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Topological defects and inhomogeneous spin patterns induced by the quadratic Zeeman effect
in spin-1 Bose-Einstein condensates
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We obtain analytically two kinds of inhomogeneous spin domain configurations endowed with time-dependent
periodic domain walls in spin-1 Bose-Einstein condensate, which result from the positive and negative quadratic
Zeeman effects, respectively. It is shown analytically that the topological defects are given by the unmagnetized
atoms, at which the order parameter is of polar phase, but besides them, the order parameter is of axisymmetry-
broken phase. The quadratic Zeeman effect can be tuned to induce the dynamical phase transition of the spin
domain, and its sign can affect the topological structure of the spin pattern. These features arise from the
axisymmetry breaking due to the pointwise-different population exchange between the sublevels determined
uniquely by the quadratic Zeeman effects. The related experimental observations for the spin-1 87Rb and 23Na
condensates are also discussed.
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I. INTRODUCTION

The realization of spinor Bose-Einstein condensate (BEC)
in an optical trap [1–4] provides a unique system in which to
study rich quantum phenomena [5–17]. While BEC in a mag-
netic trapping can be controlled precisely by many techniques,
such as Feshbach resonance and dispersion management
[18–23], the spinor BEC can be controlled by tuning the spin-
exchange interaction via optical [24,25] or microwave [26]
Feshbach resonance techniques. However, a powerful way to
control the spinor BEC is to use the quadratic Zeeman effect,
which results from the Zeeman energy difference in a spin-flip
collision between different hyperfine levels. It not only leads
to rich novel ground states and spin structures [27–32], but
also significantly affects spin dynamics [33–41], phase transi-
tions [41,42], symmetry [15,43], and the vortex state [44].

In spinor BEC under an external magnetic field B, the
quadratic Zeeman effect is proportional to B2. Because of its
competition with the spin-exchange interaction, the quadratic
Zeeman effect becomes a key factor in determining the
properties of the spinor gas. Experimentally, the quadratic
Zeeman effect is tunable and its sign can be varied to be either
positive or negative [4,15,30,40,45]. By use of the quadratic
Zeeman effect, the single-particle energies can be varied to
control the dynamical instabilities induced by the spin mixing
collisions; these instabilities provide a great chance to access to
a rich variety of physical phenomena. Although many exciting
features of spinor BEC under quadratic Zeeman effect have
been investigated, it is still not very clear how the quadratic
Zeeman effect influences the spin dynamics, especially when
the quadratic Zeeman effect is negative [4].

In this paper, we obtain the exact solutions for the spin-1
BEC in the presence of linear and quadratic Zeeman ef-
fects. We show that the quadratic Zeeman effect can give
rise to pointwise-different population exchange between the
sublevels of spin-1 BEC, which leads to the axisymmetry
breaking, and brings on the time- and space-dependent
magnetization. We describe in detail two novel kinds of

inhomogeneous spin patterns, which possess periodic spin
domain walls (DWs) formed by the topological defects that
are constituted by the zero-population-transfer areas, due to
the positive and negative quadratic Zeeman effect, respectively.
The quadratic Zeeman effect also deeply affects the topological
structure of the spin patterns. Furthermore, for a positive
quadratic Zeeman effect, the features of the spin domain
described by the exact solution are in agreement with the
experimental observation in [3] for a spin-1 87Rb Bose gas;
for a negative quadratic Zeeman effect, it gives a theoretical
supplement for the experiment of 23Na reported in [4]. Our
results provide a perspective on the controllability of spinor
BEC via the quadratic Zeeman effect.

II. THE MODEL AND METHOD

In this paper, we only deal with the spatially homo-
geneous (the external trap Vtrap = 0) spin-1 BEC. Up to
now, BEC experiments are all carried out in atomic traps;
however, as pointed out in Ref. [46], the results obtained
from a homogeneous system may serve to provide primary
estimates for certain physical quantities of a trapped BEC.
Specifically, in the WKB semiclassical approximation, the
homogeneous results are directly used to determine the
spectrum of elementary excitations, which is then exploited to
calculate various thermodynamic quantities. Moreover, there
have been attempts to realize a homogeneous Bose-Einstein
condensate [47,48]. For spatially homogeneous spin-1 BEC,
under mean-field theory, in consideration of the Zeeman effect,
the quasi-one-dimensional (1D) dynamics is governed by the
Gross-Pitaevskii equations in dimensionless form [49,50]:

i∂t�±1 = − 1
2∂2

x�±1 + (c0 + c1)(|�±1|2 + |�0|2)�±1

+ (c0 − c1)|�∓1|2�±1 + c1�
∗
∓1�

2
0 + (q ∓ p)�±1,

i∂t�0 = − 1
2∂2

x�0 + (c0 + c1)(|�1|2 + |�−1|2)�0

+ 2c1�
∗
0�1�−1 + c0|�0|2�0, (1)

1050-2947/2015/91(1)/013619(9) 013619-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.013619


ZHAO, SONG, WEN, LI, LUO, AND LIU PHYSICAL REVIEW A 91, 013619 (2015)

where c0 = c0/c1,c1 = ±1. Here the constant p = p/c1n

denotes the linear Zeeman effect, the constant q = q/c1n

denotes the quadratic Zeeman effect, c0 = (g0 + 2g2) /3 and
c1 = (g2 − g0) /3 denotes effective constants of the mean-field
and spin-exchange interaction, respectively [5,16], with the
effective 1D couplings,

gF = 4�
2aF

Ma2
⊥

1

1 − CaF /a⊥
.

Here aF are the s-wave scattering lengths in the total hyperfine
spin F = 0,2 channel; a⊥ is the size of the transverse ground
states; M is the atomic mass; C = 1.460 3 . . . ,n is the average
particle density; and p = −gμBB is the sum of the linear
Zeeman energy, with g the Lande factor, B the external
magnetic field that is assumed to be applied in the z direction,
μB = e�/2me (me is the electron mass, and e > 0 is the
elementary charge) is the Bohr magneton, and q = (gμBB)2

EhF

is the quadratic Zeeman energy with the hyperfine splitting
EhF = Em − Ei given by the difference between the initial Ei

and intermediate Em energies. In addition, time t , position x,
and �±1,0 are in units of �/(|c1|n),�/

√
2M|c1|n and 1/

√
n,

respectively. The interaction is ferromagnetic if c1 < 0
(such as 87Rb) or antiferromagnetic if c1 > 0 (such as 23Na).
The value of q can be tuned in the negative direction by using a
linearly polarized microwave field due to the ac Stark shift, and
c0 must be non-negative to avoid the collapse. Specifically, for
87Rb, c0 = 216,c1 = −1; for 23Na, c0 = 32,c1 = 1. Typically,
for 87Rb and 23 Na, n ∼ 1020 m−3 [1,3,51], and |c1|n ∼
h × 3.6 Hz or h × 24.1 Hz. The time and length are measured
in units of 10−2 s and 10−6 m, respectively.

In experiments, the linear Zeeman effect can be changed
independently by applying a field gradient B ′ along the axis
of the trapped condensate [1], taken as B ′zb where zb is
the gradient field range. The quadratic Zeeman effect can
be changed independently by applying a weak external bias
field B [1], which is given by q̄ = q̂B2. It is found that
q̂ = 71.65 Hz G−2 for 87Rb and 278 Hz G−2 for 23Na [1].
In general, under a bias field, for spin-1 23Na or 87Rb BEC,
we have q > 0. However, by using ac Stark shift induced by a
microwave dressing field, q < 0 is still accessible [4,45]. The
controllability of the sign and its magnitude of the quadratic
Zeeman effect provides a powerful way to manipulate spinor
BEC.

Our discussion is based on the analytical solutions of
Eq. (1). As Eq. (1) is derived from mean-field theory with
zero temperature, our results only provide spin configurations
in the sense of a thermodynamic equilibrium state. Although
some simplifications [41] or approximations [52–56] have
been made and some efficient analytical methods have been
introduced [50,57–60], in the presence of the quadratic
Zeeman effect, it seems that no analytical result has been
reported. Even in the absence of the quadratic Zeeman
effect, only some special cases of Eq. (1) have been studied
analytically by a few authors. For example, in [58,59], the
integrable models with the choice of the coupling constant
c0 = c1 = c(<0 or >0) have been investigated; in [50,60], the
order parameters were presented analytically by assuming
|�1| = |�−1|. But these kinds of solutions cannot describe
the spontaneous magnetization. In this paper, we deal with a

very general case, no assumption on c0,c1 is adopted, and in
the solutions, |�1| �= |�−1|, so these solutions can describe the
spontaneous magnetization. We find that the uniform quadratic
Zeeman effects can give rise to time-dependent topological
defects which form the moving domain walls. It seems that
such a phenomenon has not yet been reported in spinor BEC.

By a direct ansatz with Jacobian elliptic functions, we get
two novel kinds of analytical solutions corresponding to a
positive and negative quadratic Zeeman effect, respectively.
To find explicit solutions of (1), we assume

�m(x,t) = rm(x,t)eiχm(x,t) (m = 1,0,−1), (2)

with the ansatz

rm(x,t) = Am sn(ξ,λ) + Bm cn(ξ,λ) + Cm dn(ξ,λ),

χ±1(x,t) = k±1x − μ±1t,

χ0(x,t) = [χ1(x,t) + χ−1(x,t)]/2,

where ξ = kx + ωt,Am,Bm,Cm,k±1,μ±1,k,ω are parameters
to be determined, sn(·,λ),cn(·,λ) and dn(·,λ) are the real
Jacobian elliptical functions [61], in which λ2 �1 gives
the elliptic modulus, which determines the period of the

functions. Denote by K(λ) = ∫ π
2

0
dθ√

1−λ2 sin2(θ)
, then the periods

of sn(η,λ),cn(η,λ), and dn(η,λ) are 4K(λ),4K(λ), and 2K(λ),
respectively. Furthermore, the definition of these functions can
be extended for λ2 >1 [62] by means of

sn(η,λ) = 1/λ sn(λη,1/λ),

cn(η,λ) = dn(λη,1/λ), (3)

dn(η,λ) = cn(λη,1/λ),

so we think that λ is defined on the whole real line.
The Jacobian elliptical functions have the following prop-

erties:

sn(x,0) = sin(x), cn(x,0) = cos(x),

dn(x,0) = 1, sn(x,1) = tanh(x),

cn(x,1) = sech(x), dn(x,1) = sech(x),

sn(x,λ)2 + cn(x,λ)2 = 1,

dn(x,λ)2 + λ2 sn(x,λ)2 = 1.

We see that the soliton form is a special case of a Jacobian
elliptical function corresponding to λ = 1. In addition, the
derivation operation is closed between the functions sn,cn,
and dn as shown below:

d

dx
sn(x,λ) = cn(x,λ) dn(x,λ),

d

dx
cn(x,λ) = −sn(x,λ) dn(x,λ),

d

dx
dn(x,λ) = −λ2 sn(x,λ) cn(x,λ).

Substituting the ansatz (2) into (1) and using the above
identities, we obtain polynomials in sn,cn, and dn. Setting the
coefficients of the polynomials to be zeros, we get a system of
algebraic equations on the unknown parameters Am,Bm,Cm

and k±1, μ±1, k, ω. This algebraic system can be solved, and
we obtain our solutions. In fact, this procedure can provide
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many interesting solutions for the spin-1 system, but in this
paper we only care about the solutions with nonzero quadratic
Zeeman effects.

We remark that our method can also be used to solve many
other nonlinear partial differential equations.

III. TOPOLOGICAL DEFECTS AND INHOMOGENEOUS
SPIN BY A POSITIVE QUADRATIC ZEEMAN EFFECT

For the positive quadratic Zeeman effect, we get an exact
solution of (1) only under the ferromagnetic interaction, i.e.,
c1 = −1 (we still use the symbol c1 in the solution in order to
emphasize its role) with the conditions |c1| < c0, which reads

�±1 = [√−c1/(c0 − c1) sn(ξ,λ) ∓ 1
2

√
−q/c1 dn(ξ,λ)

]
eiχ±1 ,

(4)
�0 = sn(ξ,λ)eiχ0 ,

where ξ = √
2q(x − k1t),λ = √−2c1/(qδ), and χ±1 =

k1x − μ±1t with μ±1 = k2
1/2−q(c0−2c1)/(2c1)−2c1/δ ∓

p, 2χ0 = χ1+χ−1, and δ = (c0−c1)/(c0+c1). Here k1 is a
free constant, which denotes the wave number of �+1, and
here is also the wave velocity of our traveling wave. For
87Rb, c1 	c0, so we have �±1 ≈∓ 1

2

√−q/c1 dn(ξ,λ)eiχ±1 ,
which means that the density distribution of the mF = ±1
components are almost the same. Obviously, in this solution,
q = 0 is not permitted. This implies that such a solution
can only exist in the presence of positive quadratic Zeeman
effect; thus the initial components should be prepared under
positive quadratic Zeeman effect. Theoretically, for (4), no
initial conditions before the quadratic Zeeman effect exist.

When t = 0, (4) gives the initial state

�±1 = [√−c1/(c0 − c1) sn(
√

2qx,λ)

∓ 1
2

√
−q/c1 dn(

√
2qx,λ)

]
eik1x, (5)

�0 = sn(
√

2qx,λ)eik1x,

which presents a periodic density distribution if q �= 2/

δ (λ �= 1), as shown in Fig. 1(a). When q = 2/δ (λ = 1), the

FIG. 1. (Color online) Initial states of �±1,�0 given by (5) for
87Rb: (a) q = 2, the periodic case; (b) q = 430

217 (λ = 1), the soliton
case. The other parameters are p = 1, c0 = 216, c1 = −1, k1 =
1,x ∈ [−5,5]. Such initial states should be prepared in the presence of
positive quadratic Zeeman effect. Take n = 2.8 × 1020 m−3, then p =
1 corresponds to p̄ = 10.02 Hz; q = 2 corresponds to q̄ = 20.05 Hz;
and q = 430

217 corresponds to q̄ = 19.86 Hz.

density distribution becomes soliton type,

�±1 = [√−c1/(c0 − c1) tanh(
√

2qx)

∓ 1
2

√
−q/c1 sech(

√
2qx)

]
eik1x, (6)

�0 = tanh(
√

2qx)eik1x.

as shown in Fig. 1(b).
Solution (4) reveals many interesting features of the spin do-

main configuration induced by the positive quadratic Zeeman
effect. It is known that the spin dynamics can be described by
the spin density vector F = {Fx,Fy,Fz} [16], where Fz is the
longitudinal magnetization parallel to the external magnetic
field which describes the net magnetization, and F⊥ = {Fx,Fy}
indicates the transverse magnetization vector, which drives the
atom exchange. The spin vector F is defined by

Fx = 1√
2

[�∗
1�0 + �∗

0(�1 + �−1) + �∗
−1�0],

Fy = i√
2

[−�∗
1�0 + �∗

0(�1 − �−1) + �∗
−1�0],

Fz = |�1|2 − |�−1|2.
It is known that |F⊥| =

√
F 2

x + F 2
y and |Fz| determine the

population exchange and the net magnetization, respectively.
For solution (4), we have

Fx = |F⊥| cos(pt), Fy = −|F⊥| sin(pt),
(7)

Fz = 2
√

q/(c0 − c1) sn(ξ,λ) dn(ξ,λ),

where |F⊥| = √−8c1/(c0−c1) sn2(ξ,λ). Notice that when
sn(ξ,λ) = 0, we have Fx = Fy = Fz = 0, so all the zeros of
sn(ξ,λ) provide the zeros of F . Usually, for system (1), in
the absence of the quadratic Zeeman effect, F always has no
zero and can be normalized, and thus the total magnetization
density is conserved. In comparison, for solution (4), due to
the zeros, F cannot be normalized, and the total magnetization
density is not conserved.

From (7) we see that the Larmor frequency is deter-
mined uniquely by the linear Zeeman effect p, which is
totally different from the case of negative quadratic Zee-
man effect discussed later. The polar angle defined by (7)

is arctan(|F⊥|/Fz) = arctan(
√

− 2c1
q

sn(ξ,λ)
dn(ξ,λ) ); its evolution is

shown in Fig. 2. It is clear that if sn(ξ,λ) �= 0, then |F⊥| �=
0, and the solution is of axisymmetry-broken phase [28].
However, the region such that sn(ξ,λ) = 0 exactly gives the
zeros of F , at which the local magnetization vanishes but the
order parameter reads

�±1 = ∓ 1
2

√
−q/c1 dn(ξ,λ)eiχ±1, �0 = 0, (8)

which is of polar phase. Therefore we can confirm that
the zeros of sn(ξ,λ) are just the topological defects of the
spinor gas, which corresponds to the unmagnetized areas that
constitute the periodic DWs when q �=2/δ (λ �=1). Figure 3
displays the spatial distribution of Fx,Fy,Fz, where the
intersection points of the three curves in Fig. 3 give the
topological defects.

Figure 4 shows the spin configuration determined by (4).
Figure 4(a) is the space-time surface of the spin density
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FIG. 2. (Color online) Evolution of the polar angle determined
by solution (4): (a) q = 2, the periodic case; (b) q = 430

217 (λ = 1), the
soliton case. The other parameters are x ∈ [−10,10], t ∈ [0,3],p =
1, c0 = 216, c1 = −1,k1 = 1.

vector F (for 87Rb). The color is assigned by the value of
Fz, which distinguishes the different magnetization, where the
point O corresponds to the zeros of F that indicate the topolog-
ical defects. Figure 4(b) shows the space-time evolution of the
transverse magnetization vector F⊥, where the lengths of the
arrows are |F⊥|, and the color corresponds to that in Fig. 4(a).
The heavy yellow and pink regions correspond to the neighbor
of the north pole and south pole in Fig. 4(a), respectively. In
such regions, the net magnetization |Fz| reaches its maximum
value. The regions between the light-green and light-blue lines
between the yellow and pink regions are the unmagnetized
areas, i.e., the topological defects, corresponding to the
point O. The blue curve in Fig. 4(a) presents the spatial
evolution of F at t = 1. When q �= 2/δ, along the curve, the
spin vector F evolves periodically in the sequence P → O →
Q → O → P , which shows that O actually corresponds to
the periodic DWs. Correspondingly, in Fig. 4(b), the color
changes in the following sequence: green → yellow → green
→ blue → pink → blue → pink → blue → green → yellow
→ green. Figure 4(c) gives the spatial formation of the spin
vector F along the condensates at t = 1, indicating that the
topological defects constitute the periodical Bloch-like DWs
for the stripe domain. However, at time such that sin(pt) = 0,
all spin vectors lie in the x − z plane. The solution presents

FIG. 3. (Color online) The spatial distribution of Fx,Fy,Fz and
topological defects: (a) the periodic case (q = 2), the common zeros
of the three curves are the topological defects; (b) the soliton case
(q = 430

217 ), the only common zero of the three curves indicates the
topological defect. The other parameters are p = 1, c1 = −1, c0 =
216,k1 = 1,t = 1,x ∈ [−8,8].

FIG. 4. (Color online) Inhomogeneous spin structure and topo-
logical defects induced by positive quadratic Zeeman effect q.
(a) The space-time evolution of the spin density vector F , the point O
corresponds to topological defects. (b) The field plot of the transverse
magnetization vector F⊥, the green and blue lines between the yellow
and pink regions correspond to the evolution of the topological
defects. In (a) and (b), t ∈ [0,10]. (c) The spatial spin configuration at
t = 1, and (d) the spatial spin configuration at t = 0. In (c) and (d), the
periodic domain walls are the topological defects. (e) The spatial spin
configuration of local magnetism (the soliton case) at t = 1, where
the unique domain wall is the topological defect. (f) The spatial
distribution of |F⊥| and |Fz| of local magnetism (the soliton case)
at t = 1, where the only common zero of the two curves indicates
the topological defect. In (a)–(d), q = 2; in (e) and (f), q = 430/217
(λ = 1). The other parameters are x ∈ [−5,5],k1 = 1,c1 = −1, c0 =
216,p = 1.

helical domain formation with periodic Néel-like DWs formed
by the unmagnetized atoms, as shown in Fig. 4(d). Such
two kinds of DWs in Figs. 4(c) and 4(d) can be converted
to each other periodically. In this case, as |F⊥| and Fz

have common periodic zeros, the transverse ferromagnetic
domains are divided by the topological defects periodically.
This features agree with the experimental observation for a
87Rb spinor BEC reported in [3]. However, in the experiment,
the transverse ferromagnetic domains are formed from nearly
pure spinor BEC prepared in the unmagnetized |mF = 0〉
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phase for q � 2/δ at the beginning, and then rapidly quenched
the gas to conditions q 	 2/δ. Our discussion shows that for
q around 2/δ, a similar phenomenon should also be observed.

It is remarkable that when q = 2/δ (λ = 1), (4) gives a
novel superposition solitonlike solution:

�±1 = [
√

−c1/(c0 − c1) tanh(ξ )∓
√

2/δ sech(ξ )]eiχ±1,

�0 = tanh(ξ )eiχ0 .

The shape of such solutions are determined by the ratio γ =
|c0/c1|. For 87Rb, γ �1, each |�±1|2 behaves like a bright
soliton. This fact implies that q = 2/δ is an unstable point of
dynamical phase transition. As we usually have |c1| 	 c0,q =
2/δ can be compared with the quantum phase transition point
q = 2|c1|n (i.e., q = 2) mentioned in [3]. In this case, we have

|F⊥| =
√

−8c1/(c0 − c1) tanh2(ξ ),
(9)

Fz = 2
√

q/(c0 − c1) tanh(ξ ) sech(ξ ).

The atom exchange between the sublevels is small near the
soliton propagation direction, which permits only a unique
spin DW. Far away from this region, the atom exchange of
the component mF = ±1 is almost uniform, which gives
no net magnetization. Therefore the net magnetization is
concentrated in a local range, as shown in Figs. 4(e) and 4(f).

When |F⊥| �= 0, the SO(2) symmetry is broken in the
direction of the transverse magnetization. In our solution, the
transverse magnetization is nonuniform, i.e., it is space- and
time-dependent, which causes the inhomogeneous symmetry
breaking in the spin evolution. To investigate the symmetry
of the order parameters in spin space, we give the visualized
realization of the order parameter for q > 0 in the spin space.
Because an integer-spin state can be described in terms of
the spherical harmonics Ym

f (ŝ)[ŝ = (α,β),α is taken as the
polar (colatitude) coordinate with α ∈ [0,π ], and β ∈ [0,2π ]
is the azimuthal (longitudinal) coordinate], the above order
parameter can be visualized by drawing the wave functions
in spin space by the surface of |�(ŝ)|2, where �(ŝ) =
�+1Y

1
1 (ŝ) + �0Y

−1
1 (ŝ) + �−1Y

−1
1 (ŝ).

In mathematics, spherical harmonics are the angular portion
of a set of solutions to Laplace’s equation. Represented in a
system of spherical coordinates, Laplace’s spherical harmonics
Ym

f (ŝ) are a specific set of spherical harmonics that forms an
orthogonal system.

Figure 5 shows spatial variation of the order parameter
in a unit cell visualized by plotting a surface with spherical
coordinates, where the color represents the phase, i.e., the
argument arg �(ŝ) [16], which is defined on [−π,π ]. It
displays that the spin states of the order parameter in the
spin space is space-time pointwise different. As a comparison,
Figs. 5(a) and 5(b) are the spin states for the same position and
quadratic Zeeman effect but different time, whereas Figs. 5(a)
and 5(c) are for the same position and time but different
quadratic Zeeman effect. One can see that for the order
parameters for states (a) and (b), they not only differ in their
orientations, but also have different morphologies near the
centers, so they cannot be identified in the spin space via
a rotation, which is quite different from the case discussed
in [16] for ground state. Figures 5(a) and 5(c) show that the
change of the quadratic Zeeman effect will change the spin

FIG. 5. (Color online) Inhomogeneity of the order parameter
(�−1,�0,�1) in the spin space determined by the positive quadratic
Zeeman effect. As a comparison for the spin state, (a) and (b) are for
the same position (x = 4) and quadratic Zeeman effect (q = 3) but
different time: t = 2 in (a), t = 4.5 in (b); (a) and (c) are for the same
position (x = 4) and time (t = 2) but different quadratic Zeeman
effect: q = 3 in (a), q = 9 in (c). The other parameters are taken as
p = 1,k1 = 1,c1 = −1,c0 = 216. Notice that the three figures have
different morphologies near the centers, so they cannot be identified
in the spin space via a rotation.

state of the order parameter. This implies that the presence of
the quadratic Zeeman effect can lead to different morphology
for the space-time–dependent spin state.

We now turn to the population distribution determined
by solution (4) and recall a conclusion in mathematics:
for a continuous function f (t) with period T , we have∫ T

0 f (x)dx = ∫ T +c

c
f (x)dx = ∫ T

0 f (x + c)dx for any
constant c. By this fact, we see that within a period,
the atom number, Nm = ∫ T

0 |�m[k(x + k1t)]|2dx =∫ T +kk1t

kk1t
|�m(kx)|2dx = ∫ T

0 |�m(kx)|2dx (m = ±1,0), of
each component is time-independent; therefore we confirm
that the population exchange between the mF = ±1 and
mF = 0 components is in an equilibrium state.

IV. TOPOLOGICAL DEFECTS AND INHOMOGENEOUS
SPIN BY NEGATIVE QUADRATIC ZEEMAN EFFECT

For a negative quadratic Zeeman effect, exact solutions
are obtained for both ferromagnetic (c1 = −1) and antifer-
romagnetic (c1 = 1) interactions when |c1| < c0. Set ν =
−2q/(c0 − c1) and k =

√
(c0 + c1)A2

−1 , and Eq. (1) has the
solution

�±1 = A±1sn(ξ,λ)eiχ±1 ,
(10)

�0 =
√
−2A1A−1cn(ξ,λ)eiχ0 ,

where k1,A−1 are free parameters, A1 = √
ν−A−1,λ =√

(c0+c1)ν/k,ξ = k(x−k1t),χ±1 = k1x−μ±1t,χ0 =
(χ1+χ−1)/2, with

μ±1 = (
k2

1 + k2
)/

2 + 2c0A
2
−1 − 2

√
ν(c0 ± c1)A−1

± c1ν ∓ p.

Let t = 0, q = 0, and we get the initial conditions before the
quadratic Zeeman effect as

�±1 = ±A1 sin(kx)eik1x,
(11)

�0 =
√

2A1 cos(kx)eik1x,

which is of a polar phase, where k, k1 are arbitrary constants.
The initial state (t = 0) of solution (10) is shown in Fig. 6.
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FIG. 6. (Color online) Initial states of �±1,�0 determined by
solution (10): (a) q = −3, the periodic case; (b) q = −3.875 (λ = 1),
the soliton case. The other parameters are t = 0,x ∈ [−5,5],p =
1, c1 = 1, c0 = 32,A−1 = −0.5,k1 = 1.

In general, Eq. (10) indicates a solution of broken-
axisymmetry phase, and the spin vector is given by

Fx = 2
√

−A1A−1ν sn(ξ,λ) cn(ξ,λ) cos �t,

Fy = −2
√

−A1A−1ν sn(ξ,λ) cn(ξ,λ) sin �t, (12)

Fz = (ν − 2
√

νA−1) sn2(ξ,λ),

where � = (p − c1ν + 2c1A−1
√

ν) gives the Larmor fre-
quency. Different from the case of q > 0, the Larmor fre-
quency is not only determined by the linear Zeeman effect
but also by the quadratic Zeeman effect. Similar to the case
of q > 0, the zeros of F determine the topological defects
constituted by the unmagnetized atoms.

The expression of solution (10) requires A1A−1 � 0. The
cases for A−1 > 0 and A−1 < 0 are different. One can see
that if A−1 > 0,q should be restricted in the region − 1

2 (c0 −
c1)A2

−1 � q � 0, in this case, while q = 0 gives a periodic
polar state

�±1 = ∓A−1 sin(ξ )eiχ±1,
(13)

�0 =
√

2A−1 cos(ξ )eiχ0 ,

q = −A2
−1(c0 − c1)/2 presents a ferromagnetic phase

�0 = �1 = 0, �−1 = A−1 tanh(ξ )eiχ±1 . (14)

This suggests that by tuning q, it is possible to get polar phase
or ferromagnetic phase from the broken-axisymmetry phase,
which means that tuning q can change the population in each
component.

If A−1 < 0, no further restriction on q is required. For
simplicity, hereafter we only discuss the case for A−1 < 0.
In such a situation, note that q = − 1

2 (c0 − c1)A2
−1 gives the

soliton state, the order parameter reads

�±1 = A±1 tanh(ξ )eiχ±1, �0 =
√

−2A1A−1 sech(ξ )eiχ0,

and the spin vector becomes

Fx = 2
√

−A1A−1ν tanh(ξ ) sech(ξ ) cos �t,

Fy = −2
√

−A1A−1ν tanh(ξ ) sech(ξ ) sin �t,

Fz = (ν − 2
√

νA−1) tanh2(ξ ).

Figures 7(a)–7(c) display the spatial distribution of Fx,Fy,Fz

and |F⊥|,|Fz|, respectively. Similar to Figs. 3(a) and 3(b), the
intersection points of the three curves in Figs. 7(a) and 7(b)
give the topological defects. In the soliton case, both the atom
exchange between the sublevels and the net magnetization
vanish on the topological defects. However, the transverse
magnetization is concentrated on the region near the defect,
and far away from this region, it becomes zero but Fz reaches
its maximum, which gives a uniform net magnetization with no
population exchange, as Fig. 7(c) displays. This is contrary to
the case of solution (4) shown in Fig. 4(f). Roughly speaking,
for the shapes of the curves in Fig. 7(c) and Fig. 4(f), there
is an exact interchange between the distribution of |F⊥| and
|Fz|. On the other hand, it is the same as the case of q > 0, for
solution (10). The zeros of sn(ξ,λ) present the topological de-
fects, and at these defects, the order parameter becomes �±1 =
0,�0 = √−2A1A−1e

iχ0 , which is of polar phase, but besides
them, the order parameter is of axisymmetry-broken phase.

The evolution of the polar angle determined by solution (10)
is shown in Fig. 8. Similar to the case of q > 0, the population
of each component is also conserved within a period, and the
atom exchange between the sublevels is also in an equilibrium
state. However, the spin configuration for the case of q < 0
is rather different from the case of q > 0. First, the Larmor
frequency is not only determined by the linear Zeeman effect,
but also by the quadratic Zeeman effect. In addition, the spin
domain formation is completely different. We show the spin

FIG. 7. (Color online) (a) The spatial distribution of Fx,Fy,Fz for q = −3.87 (the periodic case), the common zeros of the three curves
show the topological defects. (b) The spatial distribution of Fx,Fy,Fz for q = −3.875 (λ = 1) (the soliton case), the only common zero of the
three curves indicates the topological defect. (c) The spatial distribution of |F⊥| and |Fz| for q = −3.875 (λ = 1), the only common zero of the
two curves is the topological defect. The other parameters are p = 1, c1 = 1, c0 = 32,A−1 = −0.5,k1 = 1,t = 1,x ∈ [−5,5].
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FIG. 8. (Color online) Evolution of the polar angle determined
by solution (10): (a) q = −3, the periodic case; (b) q = − 31

8 (λ = 1),
the soliton case. The other parameters are x ∈ [−3,3], t ∈ [0,3], p =
1, c1 = 1, c0 = 32. k1 = 1,A−1 = −0.5.

domain formation determined by solution (10) in Fig. 9 to
compare with Fig. 4. One can find that Figs. 9(a) and 9(c)
present different spin patterns compared with that shown in
Figs. 4(c) and 4(e). Figure 9(a) is the spatial spin configuration,
and its spin DWs are of Bloch-like type. Figure 9(b) shows
the spin configuration at the time such that sin(�t) = 0. In
this case, all spin vectors have almost the same direction and
lie in the x − z plane and the topological defect does not
form domain walls, although they divided the domain into
subdomains periodically, which is very different from the case
shown in Fig. 4(d).

Taking 23Na (c1 = 1) as an example (for c1 = −1, such as
87Rb, the result is similar), Fig. 10(a) gives the spin density
surface. Compared with the case of q > 0, it has a different
topological structure. Figure 10(b) shows how the negative
quadratic Zeeman effect affects the intensity of F,F⊥, and Fz.
The black curve in Fig. 10(a) shows the spatial evolution of F

at t = 1. Along the curve, one cycle movement corresponds
to one period of the spin domain. Similar to the case of
q > 0, the nonuniform periodic population distribution and
exchange bring on the periodic spin DWs formed by the
topological defects, which is indicated by point O. In addition,
the center areas of a spin domain correspond to the north
poles in Fig. 10(a), where F⊥ = 0, and no population exchange
between the sublevels occurs. In such areas, the spin reaches
its maximum net magnetization.

FIG. 10. (Color online) Inhomogeneous spin structure induced
by negative quadratic Zeeman effect: (a) the space-time evolution of
the spin density vector F , the color indicates the intensity of Fz; (b) the
influence of q on F,F⊥ and Fz. In (a), p = 1, q = −3,x ∈ [−5,5],t ∈
[0,15]; in (b), x = 0,t = 1,q ∈ [−15,0]. The other parameters are
A−1 = −0.5,p = 1,k1 = 1,c1 = 1,c0 = 32.

Experimentally, q < 0 can be reached by using a bias
magnetic field B and a microwave dressing field M . Let qB be
the quadratic Zeeman shift given by B and qM be the quadratic
energy shift due to the ac Stark shift caused by M,q can be
tuned by virtue of q = qB + qM . In the recent experiment [4],
in a quasi-1D case, with up to 3 × 106 sodium atoms with
a peak atom density of n0 = 5.4 × 1014 cm−3, in an optical
dipole trap, under a bias magnetic field B = 97 mG, by using
microwave powers between 0 and 7.5 W, the quadratic Zeeman
effect can be tuned between qB = h × 2.5 Hz to −18.5 Hz. By
rapidly switching the quadratic Zeeman effect from positive
to negative values, the dynamics of an antiferromagnetic
sodium BEC quenched across a quantum phase transition has
been observed. However, the phase coherence between the
dynamically created mF = ±1 spin components in relation
to topological defect formation was not explored. The above
analytical solution for q < 0 provides a precise description
for possible dynamics of this experiment and shows further
that the same dynamics could be observed for the 87Rb BEC.
By probing the Larmor precession [63], the novel features are
expected to be tested.

It is found that tuning the linear Zeeman effect and quadratic
Zeeman effect will cause a pointwise-different influence
to the spin dynamics. Taking 87Rb and 23Na as an examples,

FIG. 9. (Color online) Inhomogeneous spin structure and the topological defects determined by solution (10) for different t and q: (a) the
spatial spin configuration at t = 1 for q = −3, the periodic case; (b) the spatial spin configuration at t = 0 for q = −3; and (c) the spatial
spin configuration at t = 1 for q = − 31

8 (λ = 1), the soliton case. The other parameters are: x ∈ [−3,3], p = 1, c1 = 1, c0 = 32,k1 = 1,A−1 =
−0.5. The domain walls are formed by the topological defects.
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FIG. 11. (Color online) Pointwise evolution of the spin density
vector F in the linear and quadratic Zeeman effects p and q at
the same time (t = 1) but different position, the color indicates the
intensity of Fz: (a, b) for q > 0, where x = 2 in (a), x = 3.3 in (b),
q ∈ [0,10]; (c, d) for q < 0, where x = 1.7 in (c), x = 2.7 in (d),
q ∈ [−3.87,0],A−1 = −0.5. In both cases p ∈ [0,2π ],k1 = 1.

Figs. 11(a) and 11(b) show the pointwise evolution of F in
p and q for q > 0; Figs. 11(c) and 11(d) are for q < 0.
These figures clearly show the inhomogeneous influence of
the Zeeman effects on the spin structures.

V. CONCLUSION

In conclusion, in the presence of the positive and negative
quadratic Zeeman effect, respectively, we obtain two exact
solutions of broken-axisymmetry phase for spin-1 BEC. Two
kinds of inhomogeneous spin patterns are displayed, the
magnetization dynamics dominated by the quadratic Zeeman
effect are discussed in detail, and the topological defects
are described analytically. Our results provide an alternate
prospect for spin configuration in spin-1 BEC, and similar
phenomena are expected to be found also in spin-2 BEC. We
will discuss this topic in another paper.
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