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Drag force on a moving impurity in a spin-orbit-coupled Bose-Einstein condensate
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We investigate the drag force on a moving impurity in a spin-orbit-coupled Bose-Einstein condensate. We
prove rigorously that the superfluid critical velocity is zero when the impurity moves in all directions but one, in
contrast to the case of liquid helium and superconductor, where it is finite in all directions. We also find that when
the impurity moves in all directions except the two special ones, the drag force has nonzero transverse component
with a small velocity. When the velocity becomes large and the states of the upper band are also excited,
the transverse force becomes very small due to opposite contributions of the two bands. The characteristics
of the superfluid critical velocity and the transverse force are results of the order-by-disorder mechanism in
spin-orbit-coupled boson systems.
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I. INTRODUCTION

Spin-orbit coupling (SOC) plays a crucial role in many
physical systems ranging from nuclei and atoms to quantum
spin Hall effect and topological insulators [1–4]. An artificial
external non-Abelian gauge field coupled to neutral atoms
of different hyperfine states can be engineered by control-
ling atom-light interactions [5–8]. Recently, Bose-Einstein
condensates (BECs) with SOC as well as spin-orbit-coupled
degenerate Fermi gases have been realized experimentally
[9–13]. It provides physicists with a new platform to study the
effects of SOC in many-body systems. A plenty of researches
have been done on the properties of the BEC with SOC,
including the ground-state phases [14–19], fluctuations above
the ground state [20–23], and spin-orbit-coupled BECs with
other cold-atom techniques, such as dipole-dipole interactions,
optical lattices, and rotating traps [24–28].

One peculiar phenomenon intimately related to BEC is su-
perfluidity, which was successfully explained by Landau [29].
According to the theory, there exists a critical velocity vc

with a finite value for an impurity moving in a superfluid,
beyond which the impurity experiences a drag force. The
Landau criterion has been confirmed in experiments using
ions in superfluid 4He [30] or an optical spoon in a gaseous
Bose-Einstein condensate [31].

Landau’s analysis cannot be directly applied to the case
with a spin-orbit-coupled BEC, since it requires the system
to be invariant under Galilean transformation, which is not
satisfied when SOC exists. The low-energy excitations of
a spin-orbit-coupled BEC are anisotropic Goldstone modes
and spin waves; both are softer than the phonon in liquid
helium. This may have profound effects on the superfluid
critical velocity of the condensate. Moreover, the drag force
experienced by the mobile impurity probably has exotic
characteristics. In addition to the above-mentioned anisotropy
of the BEC system and the existence of spin waves, the
eigenfunctions of a free-boson system with SOC have a definite
helicity, which are opposite for states in the lower and upper
bands. These properties may lead to a transverse force even
for a pointlike impurity. Since the upper band plays a role
only when the impurity moves fast enough, the effects of
the two-band structure on the drag force are also need to be

clarified. In this article, we investigate the superfluidity of
a spin-orbit-coupled BEC through its effects on an impurity
which moves in it. We calculate analytically the drag force
experienced by the impurity and also the superfluid critical
velocity of the condensate.

This paper is organized as follows: Section II gives the
model for a mobile impurity in a spin-orbit-coupled BEC.
We use a time-dependent Gross-Pitaevskii equation to calcu-
late the drag force experienced by the impurity. In Sec. III,
the superfluid critical velocity and the drag force are given in
detail. Section IV is a summary of this work.

II. MOTION OF AN IMPURITY IN
SPIN-ORBIT-COUPLED BEC

We consider the motion of a pointlike impurity in a two-
dimensional Rashba spin-orbit-coupled plane-wave BEC at
zero temperature, as shown in Fig. 1. In the figure, FL and FT

are longitudinal and transverse components of the drag force
experienced by the impurity. One of the possible realizations of
this scenario could be the scattering of heavy neutral molecules
by the condensate.

A. An impurity moves in a spin-orbit-coupled BEC

We use a δ-function potential to describe the interaction
between the pointlike impurity and the bosons in the conden-
sate. The Hamiltonian for an impurity moving with a constant
velocity v in the BEC is written as

Ĥ =
∫

d2r�̂+(r,t)
[

− �
2

2m
∇2 − μ − 2i�λ∇ · σ

]
�̂(r,t)

+
∫

d2rδ(r − vt)[gi↑n̂↑(r,t) + gi↓n̂↓(r,t)]

+ 1

2

∫
d2r[g↑↑n̂↑(r)2 + 2g↑↓n̂↑(r)n̂↓(r) + g↓↓n̂↓(r)2].

(1)

In Eq. (1), �̂(r,t) = [ψ̂↑(r,t),ψ̂↓(r,t)]T are time-dependent
two-component boson field operators [9], where m is the mass
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FIG. 1. (Color online) A pointlike impurity moves with velocity
v in a two-dimensional spin-orbit-coupled Bose-Einstein condensate.
The x direction is the principal direction of the plane-wave conden-
sate. FL and FT are the longitudinal and transverse components of
the drag forces experienced by the impurity.

of the atoms, λ is the strength of SOC, and μ is the chemical
potential of the bosons.

In a free-boson system with Rashba SOC as in Eq. (1),
the ground states compose a ring with |k| = λ in momentum
space. The quantum fluctuations induced by particle-particle
interactions will lift the macroscopic degeneracy. In this
article, we use g↑↑ = g↑↓ = g↓↓ for simplicity. In this case,
due to the mechanism of order by disorder, the bosons
condense on one point of the ring in momentum space
[which we set as k0 = (−λ,0)] and result in a plane-wave
condensate [19,32,33]. It has been proved that the condensate
is stable against quantum fluctuations in both two and
three dimensions [33–36]. Our calculations can be extended
straightforwardly to the systems with g↑↑g↓↓ > g2

↑↓, in which
the condensate also has plane-wave order. But the case with
g↑↑g↓↓ < g2

↑↓ is more complicated [36,37], and it will be left
to future considerations.

gi↑ and gi↓ in Eq. (1) are the strengths of the interactions
between the impurity and bosons with pseudospins ↑ and ↓,
respectively. For simplicity, we shall assume gi↑ = gi↓ in this
work.

The size effects of the impurity are neglected in Hamil-
tonian (1). Experimentally, it requires the dimension of the
impurity to be much smaller than the coherence length ξ of

the condensate. Otherwise, the situations will be much more
complicated. First, the plane-wave condensate is anisotropic.
When an impurity with a large size moves in an anisotropic
fluid, since the properties of the fluid on different points of
the impurity’s surface usually differ, it is natural that the
impurity will experience a transverse drag force [38–40]. In
addition, there will be vortices excited in the condensate [41].
In a spin-orbit-coupled BEC, the characteristics of the vortices
generally differ from those in cases without SOC [42–47]. In
this paper, we focus on the least effects induced by the motion
of a pointlike impurity in a spin-orbit-coupled BEC. The size
effects of the impurity will be left to future considerations.

B. Drag forces and the Landau criterion in
a spin-orbit-coupled BEC

Due to the absence of Galilean invariance in the spin-orbit-
coupled BEC, the dynamical properties of the condensate are
reference frame dependent [48,49]. So in our situation we have
to choose the one with a static condensate.

We assume weak quantum fluctuations induced by the
particle-particle interactions, as is usual in ultracold atom gas
experiments. We also assume the impurity interacts weakly
with the condensate. Under these assumptions, the dynamics
of the boson fields �(r,t) can be well described by a time-
dependent Gross-Pitaevskii (GP) equation,

i�∂t� = [−∇2 − μ − 2iλ∇ · σ + giδ(r − vt) + g|�|2]�.

(2)

We neglect the possibility of exciting vortices by the
pointlike impurity. Quantum fluctuations are created over
the condensate by both the boson-boson and boson-impurity
interactions. The full form of the boson fields are written
as [50,51]

�(r,t) =
√

ρ0 + δρe−iλx+iδθ

[
cos(π

4 + δφ)e−i
δξ

2

sin( π
4 + δφ)ei

δξ

2

]
, (3)

where ρ0 is the condensate density and δρ(r,t), δθ (r,t),
δφ(r,t), and δξ (r,t) are space-time dependent fluctuations.

We substitute Eq. (3) into (2) and then expand the resulting
expression up to linear terms in the fluctuations, which gives

∂t

⎡
⎢⎢⎢⎣

δρ(r,t)

δθ (r,t)

δφ(r,t)

δξ (r,t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 −2ρ0∇2 0 −2λρ0∂y

−(−∇2 + mν)/(2ρ0) 0 2λ∂y 0

0 2λ∂y 4λ∂x (−∇2 + 4λ2)/2

−2λ∂y/ρ0 0 −(−2∇2 + 8λ2) 4λ∂x

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

δρ(r,t)

δθ (r,t)

δφ(r,t)

δξ (r,t)

⎤
⎥⎥⎥⎦ − giδ(r − vt)

⎡
⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎦. (4)

Here mν is the mass for δρ fluctuations, which equals
2gρ0 in the classical limit [50]. The last term on the
right-hand side of Eq. (4) shows that the impurity potential
directly affects the global phase fluctuations δθ (r,t). When
gi↑ �= gi↓, the impurity will also directly affect δξ (r,t),
which are fluctuations of the relative phase between the
two components of the bosons. It is not considered in this
paper.

The drag force experienced by the impurity is [52]

F(t) = −
∫

|�(r,t)|2∇ [giδ(r − vt)] d2r

= gi[∇|�(r,t)|2]|r=vt

= gi

∫
ikδρ(k,t)eik·vt d2k, (5)
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where k is the kinetic momentum of a fluctuation over the
condensate. The second line in Eq. (5) shows that the drag
force is a measure of the density gradient around the impurity.

Let us now calculate δρ(k,t) from the linearized GP
equation (4). We first perform a Fourier transformation to
change the equation into momentum space. The evolutions
of fluctuations with different momenta are decoupled in the
linear GP equation. For a specified momentum k, there is

∂X(k,t)

∂t
= A(k)X(k,t) + B(k,t). (6)

Here X(k,t) ≡ [δρ(k,t),δθ (k,t),δφ(k,t),δξ (k,t)]T . A(k) is a
4 × 4 matrix transformed from the one in Eq. (4). B(k,t) is a
four-component vector obtained from a Fourier transform of
the last term in Eq. (4). The differential equation (6) can be
exactly solved as

X(k,t) = e(t−t0)A(k)X(k,t0) +
∫ t

t0

e(t−s)A(k)B(k,s)ds. (7)

The matrix exponential etA in Eq. (7) is derived fol-
lowing the method in Ref. [53]. Details are given in
Appendix A.

The first term on the right-hand side of Eq. (7) represents
the evolution of the quantum fluctuations without the influence
of the impurity potential. It gives zero contributions to the
drag force (5). The second term on the right-hand side of
Eq. (7) represents the evolution of the fluctuations induced
by the impurity potential. It is proportional to gi . So the drag
force (5) depends quadratically on gi , which is the same as
that without SOC [52]. Let t0 = −∞ in Eq. (7) so as to turn
on the impurity potential adiabatically. In this way, the system
will be in a steady state.

Substituting the obtained density fluctuations δρ(k,t)
into the drag force (5), and using analytic continua-
tion to treat the Landau causality [52,54], we finally
have

F = −4πρ0g
2
i

∫
d2kk

{
−D + (ω+

k ω+
−k + ω+

k ω−
−k − ω+

−kω
−
−k)k2

(ω+
−k + ω−

k )(ω+
k − ω−

k )(ω−
k + ω−

−k)
δ(ω−

k − k · v)

+ D − (ω+
−kω

−
k + ω−

k ω−
−k − ω+

−kω
−
−k)k2

(ω+
k + ω+

−k)(ω+
k + ω−

−k)(ω+
k − ω−

k )
δ(ω+

k − k · v)

}
, (8)

where D = k6 + 16λ4k2
y + 12λ2k2k2

y + mνk
4 and ω+

k and ω−
k

are eigenenergies of excitations with momentum k in the upper
and lower bands, respectively [50]. For momenta k satisfying
ω+

k = ω−
k , the coefficients before the two δ functions in Eq. (8)

are exactly zero, and there are no contributions to the drag force
from excitations with these momenta. So we can neglect the
poles in Eq. (8).

The obtained δρ(k,t) has a factor e−ik·vt , which cancels the
term eik·vt in Eq. (5). So the drag force (8) is time independent.
It is consistent with the situation that the system is in a steady
state. In addition, after a Fourier transformation, we find the
density fluctuations created by the motion of the impurity
have the form δρ(r − vt) in real space. In Ref. [52], this form
of the density fluctuations is taken as an assumption in the
calculations of the drag force in the case without SOC.

Using the method above, we can also obtain the drag force
for the case without SOC as F = −2πρ0g

2
i

∫
d2kk k2

ωk
δ(ωk −

k · v). It is the same as that in Ref. [52].
From the two δ functions in Eq. (8), we find that the

excitations with momenta

ω+
k − k · v = 0, or ω−

k − k · v = 0 (9)

contribute to the drag force. The δ functions result from
causality. The Landau criterion for a Galilean-invariant su-
perfluid has two forms: When the impurity is moving and
the superfluid is at rest, it is ωk − k · v = 0, whereas when
the impurity is at rest and the superfluid is moving, it is
ωk + k · v = 0 [29,55]. Our results (9) are the same as for
the first form. In systems with inversion symmetry, there is
ωk = ω−k. Then the two forms of the Landau criterion are the
same. In a spin-orbit-coupled plane-wave BEC, the inversion

symmetry is broken. It is interesting to ask whether the Landau
criterion with ωk + k · v = 0 still applies when the superfluid
moves past a resting impurity. This will be left to future
considerations.

Let us now solve Eq. (9) to obtain the momenta of
excitations induced by the motion of the impurity. The
dispersions of excitations ωk satisfy [35,50]

ω4
k + bω3

k + cω2
k + dωk + e = 0, (10)

where the coefficients are b = 8λkx , c = −[16λ4 + 8λ2k2 −
16λ2k2

x + 8λ2k2
y + 2k4 + mνk

2], d = −8λkx[4λ2k2
y + (k2 +

mν)k2], and e = (k4 − 4λ2k2
x)2 + mν[k2

x(k2 − 4λ2)2 +
k2k2

y(k2 + 4λ2)]. From Eqs. (9) and (10), we deduce that the
desired momenta obey a necessary condition,

(k · v)4 + b(k · v)3 + c(k · v)2 + dk · v + e = 0. (11)

In polar coordinates, we set the principal direction of the
plane-wave condensate as θ = 0 and denote the direction
of the motion of the impurity as θ = θ0. That is, (kx,ky) =
k(cos θ, sin θ ) and (vx,vy) = v(cos θ0, sin θ0). Equation (11)
then becomes

k6 + s4k
4 + s2k

2 + s0 = 0, (12)

where

s4 = −2[2λ cos θ + v cos(θ − θ0)]2 + mν,

s2 = [2λ cos θ + v cos(θ − θ0)]4

− 16λ2v cos(θ − θ0)[2λ cos θ + v cos(θ − θ0)]

+mν{−2[2λ cos θ + v cos(θ − θ0)]

× [6λ cos θ + v cos(θ − θ0)] + 4λ2},
s0 = −16λ4v2 cos2(θ − θ0) + 16mνλ

4 cos2 θ. (13)
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Equation (12) is a cubic equation for k2 when v, θ , and θ0

are specified. So it can be solved analytically. Our methods
to solve Eq. (9) are outlined as follows: We first solve the
momenta from Eq. (12) with the constraints that k > 0 and
k · v � 0; whether the obtained momenta belong to the upper
or lower band are determined by checking with Eq. (9). A short
proof on the validity of the methods is given in Appendix B.

In polar coordinates, the integration
∫

d2k in Eq. (8) is
changed into

∫
dθ

∫
dkk. The two δ functions in Eq. (8) are

removed analytically by first employing the formula [56]

δ(f (k)) =
∑

i

1

|f ′(k)|k=ki

δ(k − ki) (14)

and then doing an integration over k. The denominators in
Eq. (14) are calculated using

∂ω±
k

∂k
= −

∂b
∂k

(ω±
k )3 + ∂c

∂k
(ω±

k )2 + ∂d
∂k

ω±
k + ∂e

∂k

4(ω±
k )3 + 3b(ω±

k )2 + 2cω±
k + d

. (15)

This equation is obtained by differentiating Eq. (10) with
respect to k. Since Eq. (10) is satisfied for any momentum
k, the differentiation of its left-hand side gives zero. This
immediately leads to Eq. (15).

III. DRAG FORCE AND SUPERFLUID
CRITICAL VELOCITY

In this section, we present the drag force F experienced
by the moving impurity in the spin-orbit-coupled BEC. The
superfluid critical velocity vc is then derived.

In Fig. 2, we present the drag forces as a function of v/λ

for some typical values of θ0. We use FL and FT to denote
the longitudinal and transverse components of the drag force,
respectively. The result is

FL ≡ Fx cos θ0 + Fy sin θ0,
(16)

FT ≡ −Fx sin θ0 + Fy cos θ0.

Since the boson system without the impurity is symmetric
with respect to the kx axis, we only need to consider the cases
with 0 � θ0 � π . We choose m̃ν ≡ mν/λ

2 = 1 in Fig. 2. For
different values of m̃ν , the behaviors of the drag forces are
qualitatively the same, provided that the quantum fluctuations
are weak.

In Table I, we have listed the characteristics of the v/λ

dependence of the drag forces for different values of θ0.
The second row of the table states that the superfluid critical
velocity vc is nonzero only for θ0 = π , which has zero weight
in the phase space of θ0. The third row of the table says that
there exists a nonzero transverse force for motion in directions
0 < θ0 < π . The fourth row of the table states that the drag
force is very tiny with a small v/λ for motion in directions
π/2 < θ0 < π , while it is considerable in other directions.
The fifth row shows that there is a jump in the drag force as
v/λ varies for 0.27π � θ0 < π . The lower bound θ0 = 0.27π

depends on the value of m̃ν , as shown in Fig. 3(a) for 10−2 �
m̃ν � 10, which is typical in ultracold atom experiments. The
last row of the table states that, for 0 � θ0 < 0.65π , there are
nonanalytic peaks in the v/λ dependence of the drag forces.
The upper bound θ0 = 0.65π also depends on the value of m̃ν ,
as shown in Fig. 3(b).

FIG. 2. (Color online) The v/λ dependence of the longitudinal
(FL) and transverse (FT ) drag forces experienced by the impurity.
The drag forces are in the unit of 4πρ0g

2
i λ. We take ≡ mν/λ

2 = 1 in
our calculations. The characteristics of the drag force as θ0 varies are
summarized in Table I.

TABLE I. Classifications of the v/λ dependence of the drag force
according to θ0.

θ0

vc [0,π ) {π}
= 0 > 0

Existence of {0} (0,π ) {π}
a nonzero FT No Yes No

F ≈ 0 with [0,π/2] (π/2,π ) {π}
a small v/λ No Yes F = 0

Existence of [0,0.27π )a [0.27π,π )a {π}
a jump No Yes No

Existence of [0,0.65π ]a (0.65π,π ]a

peaks Yes No

aThe values of the bounds 0.27π,0.65π depend on mν/λ
2, as shown

in Fig. 3. We take mν/λ
2 = 1 in our calculations.
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FIG. 3. (Color online) The mν/λ
2 dependence of the bounds that

appear in the last two rows of the Table I for (a) existence of a jump
in the drag force and (b) existence of peaks in the drag force.

In addition to the results listed in Table I, we also have
FT 
 0 and FL ∝ v/λ (in unit of 4πρ0g

2
i λ) with a large v/λ

for any θ0.

A. Superfluid critical velocity

As listed in the second row of Table I, the superfluid critical
velocity vc is nonzero only when the impurity moves in the
direction θ0 = π . In the following we will prove this result
analytically.

Since Eq. (12) is a cubic equation for k2, it is easy to find
that when the coefficient s0 is negative, it has at least one
positive root. It means that, when the value of v is specified,
for any θ satisfies

s0 = −16λ4v2 cos2(θ − θ0) + 16mνλ
4 cos2 θ < 0, (17)

Equation (12) has solutions with a positive value. Equa-
tion (17), together with the constraint k · v � 0, gives

arctan

√
mν

v
− cos θ0

sin θ0
< θ < π − arctan

√
mν

v
+ cos θ0

sin θ0
. (18)

For convenience, in the above inequality, θ is defined in the
region [−π,π ) when 0 < θ0 � π/2, while it is defined in the
region [0,2π ) when π/2 < θ0 < π . For any finite values of
v and mν , the inequality (18) covers a finite range of θ .
This is because of the anisotropy of the Goldstone modes,
which are softer than phonons with a linear dispersion. Since
any excitation contributes a negative quantity to FL, the total
contributions from the excitations given by the inequality (18)
are finite.

In addition to the Goldstone modes, there are always a
collection of spin waves with momenta around k = (2λ,0)
that are excited, when the impurity moves in directions 0 �
θ0 � π/2 with any finite v. This is because the spin waves go
soft for momenta around k = (2λ,0).

Therefore, the superfluid critical velocity vc = 0 for 0 �
θ0 < π . This is one of the main results in this work.

The appearance of both the anisotropic Goldstone modes
with dispersions softer than phonons and the spin waves results
from the spontaneous lifting of the infinite degeneracy of the
ground states by quantum fluctuations, which is called the
order-by-disorder mechanism [32,33].

B. Impurity valve

As listed in the fourth row of Table I, when v/λ is small,
there is an enormous difference between the transports of the

FIG. 4. (Color online) (a) FL with a small v/λ for θ0 = π/2 +
jπ/18, j = 1,2, . . . ,8, from left to right. For clarity, the lines have
been shifted upwards in steps as θ0 increases. FL are in the unit
of 4πρ0g

2
i λ. FL is tiny with a small v/λ. (b) The momenta of the

excitations over the condensate due to the motion of the impurity for
v/λ = 0.1 with θ0 as in (a). The loops go large as θ0 increases. The
momenta of these Goldstone modes are quite small, which results in
tiny drag forces.

impurity starts from the two ends of the spin-orbit-coupled
BEC: It experiences considerable drag force when it moves in
the directions 0 < θ0 � π/2, while in directions π/2 < θ0 <

π the drag force is tiny.
The difference lies in the excitations of spin waves with

a small v/λ only in the directions 0 < θ0 � π/2, which give
a large contribution to the drag force. Although Goldstone
modes are excited by the impurity in both cases, their
contributions to the drag force are tiny when the velocity of the
impurity is small. This is illustrated in Fig. 4. In Fig. 4(a), we
show the FL with 0 < v/λ < 1 for θ0 = π/2 + jπ/18,j =
1,2, . . . ,8. The drag forces are quite small for all values of
θ0 with a small velocity, taking v/λ = 0.1 as an example.
Figure 4(b) shows the momenta of excitations for all the
θ0 in Fig. 4(a) with v/λ = 0.1. Only Goldstone modes are
excited, and their momenta are quite small. Furthermore, they
compose a small phase space in momentum space. Simple
calculations show that their contributions to the drag force are
tiny.

These properties of the spin-orbit-coupled BEC imply the
condensate can be employed as a potential impurity valve.
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In applications, the principal direction of the condensate
(or, equally, the momentum of condensate wave func-
tion) can be controlled by applying an infinitesimal mag-
netic field or a shift of the wavelength of the vector
light coupled with the hyperfine states of ultracold atoms
[26,57].

C. Transverse force

When the velocity of the impurity is not too large, generally
the impurity experiences a finite transverse force, unless it
moves along the symmetry axis of the condensate, as shown in
Fig. 2. Moreover, the transverse force can reverse its direction
when v/λ varies. When the velocity of the impurity is large
enough, the transverse force becomes tiny for all θ0. A sudden
jump takes place in the transverse force when it becomes tiny
for the motion of the impurity in directions 0.27π � θ0 < π ,
while it evolves continuously for motion in directions 0 <

θ0 < 0.27π . We will focus on interpreting these properties in
the following part of this subsection.

1. Transverse force with a small v/λ

For convenience, we write the drag force in Eq. (8) as
F = F− + F+, with

F− ≡ −4πρ0g
2
i

∫
d2kkf −(k)δ(ω−

k − k · v),
(19)

F+ ≡ −4πρ0g
2
i

∫
d2kkf +(k)δ(ω+

k − k · v),

where f ±(k) denote corresponding factors before the δ

functions.
The original Hamiltonian of the system (1) is symmetric

with respect to the direction of v. Naively, it implies zero
FT . However, the O(2) symmetry of the boson system in
momentum space is broken by quantum fluctuations via
selecting a single state from the macroscopic denegerate
ground states when the Bose-Einstein condensation occurs.
Only the symmetry with ky ↔ −ky remains for the BEC
system. This has the consequence that in Eq. (19) ω±

k are
only symmetric under ky ↔ −ky , and f ±(k) have only the
inversion symmetry k ↔ −k, while k · v is symmetric with
respect to the direction of v. As a result, the expressions for
F± and also F are not symmetric with respect to the direction
of v. This can be seen more clearly for θ0 = π/2, in which the
transverse force is along the symmetry axis of the condensate.
In this case, there is

FT = 4πρ0g
2
i

∫ ∞

−∞
dkx

∫ ∞

0
dkykx[f −(k)δ(ω−

k − kyv)

+ f +(k)δ(ω+
k − kyv)]. (20)

Since ω±
k are not even functions of kx [50], there is generally

FT �= 0. In short, and merely from symmetry analysis, we find
that the anisotropy of the BEC will generally lead to a nonzero
transverse force.

In the following, we further take θ0 = π/2 as an example to
investigate the properties of FT and also the physical origins.
In Fig. 5, we exhibit the momenta of the excited states for
various values of v/λ.

FIG. 5. (Color online) The momenta of excitations
for θ0 = π/2 as v/λ increases. From (a) to (h), v/λ =
0.1,0.2,0.3,1.0,2.0,3.0,5.0,6.0. In (a)–(c), the spin waves
around k = (2λ,0) dominate over the Goldstone modes around
k = (0,0), and this leads to FT > 0. From (d) to (f), the excitations
with large momenta gradually dominate over the spin waves, and as
a result, FT changes continuously from positive to negative. In (g)
and (h), the upper band (the smaller loops in the figures) also takes
part, and the cancellation with the contributions from the lower band
makes FT 
 0.

With a small v/λ as in Figs. 5(a) and 5(b), the contour
of the momenta is composed of two loops: One consists of
Goldstone modes around the condensed momentum, and the
other consists of spin waves around k = (2λ,0). Only the states
in the lower band are excited in Figs. 5(a) and 5(b). It is easy
to see that the transverse force is mainly due to excitations
of spin waves with a small v/λ, while the Goldstone modes
give negligible contributions. First, in Eq. (20), f −(k) � 0 for
any momentum k, and for θ0 = π/2, the contribution to the
transverse force by an excitation is proportional to kx . kx of the
spin waves are around 2λ, which are large and always positive,
whereas kx of the Goldstone modes are quite small, and the
contributions from the excitations with kx > 0 and kx < 0 will
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FIG. 6. (Color online) The momenta of excitations for θ0 = π/2
as v/λ increases, with the transverse force turning from positive
to negative. There is the following: FT > 0 for v/λ = 1.8; FT 
 0
for v/λ = 1.97; FT < 0 for v/λ = 2.2. The excitations with large
momenta gradually dominate over the spin waves as v/λ increases.

further offset each other. Second, as shown clearly in Figs. 5(a)
and 5(b), the phase space of the spin waves in momentum
space is much larger than that of the Goldstone modes. From
the above analysis, we conclude that with a small v/λ as in
Figs. 5(a) and 5(b), the contributions to the drag force from
the spin waves, which are positive, dominate over those from
the Goldstone modes. As v/λ increases, the transverse force
goes larger, since a larger number of spin waves are excited.
This agrees with the result in Fig. 2(e).

When v/λ increases further, the two loops get larger, and
then they merge into a single one, as shown in Fig. 5(c). The
peak of FT with v/λ 
 0.27 corresponds to the critical point
when the two loops merge. The detailed analysis will be given
in the Sec. III D.

After FT goes over the peak point, it gradually decreases
as v/λ increases. In the meantime, the loop gets larger. FT

decreases to approximately zero with v/λ about 2.0 (1.97 in
precision) and then decreases continuously to negative. The
contours in Figs. 5(d)–5(f) are similar in shape but differ in
their sizes. In Fig. 6, we compare the contours of the momenta
for v/λ = 1.8,1.97, and 2.2. There is FT 
 0 for v/λ = 1.97.
There exist small differences among the parts with a small
ky in the three loops. The contributions of these parts to the
transverse forces are almost the same. Spin waves dominate
the part, so it provides a positive quantity to FT . However,
there are distinct differences among the parts with a large ky

in the three loops. The energies of the excitations in this part
are large. The contributions to the transverse force from these
states are given in Eq. (24) in the next subsection, which form
a linear function of v/λ with a negative coefficient. So these
states contribute a negative quantity to the transverse force, and
this quantity decreases as v/λ goes from 1.8 to 2.0. Adding
up the contributions from the two parts, we obtain that FT is a
decreasing function of v/λ within the range considered above,

and it is possible that FT will turn negative when v/λ is beyond
some value (say v/λ = 1.97 for θ0 = π/2).

When v/λ increases further, as shown in Figs. 5(g) and 5(h),
the upper band is also turned on, and FT becomes tiny. It
indicates that the two bands give opposite contributions to
FT . The physical origins of this result will be given in the
remaining of this subsection.

2. Drag force with a large v/λ

With a large v/λ, there is FT 
 0 and FL ∝ v/λ (in unit of
4πρ0g

2
i λ), as shown in Fig. 2. To interpret this, we rewrite the

drag force (8) as

F(λ,mν,v) = vF̃
(

λ

v
,
mν

v2
,
v
v

)
, (21)

where F̃ is the dimensionless form of F scaled by v. In the
limit of large v/λ, there is λ/v 
 0, and F̃(λ/v,mν/v,v/v) has
no manifest dependence on the SOC strength λ. Then the drag
force F = vF̃ behaves like the one in the case without SOC,
which has FT = 0 and FL ∝ v with a large v.

In the limit of large v/λ, F±
L and F±

T (in unit of 4πρ0g
2
i λ)

are linear in v/λ for any θ0. Two examples where θ0 = π/2
and π/6 are shown in Fig. 7. The two cases represent typical
ones with and without a jump when the states in the upper band
start to be excited, respectively. In Fig. 7, we find F±

L < 0 and
F+

T 
 −F−
T < 0 with a large v/λ in both cases. These results

turn out to be general for all 0 < θ0 < π .
Let us now obtain the approximate behaviors of the drag

force with a large v/λ by expanding it in powers of v/λ.
The leading-order term is linear in v/λ. It is mainly con-
tributed by states with large momenta, which are considered
in the following calculations. The coefficient of the linear
function will not be altered by neglecting the excitations
with small momenta. The dispersions of excitations with large
momenta are approximately ω±

k = (
√

(kx − λ)2 + k2
y ± λ)2 +

C±(k)mν + O(1/k), where C±(k) are anisotropic functions
of k satisfying 0 � C±(k) � 1

2 and C+(k) + C−(k) = 1
2 [58].

Substituting this into Eq. (8), we obtain the leading-order term
of the drag force in powers of v/λ as

F 
 −4πρ0g
2
i · 1

4

∫
d2kk

[(
1 − kx

k

)
δ(ω−

k − k · v)

+
(

1 + kx

k

)
δ(ω+

k − k · v)

]
. (22)

The momenta that satisfy the δ functions δ(ω±
k − k · v) are

also solved in powers of v/λ. In polar coordinates, there is

k± = λ

[
cos(θ − θ0)v/λ + 2(cos θ ∓ 1) + O

(
1

v/λ

)]
,

(23)

for a specified θ . Here, the possible values of θ are restricted
by k± > 0. After substituting this into Eq. (22) and performing
the momentum integration, we finally obtain

F±
L = −4πρ0g

2
i λ

{
1

3

[
3π

8
± cos θ0

]
v/λ + O( (v/λ)0 )

}
,

F±
T = ±4πρ0g

2
i λ

{
sin θ0

6
v/λ + O( (v/λ)0 )

}
. (24)
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FIG. 7. (Color online) The drag forces (in unit of 4πρ0g
2
i λ) as

a function of v/λ for (a) θ0 = π/6 and (b) θ0 = π/2. In (a) and
(b), when v/λ is large, all of the lines are in linear of v/λ, and
F +

T 
 −F −
T > 0. The jumps of F +

L and F +
T in (b) are due to turning

on the excitations in the upper band, which give a finite contribution
at the tangent point between the plane k · v and the band for ω+

k .
There is immediately FT = F +

T + F −
T 
 0. There are no jumps in (a)

when the upper band starts to play a role, since the state at the touch
point of the upper and lower bands are first excited, which gives a
vanishing contribution.

The θ0 dependence of the slopes of the linear functions in
Eq. (24) are consistent with the ones in Fig. 7. The slopes for
F±

L in Eq. (24) are negative for any θ0. The sum of F+
L and F−

L

gives

FL = −4πρ0g
2
i λ

{
π

4
v/λ + O((v/λ)0)

}
. (25)

The slope is θ0 independent, which agrees with the results in
Fig. 2. The terms O((v/λ)0) are approximately finite with a
large v/λ, and they have an effect to shift the lines.

For any θ0 in the region 0 < θ0 < π , the slopes for F+
T

and F−
T in Eq. (24) are nonzero and opposite to each other.

By adding F+
T and F−

T together, we find the term of order
O((v/λ)0) for FT is exactly zero for any θ0. The details are
given in Appendix C. So there is

FT = −4πρ0g
2
i λO

(
1

v/λ

)
. (26)

It is very small with a large v/λ, which is consistent with the
results in Fig. 2.

To find out the physical origins for the behaviors of the
transverse forces, we take θ0 = π/2 as an example. In this case,
the slope of F−

T in Eq. (24) is negative, which means that the
total contributions of the excitations with large momenta to F−

T

are negative. It is consistent with the result in Fig. 5 that when
v/λ becomes large, the value of the transverse force can be
negative. In Eq. (22), only the terms ± kx

k
in the factors 1 ± kx

k

give contributions to F±
T after performing the momentum

integration. For θ0 = π/2, it means excitations with the same
momentum, which is large, from the two bands give opposite
contributions to the transverse force. It is explained as follows.
First, in the free-boson system, the states in the upper and
lower bands have opposite helicities [59], which are defined as
the eigenvalues of the helicity operator ĥ = k · σ/|k|. Second,
in the interacting boson system, the excitations with large
momenta behave like free bosons. Third, it is easy to find
that exciting a single particle with definite helicity by a mobile
impurity will induce a nonzero transverse force, the direction
of which will be reversed if the sign of the helicity is changed.
This helicity-dependent transverse force has also been detected
in a recent experiment [60]. The physical origins given above
for θ0 = π/2 are suitable for general cases.

3. Jump in drag force as v/λ varies

We find there is a finite jump in both FL and FT as v/λ varies
for 0.27π � θ0 < π , where the lower bound 0.27π depends
on the value of mν/λ

2 as shown in Fig. 3(a). The height of the
hump evolves continuously to zero in other directions.

Let us now explain the appearance of the jump for 0.27π �
θ0 < π . In these cases when v � vth, where vth denotes a θ0-
dependent threshold velocity, the states in the upper band begin
to be excited by the impurity. When v = vth, only one state in
the upper band is excited, the momentum of which is denoted
as kth = kth(cos θth, sin θth). It satisfies

∂ω+
k

∂k

∣∣∣∣
k=kth

− vth cos(θth − θ0) = 0,

(27)
∂ω+

k

∂θ

∣∣∣∣
θ=θth

+ kthvth sin(θth − θ0) = 0.

Its contribution to the drag force is

F+
th = −4πρ0g

2
i

∫
d2kkf +(k)δ(ω+

k − k · vth)

= −4πρ0g
2
i

∫
d2kkf +(k)Cδ(k − kth)δ(θ − θth), (28)

where C is a finite number proportional to the inverse of the
curvature of function ω+

k − k · vth in momentum space. Since
kthf

+(kth) in Eq. (28) is generally nonzero, F+
th gives a finite

contribution to the drag force. It results in the jump in the
drag force. Further, it is easy to prove that there is θth �= θ0,
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which means the induced drag force has a nonzero transverse
component, see Fig. 7(b) for θ0 = π/2 as an example.

For the motion in direction θ0 = π , there exists a momen-
tum that satisfies Eq. (27). However, it gives f +(kth) = 0, so
the integration in Eq. (28) vanishes, which means that there is
no jump in this case.

For motion in the directions 0 � θ0 < 0.27π , when the
velocity of the impurity increases, the state where the upper
and lower bands touch is excited first, the momentum of which
makes f +(k) = 0. As a result, no jump exists in these cases.
See θ0 = π/6 in Fig. 7(a) as an example.

D. Peaks in drag force as a function of v/λ

We find for 0 � θ0 � 0.65π that there exist nonanalytic
peaks in v/λ dependence of the drag forces. Here the upper
bound 0.65π depends on the value of mν/λ

2, as shown in
Fig. 3(b). The nonanalytic behavior is because when v/λ

varies, there exist topological changes in the contours for the
momenta of the excited states in momentum space. The peak
corresponds to the critical point when the number of the loops
changes. See θ0 = 5π/8 in Figs. 8(a) and 8(c) as an example.
Since the drag force is proportional to the gradient of the
density of states in real space [see the second line in Eq. (5)],
the peak structure means the density of states is a nonanalytic
function of v/λ.

For 0.65 < θ0 � π , no such topological change occurs as
v/λ varies, and only analytic humps exist in v/λ dependence
of the drag forces. See θ0 = 5π/8 in Figs. 8(b) and 8(d) as an
example.

IV. CONCLUSIONS

In conclusion, we study a pointlike impurity moves with
a constant velocity in a two-dimensional spin-orbit-coupled
plane-wave Bose-Einstein condensate. We have calculated the
drag force exerted on the impurity by the condensate and
also the superfluid critical velocity based on a time-dependent
Gross-Pitaevskii equation. We have proved rigorously that the
superfluid critical velocity is zero for the motion of the impurity
in all directions but one. This is because of the excitation of
anisotropic Goldstone modes by the impurity. We find that
there exists an enormous difference in the magnitude of the
drag force for the impurity to be scattered into the plane-wave
condensate from two opposite ends. The difference comes
from the fact that there are spin-wave excitations in one case
while there are no excitations of this type in the other case.
We also find that for a mobile impurity with a velocity not
large, it will experience a transverse force when it moves in
all directions except two special ones. The transverse force is
due to the anisotropy of the Bose-Einstein condensate. Both the
spin waves and the helical high-energy states play crucial roles
in inducing this force. When the impurity moves fast, states
with large momenta in both the upper and lower bands are
excited, which have opposite helicity. Their contributions to
the transverse force cancel each other and result in a tiny value.

Experimentally, our results can be verified by scattering a
heavy neutral molecule into the BEC cloud and detecting its
track and velocity. The longitudinal drag force will slow down
the motion of the impurity. The transverse force makes the

FIG. 8. (Color online) (a) Nonanalytic peaks and (b) analytic
humps in drag forces as a function of v/λ. (c) The contour of momenta
of excitations changes topologically from two loops to one loop when
v/λ varies across the peak in (a). The peak corresponds to the critical
point when two loops merge into a single one. The arrows indicate
the evolution direction of the contour as v/λ increases. (d) The
contour of the momenta of excitations evolves without a topological
change when v/λ varies across the local minimum of the hump
in (b).

track of impurity curve, and the sign of the force reflects the
direction of the curvature. We assume the spin-orbit-coupled
87Rb Bose-Einstein condensate is confined in a harmonic
trap with oscillator frequencies (fx,fy,fz) = (50 Hz, 50 Hz,
1000 Hz). The size of the condensate in plane is about
4 μm. The density of the condensate is modulated to 2.4 ×
1010 cm−2, which corresponds to mν/λ

2 
 1. We consider a
molecule with a mass about 10 times that for a 87Rb atom,
and the s-wave scattering length between the molecule and a
87Rb atom about the same as that between two 87Rb atoms.
When it is scattered into the condensate in the direction θ0 =
π/2 with velocity v = 1mm/s, which gives v/λ = 0.5, then,
according to our calculations, the transverse deflection is about
40 nm. To have a delay time up to 10% of that needed for an
impurity to pass through the condensate without friction, the
density of bosons should be at least 2.4 × 1011 cm−2.
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APPENDIX A: MATRIX EXPONENTIAL etA

In this appendix, we give the details of the calculations of
the matrix exponential etA in Eq. (7).

The four eigenvalues of the matrix A in Eq. (6) are λj =
−iω

(j )
k ,j = 1,2,3,4, where ω

(j )
k are four roots of Eq. (10),

−ω−
−k, − ω+

−k,ω
+
k , and ω−

k . Following the method in Ref. [53],
the exponential of matrix A is

etA = ϕ1(t)I + ϕ2(t)A + ϕ2(t)A2 + ϕ3(t)A3. (A1)

Here

[ϕ1(t)ϕ2(t) ϕ3(t) ϕ4(t)]

= [y1(t) y2(t) y3(t) y4(t)]W[y; 0]−1, (A2)

and yj (t) = eλj t ,j = 1,2,3,4. I is the 4 × 4 unit matrix.
W[y; t] is the Wronski matrix,

W[y; t] =

⎡
⎢⎢⎢⎣

y1(t) y2(t) y3(t) y4(t)

y ′
1(t) y ′

2(t) y ′
3(t) y ′

4(t)

y ′′
1 (t) y ′′

2 (t) y ′′
3 (t) y ′′

4 (t)

y ′′′
1 (t) y ′′′

2 (t) y ′′′
3 (t) y ′′′

4 (t)

⎤
⎥⎥⎥⎦. (A3)

From Eqs. (A1)–(A3), the drag force is

F(t) = gi

∫
ikd2kδρ(k,t)eik·vt

= −4πρ0g
2
i

∫
d2kik

∫ ∞

0
ds[esA]12e

ik·vs , (A4)

where

[etA]1,2 =
4∑

j=1

yj (t){A1,2[W[y; 0]−1]j,2

+ [A2]1,2[W[y; 0]−1]j,3

+ [A3]1,2[W[y; 0]−1]j,4}. (A5)

This gives the result in Eq. (8).

APPENDIX B: METHOD TO SOLVE THE MOMENTA
OF EXCITATIONS

In this appendix, we will give a short proof on the validity
of the method to solve Eq. (9) in Sec. II B.

First, for a specified momentum k, Eq. (10) gives four roots,
ω±

k , − ω±
−k. The detailed expressions are given in Ref. [50].

Second, we obtain the momentum k of an excitation induced by
the moving impurity by solving Eq. (11) under the constraint
that k > 0. Then we substitute this momentum into the four
expressions of ω±

k , − ω±
−k. The results are represented as

ω
(i)
k ,(i = 1,2,3,4). Finally, we substitute ω

(i)
k ,(i = 1,2,3,4)

into Eq. (10) and subtract Eq. (11). The results are(
ω

(i)
k − k · v

){(
ω

(i)
k + k · v

)[(
ω

(i)
k

)2 + (
k · v

)2]
+ b

[(
ω

(i)
k

)2 + ω
(i)
k (k · v) + (k · v)2

]
+ c

(
ω

(i)
k + k · v

) + d
} = 0, (i = 1,2,3,4). (B1)

Since ω
(i)
k ,(i = 1,2,3,4) all differ from each other, for a

specified k there exists only one ω
(i)
k that makes ω

(i)
k − k · v =

0. It equals ω+
k or ω−

k , since there is k · v � 0.

APPENDIX C: TRANSVERSE FORCE UP TO ORDER
O((v/λ)0) AT LARGE v/λ

We give the details of calculating of transverse force FT up
to order O((v/λ)0) with a large v/λ as shown in Eq. (26).

From Eqs. (8) and (16), the transverse force is

FT = −Fx sin θ0 + Fy cos θ0

= −4πρ0g
2
i

∫
dθ sin(θ − θ0)[k−f −(k−,θ )

+ k+f +(k+,θ )], (C1)

where f ±(k±,θ ) are defined in Eq. (19) and k± are given by
Eq. (23). By expanding f ±(k±,θ ) in powers of 1/k± at large
k±, we obtain

f +(k+,θ ) = a+
0 + a+

1

1

k+ + O

[
1

(k+)2

]
,

(C2)

f −(k−,θ ) = a−
0 + a−

1

1

k− + O

[
1

(k−)2

]
,

where a±
0 and a±

1 are coefficients need to be calculated.
Using the expansion of dispersions at large momentum

ω±
k = [

√
(kx − λ)2 + k2

y ± λ]2 + C±(k)mν + O(1/k), we ob-
tain

f +(k,θ ) = A+k5 + B+k4 + O(k3)

C+k5 + D+k4 + O(k3)
,

(C3)

f −(k,θ ) = A−k5 + B−k4 + O(k3)

C−k5 + D−k4 + O(k3)
,

where the coefficients are

A± = 4λ(1 ± cos θ ),

C± = 16λ,

B+ + B− − 1
4 (D+ + D−) = 16λ2 cos θ,

(C4)
D+ − D− = 64λ2.
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From Eqs. (C3) and (C4), we have

a±
0 = 1

4 (1 ± cos θ ),
(C5)

a+
1 + a−

1 = 0.

By combining Eqs. (C1), (C2), and (C5), we find the term
of order O((v/λ)0) in FT is exactly zero for any θ0. So the
result can be written as

FT = −4πρ0g
2
i λO

(
1

v/λ

)
. (C6)
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