz term and the spatially dependent δ(y) term have
not been considered as in Ref. [23]. Therefore, our results
concerning vortex chain differ from those in Ref. [23].

VI. SPIN TEXTURE OF THE VORTEX CHAIN

Usually, the vortex configuration can cause some topolog-
ical excitation of the spin texture. The spin texture [6–8] is
defined by

Sα =
∑

m,n=0,±1

�∗
m(F̂α)m,n�n/|�|2(α = x,y,z), (3)

and the topological charge density is defined by q(r) =
1

4π
s · ( ∂s

∂x
× ∂s

∂y
), where s = S/|S|. Since we have introduced

the vortex chain excitation, we want to further explore
the corresponding spin texture. In order to investigate the
topological excitation of the vortex chain, we check the
spin texture of the vortex chains and vortex configurations
obtained by various cases. As shown in Fig. 10(a), which
corresponds to Fig. 5(b) under a small anisotropy SO cou-
pling (κx = 0.5, κy = 0), where the obtained vortex chain is
described by [〈11,10,11〉3 + 〈1−1,10,1−1〉3] × n, we find that
the 〈11,10,11〉3 vortex configuration relates to the circular
skyrmion, while the 〈1−1,10,1−1〉3 vortex configuration relates
to the hyperbolic skyrmion. Figure 10(b) corresponds to
Fig. 5(c) under a large anisotropy (κx = 1.5, κy = 0), and
Figure 10(c) is the corresponding topological charge density.
Being described by 〈〈1−1,11〉1,10〉2 × n, the obtained vortex
chain is more developed and induces the domain of the two
counterorientation arrows of the spin texture. In the regions
of the 〈1−1,10,11〉3 vortices, we find the half-skyrmion and
the nonzero topological charge densities, which is consistent
with the previously reported three-vortex configuration in
the isotropic SO-coupled spin-1 BECs [15]. No spin texture
is found for the 〈〈1−1,11〉1,10〉2 × n vortex chain, and the
topological charge density is around zero in the region of the
vortex chain and the 〈1−1,10,11〉1 vortices, which coincides
with the general cases whereby 〈1−1,10,11〉1 vortices usually
do not cause nontrivial topological excitation. These properties
indicate that the entire vortex configuration cannot induce
the nontrivial spin texture. Figure 10(d) is the spin texture
of vortex chain obtained in Fig. 8(b) (κx = 1.5, κy = 1.2),
which corresponds to an intermediate strength of anisotropy,
as compared with Figs. 10(a) and 10(b). Some half-skyrmion
structure caused by 〈1−1,10,11〉3 vortices prevails, instead of
the domain wall of the opposite arrows obtained in Fig. 10(b)
for the larger anisotropy. The results shown in Fig. 10 indicate
the relationship between the vortex configuration and the spin
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TABLE I. A summary of the results in above text. The first column indicates the parameters, the second column shows the characterization
of the vortex chain, the third column shows some other vortex configurations, and the fourth column indicates the pictures where the results
appear.

Vortex chain Other vortex configuration Where

(κx = 1,κy = 0)�=0.2ω 〈〈1−1,11〉1,10〉2 × n No Fig. 1(a)
(κx = 1,κy = 0)�=0.3ω 〈〈1−1,11〉1,10〉2 × n 〈1−1,10,11〉3 Fig. 1(b)
(κx = 1,κy = 0)�=0.5ω 〈〈1−1,11〉1,10〉2 × n 〈1−1,10,11〉3, 〈1−1,10,11〉1 Fig. 1(c)
(κx = 0.1,κy = 0)�=0.5ω No vortex chain 〈1−1,10,11〉3, 〈11,10,11〉3, 〈1−1,10,1−1〉3 Fig. 5(a)
(κx = 0.5,κy = 0)�=0.5ω [〈11,10,11〉3 + 〈1−1,10,1−1〉3] × n 〈1−1,10,11〉3 Fig. 5(b)
(κx = 1.5,κy = 0)�=0.5ω 〈〈1−1,11〉1,10〉2 × n 〈1−1,10,11〉3, 〈1−1,10,11〉1 Fig. 5(c)
(κx = 1,κy = 0.7)�=0.5ω No vortex chain 〈1−1,10,11〉3 Fig. 8(a)
(κx = 1.5,κy = 1.2)�=0.5ω 〈11,10,1−1〉3 × 2 + 〈11,10〉2 + 〈1−1,11〉1 〈1−1,10,11〉3 Fig. 8(b)

+〈10,11〉2 + 〈1−1,10,11〉3 × 2

texture. When the phases of vortices formed by the mF = −1
and mF = 1 components are synchronous, the vortex config-
uration does not induce the nontrivial topological excitation
of the spin texture. This means that we must ensure that
the corresponding vortex excitation of the mF = −1 and
mF = +1 components not to overlap in order to produce some
topological excitation of spin texture such as skyrmion.

FIG. 10. (Color online) (a) Vortex position and spin texture of
spin-1 BECs of 87Rb in Fig. 5(b), where κx = 0.5, κy = 0, and
� = 0.5ω. The color of each arrow indicates the magnitude of Sz.
The asterisks (∗), circles (◦) and stars (�) mark the position of vortices
formed by the mF = −1, mF = 0, and mF = +1 components,
respectively. Noting that we only mark the vortices in x < 0 region
in order to illuminate the spin texture and position of vortices clearly.
(b) Vortex position and spin texture of spin-1 BEC of 87Rb in
Fig. 5(c), where κx = 1.5, κy = 0, and � = 0.5ω. (c) Topological
charge density and vortex position in Fig. 5(c). (d) Vortex position
and spin texture of spin-1 BEC of 87Rb in Fig. 8(b), where κx = 1.5,
κy = 1.2, and � = 0.5ω. The length unit and strength of SO coupling
are 0.76 μm and 0.96 × 10−3 m/s, respectively.

Figure 11(a) enlarges the spin texture which is induced
by the vortex chain 〈〈1−1,11〉1,10〉2 × n in Fig. 10(b). It
is a domain wall between two groups of opposite arrows.
According to Fig. 7(c), the density profiles of the mF = −1
and mF = 1 components are equal, and the density difference
of the mF = −1 and mF = 1 components corresponds to the
Sz vector of the spin texture. We find the spin texture can be
presented by

Sxc = tanh[c1(y + c2)], Syc = 0, Szc = 0. (4)

Figure 11(b) is the result with Eq. (3), where c1 = −2.5 and
c2 = 0.05. We find that Eq. (3) can well describe the spin tex-
ture induced by the vortex chain 〈〈1−1,11〉1,10〉2 × n through
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FIG. 11. (Color online) (a) The enlarged spin texture in Fig. 10(b).
(b) The spin texture with Eqs. (3), where c1 = −2.5 and c2 = 0.05.
(c) A comparison between the spin vector Sx and the function
tanh[−2.5(y + 0.05)] along the y axis.
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comparison of Fig. 11(a) and Fig. 11(b) and comparison of the
spin vector Sx with the function tanh[−2.5(y + 0.05)] along
the y axis shown in Fig. 11(c).

VII. CONCLUSION

We have investigated SO-coupled spin-1 BECs under
the rotation by using damped PGPE. The anisotropic SO
coupling causes the vortex chains and some special vortex
configurations such as the 〈1−1,10,11〉1 vortices. The vortex
chains are found to be the consequences of the domain
wall of two opposite plane-wave phases. The rotation effect
mainly affects the number of vortices in the vortex chain.
The isotropy of SO coupling destroys the vortex chain and
causes the vortex chain to degenerate into the 〈1−1,10,11〉3

vortices. Furthermore, our study systematically illuminates
the relationship between the vortex configuration and the
nontrivial spin texture. We find that the vortex configurations
do not relate to some topological excitation of spin texture

when the phases of the vortices formed by the mF = −1 and
mF = +1 components are synchronous. This study provides
exciting perspectives for nonlinear physics of condensates in
artificially induced non-Abelian gauge fields.
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