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Impact of scalar potentials on cold atoms with spin-orbit coupling
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When a gauge potential is constructed from the Berry phase, there is an associated scalar potential coming with
the gauge potential. In this paper, we investigate the impact of this scalar potential on cold atoms by constructing
an artificial gauge potential in a cold-atomic system. We interpret the scalar potential as the coupling between the
atom and the mass of the non-Abelian part of the gauge potential. We demonstrate that the gauge potential can
produce spin-orbit coupling and that the scalar potential will suppress the spin Hall currents which are generated
by spin-orbit coupling. We also discuss the observation of these phenomena in a real experiment.
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I. INTRODUCTION

Spin-orbit (SO) coupling, which is the interaction between
the spin and momentum of a particle, is related to many effects
in condensed matter physics; especially it is essential for the
spin Hall effect [1,2] and topological insulators [3,4]. Recently,
with the realization of various artificial gauge potentials,
the cold-atom systems also can be designed to simulate SO
coupling [5–8]. This opens a new arena to explore novel effects
in cold atoms [9–27]. The key to simulating SO coupling is the
synthesis of non-Abelian gauge potentials by engineering the
interactions between atoms and lasers [8]. Non-Abelian gauge
potentials are known to play a crucial role in understanding
fundamental interactions in particle physics. In condensed
matter physics, non-Abelian gauge potentials also appear in
studies on the mechanism of high-Tc superconductivity [28]
and graphene [29]. There is no doubt that, to achieve SO
coupling with spin 1/2 in cold atoms, the minimal symmetry
of the gauge potentials is required to be SU(2).

The interactions between atoms and lasers can be viewed
as an adiabatic approximation of the system, and then the
Berry phase exists, these are the reasons why engineering
the interactions between atoms and lasers can produce non-
Abelian gauge potential. However, in the process of emerging
gauge potential, a scalar potential also emerges. This scalar
potential cannot be removed, because it originates from the
process of constructing the gauge potential. In the current
research, one often only pays attention to the investigation of
the gauge potential, while ignoring the impact of the scalar
potential on the system. In fact, as this paper is to reveal, the
scalar potential also has a remarkable effect on the system;
therefore, it is also worth investigating the scalar potential.
This investigation will give us a better understanding of SO
coupling systems which are produced by the artificial non-
Abelian gauge potential.

The paper is organized as follows. In Sec. II, we synthesize
a SU(2) gauge potential in cold atoms. In the process of
synthesize of the gauge potential, a scalar potential will
emerge. In Sec. III, we redefine the SU(2) gauge potential,
and by reducing the redefined SU(2) gauge potential to the
U (1) potential, we interpret the scalar potential as a coupling
between the atom and the mass of the non-Abelian part of the
gauge potential. In Sec. IV, we show that the SU(2) gauge
potential can produce SO coupling, and the scalar potential
will suppress the spin Hall currents which are generated

by spin-orbit coupling. We discuss how to observe these
phenomena in a real experiment by detecting spin Hall currents
in Sec. IV. Finally, a brief conclusion is given in Sec. VI.

II. SCALAR POTENTIAL ASSOCIATED WITH GAUGE
POTENTIAL IN COLD ATOMS

We consider a cold-atom system with each atom having
a three-level �-type configuration, as shown in Fig. 1. Two
ground states |g1〉 and |g2〉 are coupled with an excited state
|e〉 through laser fields. The Rabi frequencies are taken as
�1 = �

2 [exp(ik · r) + exp(ik′ · r)] and �2 = �
2i

[exp(ik · r) −
exp(ik′ · r)], in which k and k′ are the wave vectors of lasers,
k′ = eiϕk, r is the position vector, and ϕ is the angle between
the lasers as shown in Fig. 1(b). The total Rabi frequency
is given by � = (|�1|2 + |�2|2)1/2. The Hamiltonian reads
H = Hk + HI , in which Hk = p2/2m is the kinetic energy of a
single cold atom, p is the momentum, and m is the atomic mass.
The interacting Hamiltonian is given by HI = 2�|e〉〈e| +
(�1|e〉〈g1| + �2|e〉〈g2| + H.c.), where � is the detuning.

By defining Q = k + k′ as the total wave vector of
laser fields and q = k − k′ as the relative wave vector, the
eigenvectors of interacting Hamiltonian can be expressed as

|χD1〉 = − sin θ |g1〉 + cos θ |g2〉,
|χD2〉 = − exp(iφ) sin δ|e〉 + cos δ cos θ |g1〉

+ cos δ sin θ |g2〉, (1)

|χ3〉 = exp(iφ) cos δ|e〉 + sin δ cos θ |g1〉
+ sin δ sin θ |g2〉,

with eigenvalues of 0, �
2�

, and 2�, respectively, in which

δ = arctan[(�2

�2 + 1)1/2 − �
�

], φ = 1
2 Q · r, θ = 1

2 q · r.
For large detuning, we can neglect the eigenvalue 2� and

assume that the other two eigenvalues are degenerate. Hence,
by utilizing the Berry phase, the remaining two eigenvectors
of the interacting Hamiltonian give rise to an effective SU(2)
gauge potential Aαβ = −i〈χα|∇|χβ〉, α,β = D1,D2, with its
explicit expression

A = 1
2 qσy + 1

4δ2Qσz, (2)

where σi,i = x,y,z are the Pauli matrices. Also, a scalar po-
tential Vαβ = 1

2m
〈∇χα|∇χβ〉 + 1

2m
|〈χα|∇|χβ〉|2 comes with

gauge potential A in the process of constructing A, with its
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FIG. 1. (Color online) (a) Configuration of three-level �-type
atoms interacting with laser fields. Two ground states |g1〉 and |g2〉
are coupled with an excited state |e〉 through laser fields. �1 and �2

are Rabi frequencies; � is a large detuning. (b) Configuration of laser
fields. Two inner laser fields (short blue arrows) are arranged to form
Rabi frequency �1, and the other two lasers (long red arrows) are
arranged to form �2. There is an angle ϕ between laser fields.

explicit expression

V =
{

1

16m
δ2[q2 − (1 + δ2)Q2] + δ

�

2

}
σz

= M0σz.

(3)

III. INTERPRETATION OF SCALAR POTENTIAL

We will give an interpretation of scalar potential V in this
section. Because the momentum p is a good quantum number,
we discuss the system in the momentum space. First, the gauge
potential A can be redefined as

A0 = γ · A, (4)

where γ = p/p is a dimensionless parameter; then neglecting
the constant terms, the effective Hamiltonian reads

H = Hk + gA0 + V, (5)

where g = p/m is a nonrelativistic dimensionless strength
factor (assuming that the light velocity c = 1).

Denote n = (nx,ny,nz) as a unit vector of gauge potential
A in SU(2) space, and define the direction vector as σ (t) =∑

i niσi(t)î, where t is time, i = x,y,z. By assuming that σi(t)
depends on time, we now study the system in the Heisenberg
representation. The definition implies that we choose the same
directions for external and internal spaces at the initial time.
Then, along the direction vector σ , A0 (see Fig. 2), which
depends on time in the Heisenberg representation, can be
decomposed to two gauge potentials A0 = A + B [30–32],
with

A = (σ · A0)σ + [∂0σ,σ ],
(6)

B = [σ,∇0σ ],

where ∇0 = ∂0 + [A0,] represents the time component of
covariant derivative, and [,] denotes the commutator. Accord-
ing to reduction theorem, when A0 is reducible to the U (1)
potential,

∇0σ = 0. (7)

This condition is actually a parallel transportation. It demon-
strates that when A0 is in parallel transportation, it becomes
U (1) gauge potential A.

FIG. 2. (Color online) Sphere surface of SU(2) gauge potential
A0. (a) At the initial time t = 0, the basic vectors of the gauge
potential σx(0), σy(0), and σz(0) point to certain directions. The
direction vector (red arrow) σ (0) points to A. (b) After time t , the
basic vectors change to σx(t), σy(t), and σz(t) directions. The direction
vector σ (t) changes along with the basic vectors and points to B. If
path AB is a parallel transportation, A0 reduces to an Abelian gauge
potential.

We now discuss gauge potential B, which can be viewed
as the non-Abelian part of A0. Taking the Planck constant
� = 1, then ∂0 = i∂t corresponds to the Hamiltonian operator,
and ∂0 in the U (1) gauge potential A becomes i∂tσ = [σ,H ].
This equation is actually the equation of motion of spin. Using
Eq. (7), ∇0σ in the gauge potential B can be written as

∇0σ = [σ,H ] + [A0,σ ] = [σ,V ], (8)

and the gauge potential B reads

B = [σ,[σ,V ]]. (9)

From this equation, it can be learned that the scalar potential
V in fact relates to the gauge potential B.

To investigate the scalar potential V further, we discuss
the action of gauge potential A0. Because A0 has only a time
component, we expand the action of this gauge potential as
S = TrF0iF0i + 1

2 TrF00F00, where 0 is the time component
and i are space component indices; the gauge strengths read
F0i = −∂iA0, F00 = [A0,A0]. As the mass term is related to
the time component of the action, thus the second term of
action S indicates a mass term. When A0 is substituted to
this term, we have 1

2 TrF00F00 = M2
BTr[B · B], in which MB

is mass. In this case, the action of gauge potential A0 has the
expression S = SA + SB , with SA = Tr[∇A · ∇A] presenting
the action of the Abelian part of gauge potential A0, and

SB = Tr[∇B · ∇B] + M2
BTr[B · B], (10)

with SB presenting the action of the non-Abelian part of A0.
Comparing SA and SB , we find that SA only has the kinetic
term, while SB not only has a kinetic term, but also a mass
term. This is obvious because in general in gauge theories,
the Abelian gauge potential does not have self-interaction,
whereas the non-Abelian gauge potential has a self-interaction
term which plays the role of the mass term.

From the expression of gauge strength F00, the mass MB in
SB reads

MB = M0/[1 + (Q · p�2q · p)2δ4]
1
2 . (11)
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For V = M0σz in Eq. (3), V can be written as

V = η′MBσz, (12)

where η′ = [1 + (Q · p�2q · p)2δ4]
1
2 is a dimensionless cou-

pling factor. It is clear that from this equation, the scalar
potential V in fact describes the coupling between the mass of
gauge potential B and the atom.

Considering gauge potentials A and B in A0, the effective
Hamiltonian in Eq. (5) can be written as

H = Hk + HA + HB, (13)

in which HA = gA presents the coupling between the Abelian
part of gauge potential A0 and the atom.

HB = gB + η′MBσz, (14)

in which gB can be viewed as the coupling between the kinetic
term of non-Abelian part of gauge potential A0 and the atom,
and the scalar potential V = η′MBσz, as explaining above,
describes the coupling between the mass term and the atom.

IV. IMPACT OF SCALAR POTENTIAL ON COLD ATOMS

Atomic trajectories impacted by scalar potential V can be
calculated from the equation of motion ṙ = −i[r,HB]. As
shown in Fig. 3(a), the contribution includes two opposite
trajectories. Figure 3(b) shows the dispersion of HB . The
dispersion is linear, and the energy does not vanish at zero
momentum due to the presence of mass MB .

The goal of synthesis of non-Abelian gauge potentials is to
simulate SO coupling in cold atoms; thus we investigate the
impact of scalar potential on SO coupling. The SO coupling
term reads HSO = gA0; namely, the whole gauge potential
A0, including Abelian and non-Abelian parts of the gauge
potential, participates in SO coupling. With Eq. (2) and Eq. (4),
the explicit expression of SO coupling is

HSO = λσy + νσz. (15)

FIG. 3. (Color online) (a) Atomic trajectories impacted by scalar
potential V . The red solid and blue dashed lines correspond to the
velocities v = 3 × 10−3 μm/s and v = 5 × 10−3 μm/s, respectively.
r and t are in units of μm and s. (b) Dispersion of coupling energy
between gauge potential B and a single atom, εB = ±(εp + η′MB ).
The solid red and dashed blue lines correspond to the coupling
strength parameters ε = 4m−1 × 10−2 and ε = 6m−1 × 10−2, respec-
tively. εB and p are in units of recoil energy εR = k2/(2m) and recoil
momentum k.

The coupling strength factors λ and ν are λ = 1
2m

q · p and
ν = 1

4m
δ2Q · p, respectively.

To investigate the impact of scalar potential on SO coupling,
a two-dimensional harmonic potential 1

2mω2(y2 + z2) is cho-
sen to trap the cold atoms. The Hamiltonian of the system
is as follows. The wave vectors of the lasers are chosen as
kx = k′

x = 0, and the internal space is rotated π/2 around the
x direction. Combining Eq. (12) and Eq. (15) yields the explicit
expression of the Hamiltonian:

H (p,r) = p2

2m
+ Q · p

4m
δ2σy + q · p

2m
σz + η′MBσz

+ 1

2
mω2(y2 + z2). (16)

By diagonalizing the Hamiltonian, we obtain

H±(p,r) = p2

2m
±

(q · p
2m

+ MB

)
+ 1

2
mω2z2

+ 1

2
mω2

(
1 ± 2m∗

MB

)
y2, (17)

in which m∗ = q2/2m is a characteristic mass of the system.
From ṙ = −i[r,H ], the time-evolved Hamiltonian can be
written as

H±(p,r,t) = p2

2m
±

(q · p
2m

+ MB

)
+ 1

2
mω2z2

+ 1

2
mω2

(
1 ± 2m∗

MB

) (
y ± q · p

2m
t
)2

. (18)

The relationship between the particle number N and trap
frequency ω is given by solving the equation

N =
∫

drn(r,t = 0,T = 0), (19)

in which

n(r,t,T ) = 1

(2π )2

∫
dp[f+(p,r,t,T ) + f−(p,r,t,T )] (20)

is the density profile of the cold atoms, fσz
= f±(p,r,t,T ) =

[eβ(H±(p,r,t)−μ) + 1]−1 are the spin-depending Fermi distribu-
tions with β = 1/kBT , and kB and T are the Boltzmann
constant and temperature, respectively. The relation is shown
in Fig. 4.

FIG. 4. (Color online) Relation between the particle number N

and trap frequency ω. The solid red and dashed blue lines correspond
to the ratios MB/m∗ = 2.2 and MB/m∗ = 2.8, respectively. The unit
of ω is taken to be 0.1εF , where εF is Fermi energy.
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FIG. 5. (Color online) (a) Relation between the mass MB and the
spin Hall currents J y

σz
. The solid red (dashed blue) line corresponds

to the spin up (down) current. The unit of J y
σz

is 1
2π

× 10 cm/s.
(b) Evolution of the atomic density profile from time t = 0 ms to
t = 4 ms and t = 9 ms. The red (light gray) and blue (dark gray) parts
in each figure denote the spin-up and spin-down atoms. The unit of y

and z directions is μm. The temperature is taken as T = 0.4TF , where
TF is Fermi temperature. The up and down figures correspond to the
ratios MB/m∗ = 2.2 and MB/m∗ = 2.8, respectively. The figures
show the trends of spin currents of Fig. 5(a).

We now discuss the spin Hall currents of the system. To
generate spin Hall currents, the wave vectors of the lasers
are chosen as kx = k′

x = 0, and the internal space is rotated
π/2 around the x direction. In this case, the SO coupling reads
HSO = λσz. This term describes the spin Hall currents in which
the spin is polarized in the z direction while the currents move
along the y direction. The spin Hall currents can be written as

J y
σz

= 1

(2π )2

∫
dpfσz

(p)jy
σz

, (21)

where j
y
σz

= 〈ĵ y
σz

〉 are the single-particle currents, ĵ
y
σz

=
1
4 [σz,vy]+ are the spin current operators, and vy = −i[y,H ]
is the velocity along the y direction. The impact of scalar

potential V on the spin Hall currents is shown in Fig. 5(a). The
spin-down current is suppressed by the increase of the mass
MB , whereas the spin-up current grows slightly. The evolution
of the atomic density profile n(r,t) is shown in Fig. 5(b).

V. EXPERIMENTAL SIGNATURES OF IMPACT
OF SCALAR POTENTIAL

We now discuss the observation of impact of the scalar
potential V by detecting spin Hall currents. We choose 6Li
atoms for a three-level �-type system, with a particle number
of about 104, and a 2π × 102 Hz harmonic potential is used to
trap the atoms. The configuration of four laser fields is shown
in Fig. 1(b). The wave number of the lasers can be taken as
2π × 1.0 (μm)−1 [7]. For large detuning, Rabi frequency and
detuning are required to satisfy �2/� ∼ 106Hz. When the
laser fields are turned on, the non-Abelian gauge potential is
applied to the 6Li atoms. By tuning the angle ϕ between the
lasers, different masses of gauge potential B can be obtained.

To detect the spin-up current, we first initialize the atoms in
the |g1〉 ground state. Then a Raman pulse is applied between
states |g1〉 and |g2〉 to transfer the atoms to the spin-up state
|χD1〉. The Rabi frequency of the pulse is required to match the
spatial variation of |χD1〉. Turning on the lasers, the cold atoms
will experience the SO coupling and also the scalar potential
V . After time t , we turn off the lasers and apply a reversal
Raman pulse to transfer the atoms back to the initial state.
Using time-of-flight measurement, the spin-up current of the
system can be determined. The measurement of the spin-down
current (corresponding to the |χD2〉 state) also can be detected
in the same manner [33].

VI. CONCLUSION

In summary, we have investigated the impact of scalar
potential V on cold atoms by constructing SO coupling through
an artificial non-Abelian gauge potential in a cold-atomic
system. We interpret the scalar potential as the coupling
between the mass of gauge potential B and the atom. We
demonstrate that the scalar potential V can suppress the spin
Hall currents which are generated by spin-orbit coupling.
We also discuss the observation of these phenomena in a
real experiment. Our results are not only confined to the
cold-atomic system that we have discussed, but can also be
applied to systems concerning the Berry phase. We expect
that the exploration of the impact of the scalar potential V

can help to understand the effect of SO coupling in cold
atoms.
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