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Spin-orbit coupling effects on the superfluidity of a Fermi gas in an optical lattice
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We investigate the superfluidity of attractive Fermi gas in a square optical lattice with spin-orbit coupling
(SOC). We show that the system displays a variety of new features. At half filling, SOC induces a Dirac semimetal
and the system undergoes a semimetal-superfluid transition. Near half filling, we find that the superfluidity tends
to be suppressed due to the emerging Dirac cones. While for small fillings, SOC can induce a BCS-BEC crossover
beyond the conventional attractive Hubbard model, which is characterized by a bound state in the lattices.
Moreover, we demonstrate that the superfluid density also exhibits many unusual properties in the lattices.
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I. INTRODUCTION

The spin-orbit coupling (SOC) plays a central role in
the search for novel topological states in solid state physics
[1,2]. This has stimulated tremendous interests in creating
artificial non-Abelian gauge fields in ultracold atom systems
[3]. The successful realization of SOC in both Bose-Einstein
condensate (BEC) [4–6] and Fermi gas [7,8] opens up a
new avenue towards studying the rich physics of spin-orbit
(SO) -coupled ultracold atoms [9–13]. One of the important
advances is that SOC was shown to have fundamental effects
on the superfluidity of continuous Fermi gases [14–20].

On the other hand, remarkable progress has been made
to simulate the Fermi-Hubbard model using ultracold atoms
loaded into an optical lattice [21,22] to address the most
challenging problems [23]. In particular, the simulation and
investigation of attractive Hubbard model [24] has attracted
special interests for the superfluidity of fermionic atoms
away from resonance [25–28], which is also a basic model
for many superconducting materials [29]. Recently, SOC
has been combined with the optical lattices to study many
interesting physics for the repulsive Hubbard model [30–32].
Nevertheless, the superfluidity of SO-coupled lattices for
attractive Fermi gas remains a new frontier to be explored.

In this paper, we shall focus on the Hubbard regime of
a Fermi gas in a square optical lattice with SOC. Such a
system can be described by a generalized negative-U Hubbard
model. We show that, the introduction of SOC into the lattices
makes this system differ entirely from the continuum models
and gives rise to a variety of new features. First, SOC in a
square optical lattice can induce four Dirac cones, which offers
a unique system to study the superfluidity of a semimetal,
where we predict the existence of a semimetal-superfluid
transition with Uc/t � 3.11 for large SOC at half filling. We
find that while the superfluidity tends to be suppressed due
to the emerging Dirac cones near half filling, SOC can lead
to a BCS-BEC crossover beyond the conventional attractive
Hubbard model for small fillings, which is characterized
by a bound state in the lattices. Such an evolution from
SOC-induced Dirac superfluidity to the BCS-BEC crossover
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makes this system an ideal playground for the investigation of
emerging physics in the Fermi-Hubbard model. Moreover, the
superfluid density also presents many unusual features in this
SO-coupled optical lattice.

This paper is organized as follows: We first present the
model and discuss the single-particle spectrum in Sec. II.
Then in Sec. III, we derive the formulation and the effective
spin model via the strong-coupling expansion. In Sec. IV,
we analyze the pairing gap and phase transitions at zero
temperature. Also, we discuss the finite-temperature phase,
which is important for real experiments. After that, we
investigate the SOC effects on the condensate and superfluid
densities in the lattices in Sec. V. Finally the experimental
feasibility of actual realization of the system is discussed in
Sec. VI.

II. THE MODEL AND ENERGY SPECTRUM

We consider a two-component Fermi gas subject to an
optical square lattice. In the tight-binding approximation, the
Hamiltonian of the system reads

H = −t
∑
〈ij〉

∑
σσ ′

(c†iσRij cjσ ′ + H.c.)

−U
∑

i

ni↑ni↓ − μ
∑

i

ni, (1)

where t is the overall hopping amplitude and c
†
iσ is the

creation operator for spin-up (down) fermion σ = ↑,↓ at site
i. The nearest sites tunneling matrices Rij = ei �A·(�rj −�ri ) with
�A = λ(σx,σy) the non-Abelian gauge field [30–33], and λ is the

strength of Rashba SOC [34] [see Fig. 1(a)]. Here, the diagonal
term of Rij denotes the spin-conserved hopping, while the
nondiagonal term can be realized by the Raman laser-assisted
spin-flipped tunneling [35]. U is the on-site attraction strength
which can be tuned by Feshbach resonances and μ is the
chemical potential. n = 〈ni↑ + ni↓〉 is the filling factor.

Figure 1(b) shows the band structure of noninteracting
fermions, where SOC lifts the spin degeneracy and gives rise
to two split Rashba bands. Remarkably, the two bands intersect
linearly at � = (0,0), M = (π,0),(0,π ), and K = (π,π ). The
zero energy Fermi surfaces at half filling are shown in Fig. 1(c),

1050-2947/2013/88(6)/063637(6) 063637-1 ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.063637


Q. SUN, G.-B. ZHU, W.-M. LIU, AND A.-C. JI PHYSICAL REVIEW A 88, 063637 (2013)

(a)

(c)

(b)

(d)

FIG. 1. (Color online) (a) SO-coupled square optical lattice,
where Rx(y) denotes the non-Abelian hopping matrix along x(y)
direction. (b) Energy bands of noninteracting fermions with λ =
3π/10 for illustration. (c) Zero energy Fermi surfaces at half filling,
where the filled particle (blue) and hole (red) Fermi pockets represent
the up and down Rashba bands, respectively. The green dots denote
two zero energy Fermi points at M . (d) Density of states ρ(E) for
λ ∈ [0,π/2].

where we have a particle (hole) Fermi pocket around � (K)
which is associated to the up (down) Rashba band, respectively.
Note that there always exist two zero energy Fermi points
located at M for any λ 
= 0. Specifically, when λ = π/2, both
the particle (hole) Fermi pockets shrink to Fermi points at
zero energy, and there develops a semimetal with four Dirac
cones at �, K , and M . Figure 1(d) shows the density of
states (DOS) ρ(E) of single-particle excitation over the regime
λ ∈ [0,π/2]; we see that when λ = π/2, ρ(E) ∝ |E|, which
vanishes linearly around zero energy.

III. THE FORMULATION AND
STRONG-COUPLING ANALYSIS

We write the partition function of Eq. (1) as Z =∫
D[ψ̄,ψ]e−S[ψ̄,ψ] with S[ψ̄,ψ] = ∫ β

0 dτ [
∑

σ ψ̄σ ∂τψσ +
H (ψ̄,ψ)]. Then, by decoupling the attractive term in normal
and anomalous channels through a pairing field �i(τ ) =
Uψi↓(τ )ψi↑(τ ), we can obtain the effective action Seff =∑

i

∫ β

0 dτ
|�i (τ )|2

U
− 1

2 Tr lnG−1 + β
∑

k εk. Here the inverse
Green function is given by

G−1 =
(

∂τ + εk + λk −iσy�i(τ )

iσy�̄i(τ ) ∂τ − εk + λ̄k

)
, (2)

with εk = −2t cos λ(cos kx + cos ky) − μ̄ and λk =
−2t sin λ(sin kxσx + sin kyσy), λ̄k is the complex
conjugate of λk , and μ̄ = μ + Un/2 is the scaled chemical
potential. Furthermore, we set �i(τ ) = � + δ� and write

G−1 = G−1 + � with G−1 = G−1|�i (τ )=�, and � represents
the fluctuation δ� of the pairing field. Then, to the second
order of �, the effective action can be expanded as Seff �
S0 + �S with S0 = βN

U

∑ |�|2 + 1
2

∑
k,ν=±[ β

2 (εk − Ek,ν) −
ln(1 + e−βEk,ν )], and �S ≡ ∑

q �−1(q)δ�̄(−q)δ�(q) =
N
U

∑
q δ�̄(−q)δ�(q) + 1

4 Tr[G(k)�(−q)G(k − q)�(q)]. Here

k = (k,iwn), q = (q,iνn), and Ek,± =
√

ξ 2
k,± + �2 with

ξk,± = εk ± 2t sin λK being the two Rashba branches,
K ≡ √

sin2 kx + sin2 ky . At the mean-field level, the
many-body ground state of the system can be derived by
minimizing S0/(Nβ) with respect to � and μ, and we have
the following gap and Fermi density equations:

1

U
= 1

N

∑
k,ν=±

1

4Ek,ν

tanh

(
βEk,ν

2

)
,

(3)

n = 1 − 1

N

∑
k,ν=±

εk

2Ek,ν

tanh

(
βEk,ν

2

)
.

To proceed, it’s beneficial to consider the large attraction
limit with U/t  1 in such a lattice model. In this case, we can
explore the strong-coupling expansion for Eq. (1) through the
canonical transformation ci↑ → ci↑ and ci↓ → (−1)ix+iy c

†
i↓

[36]. For any band filling, we derive an effective spin model

Hspin = J
∑
〈ij〉

Si · Sj − 2μ̄
∑

i

Sz
i , (4)

with J = 4t2/U , where the pairing field operator becomes
the transverse magnetic operator. Surprisingly, we find that
Eq. (4) applies for arbitrary SOC, and the system favors an
antiferromagnetic order in the XY plane for μ̄ 
= 0, which is
equivalent to the pairing order of Eq. (1). This means that, in
the large U limit, SOC has little influence on the superfluidity
of the system, because all the fermionic atoms form tightly
bound molecules and give rise to a Kosterlitz-Thouless (KT)
transition of BEC. Whereas, in the weak and intermediate
attraction regions, SOC introduces fundamental effects into
the lattices as shown below.

IV. THE PAIRING GAP AND PHASE TRANSITIONS

The pairing gaps at zero temperature are illustrated in
Fig. 2. First for half filling (n = 1), Fig. 2(a) shows that the
BCS gap decreases monotonically with respect to λ. This
could be understood that, the Fermi pockets around � and
K [see Fig. 1(c)] tend to form the Fermi points at EF = 0
by increasing SOC, which causes a suppression of DOS
at zero energy [see Fig. 1(d)]. Specifically, when λ = π/2
the system becomes a semimetal, which is expected to be
stable towards small attractions. On the other hand, when
U/t  1 the system should support a superfluid state of bound
molecules as indicated by the effective spin model of Eq. (4)
[37]. Hence, there must undergo a significant quantum phase
transition (QPT) from a semimetal to a superfluid by increasing
attractions [see the thick vertical line of Fig. 2(a).] In the
inset, we show that the critical value Uc/t � 3.11. Such a
QPT should be observed close to λ = π/2, where a finite gap
develops above Uc/t .
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FIG. 2. (Color online) (a) Plot of � versus λ at half filling for
different U/t . Inset shows a semimetal-superfluid QPT with Uc/t �
3.11. (b) Plot of � and (c) μ versus λ with U/t = 2 for different
fillings. (d) Pairing gap as a function of U/t for two typical fillings
with n = 0.1 (red) and 0.95 (blue). Solid and dashed lines represent
λ = 0 and π/2, respectively.

The situation would change remarkably upon dopings, as
shown in Fig. 2(b). Without loss of generality, we focus on
the hole doping case due to the particle-hole symmetry of the
system. First for small dopings, similar to that of half filling,
the superfluidity is governed by emerging Dirac cones at zero
energy and � is suppressed by increasing λ (see n = 0.95).
However, when close to λ = π/2, the doping would make the
QPT at half filling unstable and opens a gap. This produces a
nonmonotonic behavior of � with a minimum at λmin, while
for large dopings, the influence of Dirac cones would diminish.
In this case, we find that SOC induces a BCS-BEC crossover,
which is characterized by � being significantly enhanced (see
n = 0.1). To understand this point, we solve the two-body
problem of Eq. (1), which is determined by �−1(iνn → ω +
i0+,q = 0) = 0 as ω + 2μ̄ = −EB and we arrive at

1

U
= 1

2

∫ |E0|

E0

ρ(E)dE

2E + (|EB | − 2E0)
, (5)

where E0 denotes the bottom value of the energy spectrum.
First for λ = 0, the system reduces to the attractive Hubbard
model. The binding energy |EB |/t ∼ 0 in the weak attraction
region U/zt < 1 (z = 4 is the number of the nearest neighbor)
and becomes very large for U/zt  1, evolving from loosely
local pairs (BCS) to tightly bound molecules (BEC) [29].
However, when SOC is added to the lattice, |EB |/t will be
significantly enhanced (left panel of Fig. 3). Note that the states
around E0 mainly contribute to the resonant scattering and the
DOS around E0 is increased by λ; we should have larger value
of |EB | − 2E0 in Eq. (5) to keep the balance of the equation.
At the same time, E0 also increases with λ [see Fig. 1(d)],
giving rise to the enhancement of |EB |. In particular, the right
panel shows a remarkable growth of |EB |/t from nearly zero
in the weak attraction regions, which signifies the formation
of SOC-induced bound states (see U/t = 2,3, for example).
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FIG. 3. (Color online) Binding energy EB/t as a function of U/t

(left panel) and strength λ of SOC (right panel).

In general, such an evolution from Dirac superfluidity to the
BCS-BEC crossover is the unique feature of the system, where
both the SOC and lattices themselves play a fundamental
role. Figure 2(c) shows the corresponding chemical potentials.
For large fillings, we see that μ decreases with λ due to the
formation of Dirac cones. On the other hand, μ is increased
unexpectedly for small fillings. This is in contrast with the
general arguments that the chemical potentials are always
reduced by the bound states in free space. In Fig. 2(d), we plot
� as a function of U/t . Significantly, we show that strong SOC
can remarkably enhance (n = 0.1) or suppress (n = 0.95)
the pairing gaps of the traditional BCS-BEC crossover in
the attractive Hubbard model, especially in the weak and
intermediate attraction regions. Whereas in the large attraction
limit, � approaches the λ = 0 results, in accordance with
Eq. (4).

In the above, we have discussed the pairings of the
superfluidity at zero temperature. Experimentally, it would
be virtually impossible to reach zero temperature. Thus
the discussion on finite-temperature phases is much more
important. In Figs. 4(a) and 4(b), we plot the gap versus λ

at finite temperature T for two typical fillings. We see that
the evolution from the Dirac cone dominated superfluidity at
high filling to the BCS-BEC crossover at low filling can be
clearly observed even at finite temperatures. Furthermore, we
present the finite-temperature phase transition at half filling
near λ = π/2 in Fig. 4(c). We find that, the system undergoes
a normal state to a superfluid state phase transition above
a critical value Uc, which approaches the zero temperature
semimetal-superfluid QPT point with decreasing temperature.

V. EFFECTS OF SOC ON THE CONDENSATE AND
SUPERFLUID DENSITIES IN THE LATTICES

Now, we turn to the investigation of condensate and
superfluid densities in the SO-coupled lattices. First, the
condensate density nc = 1

N

∑
k,σ,σ ′ |〈ψkσψ−kσ ′ 〉|2 [38], where

the singlet and induced triplet pairing fields 〈ψk↑ψ−k↑〉 =
−�

4 e−iθk
∑

ν
ν

Ek,ν
and 〈ψk↑ψ−k↓〉 = −�

4

∑
ν 1/Ek,ν with θk =

arg(sin kx + i sin ky). While for the superfluid density, we
impose a phase twist on order parameter � → �ei∇θ ·�rj by a
local unitary transformation ψj → ψje

iθ(�rj ). Then, the inverse
Green function can be written as G−1[�,∇θ ] = G−1[�] +
�[∇θ ]. After lengthy but straightforward calculations, we
derive a classical XY model HXY = 1

2J
∫

d2r[(∂xθ )2+(∂yθ )2]
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FIG. 4. (Color online) (a), (b) Plot of � versus λ at finite
temperature T for two typical fillings with n = 0.1 (left) and n = 0.95
(right), U/t = 2. (c) The finite-temperature phase transition of pairing
gap as a function of U/t at half filling for λ = π/2. T/t = 0 (solid
line), 0.1 (dashed line), and 0.2 (dash-dotted line).

with J the phase stiffness. Therefore, the superfluid density
can be defined as ρs = J

2tN
, which reads

ρs = cos λ

N

∑
k

cos kxnk

+ sin λ

N

∑
k,ν

νξk,ν

2Ek,ν

sin2 kx

K tanh

(
βEk,ν

2

)

+ 2t

N

∑
k,ν

f ′(Ek,ν) sin2 kx

(
cos λ + ν

sin λ cos kx

K

)2

− sin λ

N

∑
k,ν

ν
ε2

k + ν2t sin λKεk + �2

2εkEk,ν

sin2 ky cos2 kx

K3

× tanh

(
βEk,ν

2

)
. (6)

Here nk = 1 − ∑
ν=±

εk
2Ek,ν

tanh( βEk,ν

2 ) and the third term
vanishes at T = 0. Note that, Eq. (6) can give rise to many
intriguing features.

Figure 5(a) shows the condensate fraction nc versus λ for
different fillings. First for n = 0.1, we see that nc increases
rapidly above a characteristic value λc, in accordance with the
formation of SOC-induced bound states. The characteristic
value λc grows with increasing fillings, and until n � 0.7, nc

begins to decrease with respect to λ and the BCS superfluidity
would be suppressed (see n = 0.95, for example). Instead,
the superfluid fraction ρs is always suppressed by SOC and
generally decreases with increasing n, as shown in Fig. 5(b).
Significantly, there exhibits a characteristic minimum of λ,
which moves rightward when n is increased.

In Figs. 5(c) and 5(d), we plot nc and ρs as a function of U/t .
We show that, in the weak and intermediate attraction regions,
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FIG. 5. (Color online) (a) Condensate density nc and (b) super-
fluid density ρs (both divided by n) at T = 0 as a function of λ for
different fillings, where we take U/t = 2. (c) Plot of nc and (d) ρs

versus U/t for two typical fillings with n = 0.1 (red) and 0.95 (blue).
Solid and dashed lines represent λ = 0 and π/2, respectively.

while the condensate fraction is greatly enhanced (n = 0.1)
or suppressed (n = 0.95) by strong SOC in accordance with
the pairing gaps, the superfluid fraction always decreases with
increasing U/t and λ. Whereas in the large attraction limit,
where all the atoms form tightly bound molecules, both nc and
ρs will approach the results without SOC.

VI. DISCUSSION AND CONCLUSION

We now discuss some issues related to the experiments.
First, the superfluidity discussed in this system is quite differ-
ent from that induced by a Feshbach resonance [39], where
a two-channel model applies. For a broad resonance where
the molecular state in the closed channel is negligible, the
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FIG. 6. (Color online) Plot of superfluid transition temperature
Tc (solid lines) versus λ for n = 0.1 and n = 0.95 (inset), U/t = 2.
The dashed and dash-dotted lines represent the mean-field and KT
temperatures, respectively.
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optical lattices can be well described by the Hubbard model as
the scattering length as � a (lattice spacing) [21,26,40] or far
from the resonance [41,42]. Actually, both the repulsive [23]
and attractive [24] Hubbard models have been successfully
realized in 40K atoms. Second, many ingenious techniques
have been proposed to reach the superfluidity induced by a
Hubbard U attraction [11,25]. Recently, exciting advances
have been made to approach the antiferromagnetic order
[43] or detect the preformed pairs in the attractive Hubbard
regime [24]. Finally, we plot the normal-superfluid transition
temperature Tc versus λ for two typical fillings in Fig. 6.
For n = 0.95, Tc is obtained by the mean-field equations and
suppressed with increasing SOC. Instead, Tc is considerably
enhanced in the strong SOC regime for n = 0.1 with KT
transition temperature TKT = πJ /2.

At finite temperature, the long-range order cannot survive in
a two-dimensional system. The low-energy excitations of the
“superfluid phases” are bound vortex-antivortex pairs, which
are captured by the classical phase variation model of pairing
fields. Note that, the derived phase variation model in our
system is the usual XY model; while the SOC mainly affects
the superfluid stiffness, one can ignore the SOC effects on
those bound vortex-antivortex pairs. This differs from the

boson gas, where the SOC-induced stripe phase gives rise
to much involved phase variations and fractionalized vortices
(see Ref. [44], for example).

In conclusion, we have shown that this system displays a
variety of emerging physics. The introduction of SOC into the
lattices can induce Dirac semimetal and the system undergoes
an interesting semimetal-superfluid transition. While upon
dopings, the system evolves from the Dirac superfluidity near
half filling to the SOC induced BCS-BEC crossover at small
fillings, which is characterized by the formation of a novel
bound state in the lattices. This system may stimulate more
interest in searching new physics beyond the conventional
Fermi-Hubbard model in experiments.
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