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Tunneling-assisted spin-orbit coupling in bilayer Bose-Einstein condensates
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Motivated by the goal of realizing spin-orbit coupling (SOC) beyond one dimension, we propose and analyze
a method to generate effective two-dimensional SOC in bilayer BECs with laser-assisted interlayer tunneling.
We show that interplay among the interlayer tunneling, SOC, and intralayer atomic interaction can give rise to
diverse ground-state configurations. In particular, the system undergoes a transition to a different type of stripe
phase which spontaneously breaks the time-reversal symmetry. Different from the ordinary Rashba-type SOC, a
fractionalized skyrmion lattice emerges spontaneously in the bilayer system without external traps. Furthermore,
we predict the occurrence of a tetracritical point in the phase diagram of the bilayer BECs, where four phases
merge. The origin of the different emerging phases is elucidated.
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I. INTRODUCTION

The search for new exotic matter states [1,2] and the study
of phase transitions [3] are currently among the main issues
in the condensed matter community. During the last few
years these topics have gained increasing interest for ultracold
atomic gases [4–8], which represent systems simulating
many condensed matter phenomena. Recent experimental
progress in the spin-orbit coupling (SOC) of degenerate atomic
gases [9–13] has stimulated theoretical studies of diverse new
phases due to the SOC [8,14–17], such as emergence of the
stripe phase in atomic Bose-Einstein condensates (BECs) [18–
22] and formation of unconventional bound states [23–26]
and topological superfluidity [27] for atomic fermions. It
was demonstrated that for spin-orbit (SO)-coupled BECs,
half-vortex (meron) ground states may develop in harmonic
traps [28–32]. Such topological objects are of special interest
for studying nontrivial spin configurations in condensed matter
physics [33–36]. Rashba-like SOC has also been predicted for
exciton-polaritons or cavity photons [37].

So far, only the special case of an equal weight of
Rashba and Dresselhaus SOC representing one-dimensional
(1D) SOC of the form ∝ kxσx (or ∝ kyσx) can be realized
experimentally [9–13], making the above rich physics unac-
cessible in experiments. There have been many proposals for
generating 2D (3D) SOC for ultracold atoms [8,38–48], but its
experimental realization remains a challenge.

In this paper we propose a realistic way to generate an
effective 2D SOC in bilayer BECs by combining current
experimental techniques of intralayer Raman transition [9–13]
and interlayer laser-assisted tunneling (LAT) [49–52]. The
atoms in each layer are affected by the 1D SOC in a different
direction, along the x̂ and ŷ axis, respectively. The chiral
states of individual layers are then mixed by the laser-assisted
interlayer tunneling, effectively providing a 2D SOC with four
minimum chiral states. Although the bilayer system bears the
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key properties of 2D SOC, it is not the ordinary 2D SOC of
the Rashba or Dresselhaus type. This give rise to a diverse
phase diagram with intriguing and different matter states not
encountered before.

Our main findings are summarized in Fig. 1. For large
interlayer tunneling, the two layers are strongly coupled, so
the usual stripe (SP-I) or plane-wave (PW) phases appear.
For moderate tunneling, the system develops a different type
of stripe phase (SP-II), which chooses spontaneously a pair of
asymmetric wave vectors and breaks the time-reversal symme-
try. Finally, a fractionalized skyrmion lattice (FSL) emerges
spontaneously in the ground state of a homogeneous system
for a wide range of parameters. Such spontaneous generation
of skyrmions differs from other means of their production,
including thermal quenching [53], phase imprinting [54,55],
and using trapped systems [28,30–32].

Significantly, we demonstrate that a tetracritical point (TP)
occurs among the four phases. The TP is a fundamental aspect
in phase transitions and has attracted wide interest [56]. It
was first found in anisotropic antiferromagnets [57,58] but has
never been predicted for ultracold atoms.

The paper is organized as follows. In the following section
we introduce the general formulation for tunneling-assisted
SOC and discuss the single-particle spectrum. Subsequently,
in Sec. III, we present the calculational methods by including
atomic interactions and analyze many-body ground state
configurations in the phase diagram. Finally, in Sec. IV,
we discuss some related experimental issues and present
conclusions. Details of some derivations are presented in two
Appendixes.

II. GENERAL FORMULATION OF THE
SINGLE-BODY PROBLEM

A. Bilayer system

The system under investigation is depicted in Fig. 2(a),
where an atomic BEC is confined in a bilayer geometry.
The atoms are characterized by two internal (quasispin) states
labeled by the index γ = ↑,↓. These can be, e.g., two magnetic
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FIG. 1. (Color online) Phase diagram of the system as a function
of the dimensionless interlayer tunneling α ≡ J/Eκ (Eκ = κ2/2,
with κ being the strength of SOC) and 1 − g2

↑↓/g
2 (g↑↓/g is

the relative atomic interaction). Here, the dimensionless intralayer
coupling is set to be β ≡ �/Eκ = 0.3. Asterisks represent the phase
boundaries determined from numerical simulations. A tetracritical
point, marked by the circle, occurs on the critical line α2 + β2 = 1
(solid horizontal line). Colored regions are determined by variational
calculations, denoting normal stripe (SP-I; green) and plane-wave
(PW; yellow) phases, a different type of stripe phase (SP-II; blue),
and a fractionalized skyrmion lattice (FSL; red) phase.

sublevels of the F = 1 ground-state manifold of 87Rb-type
alkali-metal atoms [9] or a spin-singlet ground state and
a long-lived spin-triplet excited state of the alkaline-earth
atoms [59]. In the following discussion, we concentrate on
the former case. However, the results obtained can also be
applied to other systems.

The atoms are trapped by a double-well-like optical
potential along the z direction, but their motion is not confined
in the xy plane. The single-particle Hamiltonian is given by

Ĥ0 = Ĥatom + ĤLIT + ĤLAT, (1)

where the first term Ĥatom corresponds to the unperturbed
atomic motion, the other two terms being due to laser-induced
intralayer transitions (LITs) between the two atomic internal
states, as well as LAT of atoms between two wells without
changing an atomic internal state.

B. Atomic Hamiltonian

The atomic Hamiltonian reads, in the second quantized
representation,

Ĥatom =
∫

d2rdz
∑

γ=↑,↓
ψ̂†

γ (r,z)

[
−∇2

r + ∇2
z

2
+ Vop(z)

]

× ψ̂γ (r,z), (2)

where ψ̂γ (r,z) is an operator for annihilation of an atom
positioned at R = r + ẑz and in an internal state γ . Here r
is the 2D radius vector describing the atomic motion within
a layer in the xy plane, and the coordinate z characterizes
the interlayer motion. Here also Vop is a double-well optical
potential along the z axis. For instance, it can be taken to be

FIG. 2. (Color online) (a) Schematic of the bilayer system af-
fected by a circular polarized laser field (shown in yellow) propagating
along the quantization axis ẑ, as well as four linear polarized
laser beams (shown in blue). The beams illuminate both layers
containing the atoms characterized by two internal states, γ = ↑,↓.
(b) Illustration of a specific laser configuration. The first and second
blue laser beams are polarized linearly along the ẑ and propagate
along the x̂ or ŷ Cartesian axes. The polarizations and frequencies of
the yellow and blue beams are chosen such that they selectively
induce the Raman transition between the atomic internal states
in one of the layers. The third and fourth laser blue beams are
linearly polarized along the x̂ + ŷ direction, causing a selective
laser-assisted tunneling between the layers for atoms in a specific
atomic internal state. (c) Schematic of intralayer spin-flip transitions
and interlayer transitions for specific spin states. For each layer
Raman transitions are characterized by the coupling strength �1,2

and the recoil momenta k1,2 along the x̂ and ŷ axis, respectively.
Laser-induced interlayer tunneling is characterized by the effective
strength J3,4 and the corresponding recoil momentum k3,4 in the xy

plane. (d) Spectrum of the single-particle Hamiltonian Ĥeff , Eq. (15),
for the relative interlayer tunneling α ≡ J/Eκ = 0.6 and intralayer
coupling β ≡ �/Eκ = 0.3, measured in units of the recoil energy
Eκ = κ2/2 corresponding to the momentum κ = |k1,2|/2. In this case
the lowest dispersion band has four degenerate minima, at ±Q1 and
±Q2, as demonstrated in Appendix A.

a sum of two inverted Gaussians, Vop(z) = −V0e
−(z−d/2)2 −

ηV0e
−(z+d/2)2

[60], where V0 is the depth of the potential and
η is the asymmetry parameter.

Assuming that the atoms are tightly confined in individual
wells forming the asymmetric double-well, one can expand
the field operator entering Eq. (3) as [61,62]

ψ̂γ (r,z) = ψ̂1γ (r)φ1(z) + ψ̂2γ (r)φ2(z), (3)

where ψ̂jγ (r) represents the operator for annihilation of an
atom in the j th layer and internal state γ . The functions
φ1,2(z) describe two states localized at an individual layer
for atomic motion along the z axis. They can be constructed
by taking a superposition of the symmetric �+ and antisym-
metric �− atomic eigenstates, φ1,2(z) = (�+ ± �−)/

√
2, for a

completely symmetric double-well system [62] corresponding
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to η = 1 in Vop(z). Such states are normalized and orthogonal
to each other (analogous to the Wannier states in a periodic
potential) and are characterized by the lowest energies εj=1,2

of each well.
Using Eq. (3) for ψ̂γ (r,z) and integrating over z in Eq. (3),

the two-layer Hamiltonian takes the form

Ĥatom =
∫

d2r
∑

j=1,2;γ=↑,↓
ψ̂

†
jγ (r)

[
q2

2
+ εj

]
ψ̂jγ (r), (4)

where q = −i�∇r is the momentum operator for atomic
motion in the xy plane, and the lowest energy of atoms in
each well is given by [62]

εj =
∫

dzφ∗
j (z)

[
−∇2

z

2
+ Vop(z)

]
φj (z). (5)

Note that generally there should be a tunneling matrix element

K = ∫
dzφ∗

1 (z)[−∇2
z

2 + Vop(z)]φ2(z) between two layers in
Eq. (4). However, for a sufficiently asymmetric double-well
potential [52,63], the interlayer coupling is small compared
with the energy mismatch between the wells. As a result, direct
interlayer tunneling is inhibited and hence can be neglected. In
this case, the wave functions φj=1,2(z) localized on individual
wells become nearly true eigenstates of the full asymmetric
double-well potential.

In the following, the double-well potential is assumed to
be state dependent: Vop(z) ≡ V

(γ )
op (z). Thus one should replace

the lowest energy εj with the state-dependent energy εjγ in
Eq. (4). The state dependence of the double-well potential can
be implemented, e.g., by making use of a Zeeman shift that
varies along the ẑ axis due to the magnetic field gradient [64] or
by additionally applying cross-polarized laser fields counter-
propagating along the ẑ axis to yield a state-dependent optical
lattice along that direction [65,66].

C. Atom-light interaction

Now we turn to the atom-light interaction processes which
induce both intralayer SOC and interlayer tunneling. For
this let us present a general Hamiltonian H

(full)
AL for atom-

light coupling in an atomic hyperfine ground-state manifold
described by the total spin operator F̂. It can be represented in
terms of the scalar and vector light shifts [8,65],

H
(full)
AL = us(E∗ ·E) + iuvgF

�gJ

(E∗ × E) · F̂, (6)

where E is the negative-frequency part of the full electric field,
and us and uv are the scalar and vector atomic polarizabilities
with us 	 uv for detuning exceeding the fine-structure split-
ting of the excited electronic state. Here also gJ and gF are the
Landé g factors for the electronic spin and the total angular
momentum of the atom, respectively. In the case of the 87Rb
atom we have gF /gJ = −1/4 for the lowest energy hyperfine
manifold with F = 1.

Figures 2(a) and 2(b) illustrate a possible laser configuration
implementing the required intra- and interlayer coupling. As
shown in Fig. 2(a), both layers are simultaneously illuminated
by a circular polarized laser field (shown in yellow) prop-
agating along the quantization axis ẑ with the electric field

E0 ∼ (x̂ + iŷ)ei(k0z−ω0t), as well as by four linear polarized
laser beams, Ej with j = 1,2,3,4 (shown in blue).

1. Intralayer transitions

The first and second blue laser beams (j = 1,2) take care
of the intralayer transitions. They are characterized by the
electric field Ej ∼ ẑei[kj ·r−(ω0+δωj )t], polarized linearly along
ẑ, and contain wave vectors k1 and k2 oriented along the x̂ and
ŷ Cartesian axes, respectively [see Fig. 2(b)].

The frequencies of fields E0 and Ej satisfy the two-photon
resonance condition for intralayer transitions between atomic
internal states. Specifically we have δωj = �j with j = 1,2,
where �j ≡ εj↓ − εj↑ is the energy of the Zeeman splitting
between the atomic internal states |mF = −1〉 ≡ |↓〉 and
|mF = 0〉 ≡ |↑〉 in the j th layer. Due to the sufficiently large
quadratic Zeeman effect field, the |mF = 1〉 magnetic sublevel
is out of the Raman resonance and hence can be ignored, as in
the initial NIST experiment on SOC of ultracold 87Rb gases [9].
Thus field E0 together with Ej selectively induces the Raman
transition between the atomic internal states |mF = −1〉 ≡ |↓〉
and |mF = 0〉 ≡ |↑〉 in the j th layer, as schematically depicted
in Fig. 2(c). They are represented by the second term in Eq. (6)
with E∗

1,2 × E0 ∼ (x̂ + iŷ), which gives rise to atomic spin-flip
transitions. In this way, the Hamiltonian describing LITs reads

ĤLIT =
∫

d2r
∑
j=1,2

[�je
iϕj + c.c.]ψ̂†

j↑(r)ψ̂j↓(r) + H.c., (7)

with ϕj = kj · r − δωj t , where �j denotes the Rabi frequency
of the Raman coupling. Since the bilayer potential strongly
confines atomic motion in the xy plane, the out-of-plane recoil
momentum −k0ẑ is not important for intralayer transitions and
hence does not show up in Hamiltonian (7).

2. Interlayer tunneling

The third and fourth (blue) laser beams are linearly
polarized along the x̂ + ŷ direction with E3,4 ∼ (x̂ +
ŷ)ei[K3,4·R−(ω0+δω3,4)t], where K3,4 = k3,4 + ẑkz are the 3D
wave vectors. Their in-plane components k3 = (k2 − k1)/2
and k4 = (k1 − k2)/2 match with the corresponding wave
vectors k1 and k2 for intralayer transitions. This yields a
zero in-plane momentum transfer for atomic transitions over
the closed loop shown in Fig. 2(c): k1 − k2 + k3 − k4 = 0.
Since the frequencies of all the laser beams inducing Raman
transitions are very close to each other, we have |k1| ≈ |k2| ≈
|K3| ≈ |K4| ≈ |k0|. Consequently, the matching condition for
in-plane wave vectors implies that kz ≈ ±k0/

√
2.

Fields E0 and E3,4 are not orthogonal to each other,
E∗

3,4 · E0 
= 0, and hence provide a scalar light shift represented
by the first term in Eq. (6). It oscillates with the frequency δω3,4

and enables interlayer transitions [49–52]. The frequencies of
the laser beams are assumed to satisfy the conditions of the
two-photon interlayer resonance, δω3 = �↑ and δω4 = �↓
for each internal state γ = ↑ ,↓, where �γ ≡ ε1γ − ε2γ .
This ensures selective LAT between layers for atoms in a
specific atomic internal state, as schematically depicted in
Fig. 2(c).
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In this way, the Hamiltonian describing LAT is given by

ĤLAT =
∫

d2r(J3e
iϕ3 + c.c.)ψ̂†

2↑(r)ψ̂1↑(r) + H.c.

+
∫

d2r(J4e
iϕ4 + c.c.)ψ̂†

2↓(r)ψ̂1↓(r) + H.c., (8)

where ϕ3,4 = k3,4 · r − δω3,4t . The strength of the interlayer
coupling J3,4 = �3,4

∫
dzφ∗

2 (z)φ1(z)eik′
zz depends on the Rabi

frequency �3,4 of the atom-light coupling, the overlap of
the wave functions φ1(z) and φ2(z) of individual wells, and
the z component of the momentum transfer k′

z = kz − k0. The
latter equals to k′

z = ±k0

√
2/2 − k0 depending on the sign of

kz = ±k0/
√

2.
As discussed in the paragraph following Eq. (3), states

localized in each layer φ1(z) and φ2(z) are the Wannier-
state analogs for the double-well potential. These states are
orthogonal, so it is the factor eik′

zz due to momentum transfer
along the tunneling direction ẑ that makes the overlap integral
J3,4 nonzero [51].

D. Elimination of the spatial and temporal dependence
of the Hamiltonian Ĥ0

To eliminate the spatial and temporal dependence of
the single-particle Hamiltonian Ĥ0, we perform a unitary
transformation Û = e−iŜ , with

Ŝ =
∫

d2r
∑

j=1,2;γ=↑,↓
(εjγ t + mγ kj · r)ψ̂†

jγ (r)ψ̂jγ (r), (9)

where m↑ = 1/2 and m↓ = −1/2. Hamiltonian Ĥ0

transforms to Ĥ ′
0 = Û †Ĥ0Û − i�Û †∂t Û , where the last

term, due to the time dependence of Û , eliminates
the energies εjγ featured in the Hamiltonian Ĥatom,
Eq. (4). The transformed operators entering ĤLIT and
ĤLAT acquire extra time- and position-dependent fac-
tors: Û †ψ̂†

j↑(r)ψ̂j↓(r)Û = ψ̂
†
j↑(r)ψ̂j↓(r)ei[(εj↓−εj↑)t−kj ·r] and

Û †ψ̂†
2γ (r)ψ̂1γ (r)Û = ψ̂

†
2γ (r)ψ̂1γ (r)ei[(ε1γ −ε2γ )t+mγ (k1−k2)·r].

In what follows we use the resonance conditions for
intra- and interlayer laser-induced transitions and apply the
rotating-wave approximation to ignore fast oscillating terms
in the transformed Hamiltonian. This is legitimate if the inter-
and intralayer detunings exceed the corresponding transition
matrix elements. As a result, one arrives at the time- and
position-independent single-particle Hamiltonian,

Ĥ ′
0 = Ĥ ′

atom + Ĥ ′
LIT + Ĥ ′

LAT, (10)

with

Ĥ ′
atom =

∫
d2r

∑
j=1,2;γ=↑,↓

ψ̂
†
jγ (r)

(q + mγ kj )2

2
ψ̂jγ (r), (11)

Ĥ ′
LIT =

∫
d2r

∑
j=1,2

�jψ̂
†
j↑(r)ψ̂j↓(r) + H.c., (12)

and

Ĥ ′
LAT =

∫
d2r

∑
γ=↑,↓

Jγ ψ̂
†
2γ (r)ψ̂1γ (r) + H.c. (13)

Here we have made use of the matching condition for in-plane
wave vectors: kγ = mγ (k2 − k1), with γ = ↑,↓, k↑ ≡ k3 and
k↓ ≡ k4. This enables us to remove the position-dependent
phase factors ei[kγ ·r+mγ (k1−k2)·r] in Eq. (13) for Ĥ ′

LIT. In Eq. (13)
we have also rewritten J3,4 as J↑,↓. In general, �j and Jγ are
independent complex variables with tunable relative phases.
In what follows we take them to be real. In this case one needs
to stabilize properly the phases of the laser beams inducing
atomic interlayer tunneling and intralayer transitions. Phase
stabilization is experimentally challenging but feasible; it has
been done in a recent experiment on two-component slow
light [67].

It is convenient to introduce two-component row and
column bosonic field operators for creation and annihilation
of an atom in the j th layer: ψ̂

†
j (r) = [ψ̂†

j↑(r),ψ̂†
j↓(r)] and

ψ̂j (r) = [ψ̂j↑(r),ψ̂j↓(r)]T . Omitting a constant term, the full
single-particle Hamiltonian, (10), can then be represented as

Ĥ ′
0 =

∫
d2r

∑
j=1,2

ψ̂
†
j (r)

[
q2 + q · kj σz

2m
+ �jσx

]
ψ̂j (r)

+
∫

d2r
∑

γ=↑,↓
(Jγ ψ̂

†
1γ (r)ψ̂2γ (r) + H.c.). (14)

We assume that the coupling strengths are state and site
independent (Jγ = J and �j = �). Since wave vectors k1 and
k2 are oriented along the x̂ and ŷ Cartesian axes, the SOC in
each layer is along these directions: q · kj = qjkj = 2qjκj ,
with q1 = qx and q2 = qy . Here κj = |kj |/2 ≈ |k0|/2 ≡ κ

denotes the strength of the SOC, which is the same for both
layers, j = 1,2. Interchanging the spin operators, σx → −σz

and σz → σx , one arrives at the effective single-particle
second-quantized Hamiltonian

Ĥeff =
∫

d2r
∑
j=1,2

ψ̂
†
j (r)

[
q2

2
+ κqjσx − �σz

]
ψ̂j (r)

+ J

∫
d2r

∑
γ=↑,↓

(ψ̂†
1γ (r)ψ̂2γ (r) + H.c.). (15)

Finally we define the dimensionless momentum q̃ ≡ q/κ ,
the dimensionless energies of the intralayer coupling β ≡
�/Eκ and the interlayer tunneling α ≡ J/Eκ measured in
units of the energy Eκ = κ2/2.

E. Single-particle spectrum

For bosonic systems, single-particle states play an im-
portant role in determining the ground-state configurations.
In Appendix A, we introduce a single spinor �̂(r) =
[ψ̂1↑(r),ψ̂1↓(r),ψ̂2↑(r),ψ̂2↓(r)]T to treat the double layer. In the
four-component basis, the single-particle spectrum possesses
four branches, and here we are interested in the lowest branch
of energy spectrum, as depicted in Fig. 2(d). First, for α = 0,
the two layers are decoupled, and there are two pairs of
degenerate energy minima along the q̃x and q̃y directions, re-
spectively. Then, by increasing α, interlayer tunneling couples
the two pairs of minima, resulting in the four minimum chiral
states at ±Q1 = ±(̃q+

0 ,̃q−
0 ) and ±Q2 = ±(̃q−

0 ,̃q+
0 ), where

q̃±
0 = 1

2 (
√

Q2
0 + α2/2 ±

√
Q2

0 − α2/2), with Q0 = |Q1,2|

033619-4



TUNNELING-ASSISTED SPIN-ORBIT COUPLING IN . . . PHYSICAL REVIEW A 91, 033619 (2015)

FIG. 3. (Color online) (a) Momentum evolution of the single-
particle ground state with the interlayer tunneling α for a fixed
intralayer coupling β. (b) Energy minima (denoted by filled circles)
of the single-particle ground state in the plane of the dimensionless
momentum (q̃x-q̃y) for β = 0.1 and different values of the interlayer
tunneling α. Note that for each α all the energy minima are situated
on the same circle with a radius q̃.

satisfying a nonlinear equation given by Eq. (A14) in
Appendix A. The four energy minima are located on the
same circle with radius q̃ and satisfy reflection symmetry
on the diagonal axis in the q̃x-q̃y plane. When the dimen-
sionless interlayer coupling α is increased, the momentum
of the single-particle ground state decreases monotonically
as shown in Fig. 3(a). In particular, above the critical line
with α2 + β2 = 1, the energy minima of the chiral states
converge to ±Q, with Q =

√
1 − β2(1/2,1/2) situated on

the diagonal axis as shown in Fig. 3(b). In this case,

for strong intralayer coupling β � 1, the minima shrink to a
single point at Q = 0.

III. MANY-BODY GROUND STATES

A. Calculational methods

Since the interaction between atoms is short ranged, it is
much stronger for atoms situated in the same layer than in
different layers of a bilayer BEC. Neglecting the interlayer
interaction, the second-quantized Hamiltonian describing the
atom-atom interaction reads

Ĥint =
∫

d2r
∑
j=1,2

(
g↑
2

n̂2
j↑ + g↓

2
n̂2

j↓ + g↑↓n̂j↑n̂j↓

)
, (16)

where g↑ and g↓ are the strengths of the interaction between
atoms in the same internal (quasispin) states, g↑↓ is the
corresponding interaction strength for atoms in different
internal states, and n̂jγ = ψ̂

†
jγ ψ̂jγ is the operator for the

atomic density in the j th layer and the internal state γ = ↑,↓.
We first assume the symmetric intraspecies interaction with
g↑,↓ = g. In this paper, we consider a weakly interacting case
so that quantum fluctuations can be neglected legitimately [68].
Under the mean-field level, zero-temperature ground-state
structures can then be investigated by numerically solving the
mean-field Gross-Pitaevskii equation for the two-component
wave function (vector order parameter) of the condensate
ψjγ ≡ 〈ψ̂jγ 〉. The Gross-Pitaevskii energy functional reads
E[ψ̄jγ ,ψjγ ] = 〈Ĥeff + Ĥint〉, giving

E[ψ̄jγ ,ψjγ ] =
∫

d2r

⎡
⎣∑

j,γ

ψ̄jγ

(
−1

2
∇2 + 1

2
ω2r2

)
ψjγ + J

∑
γ

(ψ̄1γ ψ2γ + ψ̄2γ ψ1γ )

− iκ(ψ̄1↑∂xψ1↓ + ψ̄1↓∂xψ1↑ + ψ̄2↑∂yψ2↓ + ψ̄2↓∂yψ2↑) +
∑

j

�(|ψj↑|2 − |ψj↓|2)

+
∑

j

(
g↑
2

|ψj↑|4 + g↓
2

|ψj↓|4 + g↑↓|ψj↑|2|ψj↓|2
)⎤

⎦ ,

where we have taken the BEC wave function to be normalized
to unity:

∫
d2r

∑
j,γ |ψjγ (r)|2 = 1. This has been carried out

via the substitution ψjγ → √
Nψjγ , which implies rescaling

of the interaction strengths g↑↓ → Ng↑↓, g↑ → Ng↑, and
g↓ → Ng↓, where N is the total number of atoms. To deal
with a BEC confined in a finite area, in Eq. (17) we have
included a sufficiently weak harmonic trapping potential with
a frequency ω much lower than the SOC frequency Eκ .

By minimizing Eq. (17) via the imaginary time evolution
method, we have derived various phases as shown by the
asterisks in Fig. 1. To reveal the underlying physics of the
phases, let us explore whether it is possible for bilayer atoms
to condense simultaneously at two pairs of wave vectors, ±Q1

and ±Q2. First, we note that the triangular lattice phases have
been found for a trapped spin-1/2 BEC with Rashba-type
SOC [28,29]. Furthermore, triangular and square lattice phases
have also been observed for a spin-2 BEC [69]. Yet, for a
spin-1/2 BEC in a 2D homogeneous system, the ground states

are found to be PW or stripe phases comprised of a single
wave vector or a pair of wave vectors, and it is hard to form the
ground state, which involves the interference of more than one
pair of wave vectors [18]. Even if a square lattice is added to
break the translational symmetry leading to the four minimum
chiral states, the Gross-Pitaevskii ground states still favor the
normal stripe phase [70]. This is because in a 2D Rashba-type
system without external traps, a state with more than one pair
of wave vectors has a nonuniform density modulation and is
energetically unfavorable.

However, in the proposed bilayer system where only atoms
situated in the same layer attract repulsively, it is energetically
more favorable to delocalize the atoms in both layers. In
this case, competition of intralayer atomic interactions and
interlayer tunneling may couple the four minimum energy
states in a different manner and lead to a number of new phases.

To study the possibility of the formation of interfering
multiwave ground states, we take the following
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ansatz: ψG ≡ 〈�̂〉 = a1+ψ+Q1 + a1−ψ−Q1 + a2+ψ+Q2 +
a2−ψ−Q2 . Here ψ±Q1,2 ≡ φ±Q1,2e

±iQ1,2·r denote the
four-component eigenfunctions corresponding to four
degenerate energy minima [given by Eq. (A15) in
Appendix A], and a1±, a2± are complex amplitudes
satisfying the normalization condition. The corresponding
variational interacting energy functional E[a1±,a2±] = 〈Ĥint〉
reads

E[a1±,a2±]

= C1

∑
±

∑
j=1,2

|aj±|4 + C2

∑
±

∑
i 
=j

|ai±|2|aj±|2

+ C3

∑
±

∑
i 
=j

|ai±|2|aj∓|2 + C4

∑
±

∑
j=1,2

|aj±|2|aj∓|2

− 2|C5||a1+a1−a2+a2−|, (17)

where the coefficients C1−5 are presented in Appendix B.
By minimizing the energy E[a1±,a2±], we find that all the
emerging phases predicted by the numerical simulations of
Gross-Pitaevskii equations can be identified by the variational
results as shown by the colored regions in Fig. 1. This
provides deeper insight into the nature of the ground-state
configurations analyzed in the following subsection.

B. Results

1. SP-I phase

For large tunneling where α2 + β2 > 1, the two layers are
strongly coupled, so that the bilayer behaves like a single
layer with the 1D SOC oriented along the diagonal axis. In
this case the single-particle Hamiltonian, (15), yields a pair of
degenerate ground eigenstates with wave vectors ±Q. Across
a critical value of g↑↓/g, the condensate transits from the
PW with a single wave vector to the normal SP-I phase,
which is characterized by a wave function involving two wave
vectors, 1√

2
φ+QeiQ·r + 1√

2
φ−Qe−iQ·r. In Fig. 4 we see that, due

to the nonvanishing intra-layer coupling β, the total density
ρj (r) = |ψj↑(r)|2 + |ψj↓(r)|2 in each layer modulates for the
SP-I phase [71].

FIG. 4. (Color online) Total density profiles ρj (left), spin tex-
tures Sj (middle), and corresponding momentum distributions (right)
in the first (top) and second (bottom) layers for the normal SP-I phase
with α = 1.1 and g↑↓/g = 1.3. The color in the spin textures indicates
the magnitude of Sjz.

FIG. 5. (Color online) Total density profiles ρj (left), spin tex-
tures Sj (middle), and corresponding momentum distributions (right)
in the first (up) and second (bottom) layers for the SP-II phase with
α = 0.5 and g↑↓/g = 0.9. The color in the spin textures indicates the
magnitude of Sjz.

One can define the spin texture for each layer. For this
purpose, let us introduce a normalized two-component spinor,
χj (r) = [χj↑(r),χj↓(r)]T = [|χj↑|eiθj↑ ,|χj↓|eiθj↓]T , and de-
compose the wave function ψj (r) as ψj (r) = √

ρj (r)χj (r),
where χj satisfies |χj↑|2 + |χj↓|2 = 1 [72]. The spin texture
can be represented by the vector Sj = (2|χj↑||χj↓| cos(θj↑ −
θj↓), − 2|χj↑||χj↓| sin(θj↑ − θj↓),|χj↑|2 − |χj↓|2). It can be
seen that the density modulation is accompanied by spin stripes
with a similar modulation, as depicted in Fig. 4.

2. SP-II phase

Next, we discuss the parameter region α2 + β2 < 1. Here
interlayer tunneling mixes states belonging to different layers
in a more sophisticated way, so various nontrivial ground-
state configurations may appear. In Fig. 5 we show the
numerical results for the total density profiles, spin textures,
and corresponding momentum distributions for the different
type of stripe phase (SP-II). At first sight, it appears that
the density profile of SP-II is similar to that of the normal
SP-I. However, when we turn to the momentum space, the
two types of stripe phases differ dramatically. For SP-I, the
momentum distribution in each layer comprises a pair of
opposite wave vectors ±Q which conserve the time-reversal
symmetry. Intriguingly, we find that although the ground-state
wave function of SP-II remains a superposition of two wave
vectors, the comprising wave vectors are neither ±Q1 nor
±Q2. Instead, SP-II becomes a superposition of the waves
with Q1 and −Q2, spontaneously breaking the time-reversal
symmetry. In the momentum representation, SP-II phase atoms
are predominantly located at Q1 (in the x̂ direction) in one
layer, whereas in another layer they are concentrated at −Q2,
along the ŷ direction. Moreover, the resulting spin texture of
the SP-II phase exhibits a chiral spin helix as shown in Fig. 5.

3. FSL phase

Beyond SP-II, another distinctive feature in Fig. 1 is that an
FSL emerges in the ground state. In Fig. 6, a vortex lattice
structure can be seen in the density profiles of each spin
component. The lattices of both spin components interlace
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FIG. 6. (Color online) Numerical density profiles of (a, d)
|ψj↑(r)| and (b, e) |ψj↓(r)| for the FSL phase in each layer (α = 0.8,
g↑↓/g = 1.05). (c, f) Corresponding momentum distributions of the
first and second layers.

mutually, forming a coreless structure in each layer. Most
notably, the momentum distributions display two pairs of time-
reversal-invariant momenta, as shown in Figs. 6(c) and 6(f).
The atoms in each layer tend to be mainly located at ±Q1 and
±Q2, respectively, to make the energy favorable. This indicates
that the underlying mechanism of the vortex lattices arises from
the four-wave interference with a nontrivial phase structure.
Figure 7(a) shows the spin texture of the upper layer (the
lower layer yields analogous results), where one can clearly
see a lattice of skyrmions and antiskyrmions interlacing with
each other.

FIG. 7. (Color online) (a) Spin texture of the top layer for the FSL
phase represented in Fig. 6. The color in the spin texture indicates the
magnitude of S1z. (b) Phase transitions as a function of the intralayer
coupling β, where the interlayer tunneling is fixed by α = 0.6, and
g↑↓/g = 0.9.

To further characterize this state, let us calculate the
topological charge Qj = ∫

unit cell d
2rqj (r) for the j th layer,

where the topological density is given by qj (r) = 1
8π

εμνSj ·
∂μSj × ∂νSj . Note that the limits of integration in the
topological charge Qj are defined over the unit cell of the
lattice. However, since the boundary between a skyrmion and
an antiskyrmion is hard to discriminate explicitly, the integral
approximately equals only a half-integer. In practice, one may
integrate over the whole area of the system and find that
the total topological charge QT

j = ∫
whole d2rqj (r) vanishes.

On the other hand, we compute the integral of the absolute
value of the topological density QT

j

′ = ∫
whole d2r|qj (r)|. This

yields an integer Ij . Then, by counting the total number
Nj of the topological defects, we obtain the topological
charge of the interlacing skyrmion and antiskyrmion, Qj =
±Ij /Nj = ±1/2 [53,73]. This confirms the formation of an
FSL, an intriguing topological ground state emerging in such
a homogeneous system. It should be noted that the FSL phase
cannot exist along the α = 0 line in the phase diagram in Fig. 1.
In that case the two layers are decoupled, each of them having
two degenerate energy minima in different (x̂ or ŷ) directions.

4. Phase diagram and TP

When the interlayer tunneling is tuned to α2 + β2 = 1, a
TP may occur on the critical line shown by the circle in Fig. 1.
Indeed, starting from the SP-I phase and decreasing α, the
system would first transit across the critical line to SP-II before
entering the FSL phase. On the other hand, the PW phase
extends into the region below the critical line and transits to
the FSL directly. Therefore, the TP occurs among the four
different phases. This can also be clearly demonstrated in the
variational phase diagram.

Having studied the α − g↑↓/g phase diagram, we next
discuss the effects of the intralayer coupling β, which can be
varied conveniently in experiments. For this purpose, we take
the parameters α = 0.6 and g↑↓/g = 0.9 as an illustration.
In Fig. 7(b), we show that, with increasing β, the system
first undergoes a transition from the SP-II to the FSL phase
at a critical point βc1 . Subsequently the system enters the
PW phase near the critical line. Finally, as the intralayer
coupling approaches βc3 � 1, the momenta of the energy
minima shrink to Q = 0 and the atoms condense in the
zero-momentum phase. All these phases can be observed
through the spin-resolved time-of-flight measurements of the
density profiles, momentum distributions, and spin textures.

IV. DISCUSSION AND CONCLUSION

Finally, we discuss the experiment-related issues. The
result of our paper can be applied to a number of systems
involving two atomic internal states coupled by laser beams
with recoil, such as two magnetic sublevels of the F = 1
ground-state manifold of 87Rb-type alkali-metal atoms [9]
or the spin-singlet ground state and a long-lived spin-triplet
excited state of alkaline-earth atoms [59]. Here we consider
the former example. We take N = 104 87Rb atoms with
trapping frequencies (ω⊥,ωz) = 2π × (10 400) Hz. For the
wavelength of Raman lasers λL � 804.1 nm [9], we have
Eκ � 11�ω⊥. The scattering lengths for the two spin states,
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FIG. 8. (Color online) Phase diagram as a function of the dimen-
sionless interlayer tunneling α and 1 − g2

↑↓/g↑g↓ for the asymmetric
intraspecies interaction g↑/g↓ = 0.95. The dimensionless intralayer
coupling is set to be β = 0.3. Asterisks represent the phase boundaries
determined from numerical simulations and the colored regions are
determined by the variational results. The solid horizontal line marks
the critical line α2 + β2 = 1.

|F = 1,mF = 0〉 ≡ |↑〉 and |F = 1,mF = −1〉 ≡ |↓〉, used in
Ref. [9], are usually parameterized as [74,75] a↑ = c0 and
a↓ = a↑↓ = c0 + c2, with c0 = 7.79 × 10−12 Hz cm3 and c2 =
−3.61 × 10−14 Hz cm3. The corresponding intra- and inter-
species atomic interactions are given by g↑,↓ = √

2πNa↑,↓/ξz

and g↑↓ = √
2πNa↑↓/ξz, with ξz = √

�/mωz. We would like
to point out that all the parameters we choose are limited to
a weakly interacting region, in which the coherence length
is large in comparison with the size of the trap ξz so that
mean-field analysis is applicable.

Note that the intraspecies interaction is nearly symmetric,
with g↑/g↓ = 1.0047, so the phase diagram in Fig. 1 can be
applied directly. However, it is important to discuss a more
general case with asymmetric intraspecies interaction g↑ 
=
g↓. To check whether the predicted new phases and TP are
preserved in the asymmetric case, we take g↑/g↓ = 0.95 as an
example and calculate the phase diagram shown in Fig. 8. We
find that although the phase boundaries get modified, the phase
diagram as a function of α and 1 − g2

↑↓/g↑g↓ bears a structure
similar to that in the symmetric situation, demonstrating that
these are unique and universal features of the bilayer system
for a wide range of atomic interaction parameters. Note that
the TP still appears on the critical line but gets shifted by the
asymmetric intraspecies interaction.

In summary, we have proposed tunneling-assisted SOC
in bilayer BECs. This scheme can be readily achieved in
a straightforward manner by coupling individual Raman-
transition-induced 1D SOCs through interlayer LAT. Due to
the interplay among the interlayer tunneling, intralayer SOC,
and atomic interactions, the ground states display a diverse
phase diagram. It is demonstrated that a different type of stripe
phase which breaks the time-reversal symmetry and an FSL
emerge spontaneously in the ground states. Significantly, we
predict the occurrence of a characteristic TP, where the four
phases merge. Such distinctive features are within the reach of
current experiments with ultracold atoms.
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APPENDIX A: GROUND-STATE MANIFOLD OF THE
SINGLE-PARTICLE HAMILTONIAN

In this section, we obtain the ground eigenstates and the
corresponding eigenenergies of the single-particle Hamilto-
nian described by Eq. (15). To make the Hamiltonian more
compact, the second-quantized Hamiltonian, (15), may be
expressed in terms of a four-component column spinor, �̂(r) =
[ψ̂1↑(r),ψ̂1↓(r),ψ̂2↑(r),ψ̂2↓(r)]T , containing operators which
annihilate an atom in a specific layer j = 1,2 and a specific
spin state γ = ↑,↓,

Ĥeff =
∫

d2r�̂†(r)Heff�̂(r), (A1)

where Heff is the 4 × 4 matrix Hamiltonian

Heff = q2

2
I4 +

⎛
⎜⎜⎝

� κqx J 0
κqx −� 0 J

J 0 � κqy

0 J κqy −�

⎞
⎟⎟⎠ , (A2)

and �̂†(r) = [ψ̂†
1↑(r),ψ̂†

1↓(r),ψ̂†
2↑(r),ψ̂†

2↓(r)] is the Hermiti-
cally conjugated row spinor.

To determine the eigenenergies and the corresponding
eigenstates of the single-particle problem, we analyze the
latter matrix Hamiltonian Heff . In a homogeneous system,
the momentum is a conserved quantity, so the eigen-
functions of Heff are the four-component PWs ψq̃(r) =
[ψ1↑ (̃q),ψ1↓ (̃q),ψ2↑ (̃q),ψ2↓ (̃q)]T eiq̃·r ≡ φq̃e

iq̃·r. Here q̃ =
q/κ is a dimensionless momentum, and ψjγ (̃q)eiq̃·r represents
the probability amplitude to find the atom in the j th layer
(j = 1,2) and the internal state γ = ↑,↓.

The eigenequation reads

Heffφq̃ = Eφq̃. (A3)

It is convenient to rewrite the 4 × 4 matrix Hamiltonian Heff

in terms of a 2 × 2 matrix with elements containing the unit
matrix I2 and the Pauli matrices σx and σz,

Heff = Eκ

(
βσz + 2q̃xσx αI2

αI2 βσz + 2q̃yσx

)
, (A4)

where β = �/Eκ and α = J/Eκ are, respectively, the di-
mensionless energies of the intralayer coupling and interlayer
tunneling measured in units of the recoil energy Eκ = κ2/2. In
Eq. (A4) we have omitted the overall energy shift q2/2 which
is to be subtracted from the eigenenergy E in Eq. (A3).

Combining Eqs. (A3) and (A4), the dimensionless eigenen-
ergy ω̃ = (E − q2/2)/Eκ satisfies the equation∣∣∣∣βσz + 2q̃xσx − ω̃I2 αI2

αI2 βσz + 2q̃yσx − ω̃I2

∣∣∣∣ = 0. (A5)
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By using the block matrix theory [76], we can rewrite Eq. (A5)
as

|(βσz + 2q̃xσx − ω̃I2)(βσz + 2q̃yσx − ω̃I2) − α2I2| = 0,

(A6)

and hence

|gI2 − 2ω̃(q̃x + q̃y)σx − 2ω̃βσz + i2β(q̃x − q̃y)σy | = 0,

(A7)

with

g = ω̃2 + β2 + 4q̃x q̃y − α2.

This yields the following eigenvalue equation:

g2 = 4ω̃2(q̃x + q̃y)2 + 4ω̃2β2 − 4β2(q̃x − q̃y)2. (A8)

After direct calculations one arrives at a biquadratic equation,

[ω̃2 − (2q̃2 + α2 + β2)]2 = A2, (A9)

providing four branches of energy spectra,

E±,± (̃q)/Eκ = q̃2 ±
√

2q̃2 + α2 + β2 ± A, (A10)

where

A = 2
√

(̃qx + q̃y)2[(̃qx − q̃y)2 + α2] + α2β2. (A11)

In what follows, we focus on the lowest branch, E−,+ (̃q),
and determine the energy minima which play an important
role in formation of the ground-state configurations. For this,
one needs to identify the points where ∂E−,+ (̃q)/∂q̃x = 0 and
∂E−,+ (̃q)/∂q̃y = 0, giving

2q̃xB − 2q̃x − 2q̃x (̃q2
x − q̃2

y ) + α2(̃qx + q̃y)√
(̃qx + q̃y)2[(̃qx − q̃y)2 + α2] + α2β2

= 0,

2q̃yB − 2q̃y − 2q̃y (̃q2
y − q̃2

x ) + α2(̃qx + q̃y)√
(̃qx + q̃y)2[(̃qx − q̃y)2 + α2] + α2β2

= 0,

(A12)

with B ≡
√

2q̃2 + α2 + β2 + A. For the most interest-
ing case, where α2 + β2 < 1, the above two equa-
tions yield four chiral states with minimum ener-
gies at ±Q1 = ±(̃q+

0 ,̃q−
0 ) and ±Q2 = ±(̃q−

0 ,̃q+
0 ). Here

q̃±
0 = 1

2 (
√

Q2
0 + α2/2 ±

√
Q2

0 − α2/2), and Q0 = |Q1,2| sat-
isfy a nonlinear equation,√

2Q2
0 + α2 + β2 + C − Q2

0 + α2/2√(
Q2

0 + α2/2
)2 + α2β2

= 1,

(A13)

with C ≡ 2
√

(Q2
0 + α2/2)2 + α2β2 .

The corresponding eigenfunction, for four degenerate
energy minima at q̃ = ±Q1 and q̃ = ±Q2, is given by

ψq̃ = f (̃q)

⎛
⎜⎜⎜⎝

α[βξ − β2 − ζ − (̃qx + q̃y)2]

α[β (̃qx − q̃y) − ξ (̃qx + q̃y)]

(β − ξ )(̃q2
x − q̃2

y − ζ ) − α2β

2q̃y(ζ − q̃2
x + q̃2

y ) + α2(̃qx + q̃y)

⎞
⎟⎟⎟⎠ eiq̃·r, (A14)

where ζ =
√

α2β2 + α2(̃qx + q̃y)2 + (̃q2
x − q̃2

y )2 ,
ξ =

√
α2 + β2 + 2q̃2 + 2ζ , and f (̃q) is the normalized

coefficient.

APPENDIX B: ENERGY FUNCTIONAL FOR THE
VARIATIONAL ANSATZ

To calculate the mean-field energy under the variational
ansatz, it is convenient to rewrite the interacting
Hamiltonian, (16), in the four-spinor representation �̂,
which is given by

Ĥint = 1

2

∫
d2r

6∑
m=1

bm(�̂†Mm�̂)2. (B1)

HereMm are the four 4 × 4 matrices which can be represented
as M1 = I4, M2 = (I2 0

0 −I2
), M3 = (σz 0

0 σz
), M4 =

(σz 0
0 −σz

), M5 = 1
2 (M1 + M3), and M6 = 1

2 (M2 + M4);
bm are the coefficients with b1 = b2 = (g↑ + g↑↓)/4,
b3 = b4 = (g↑ − g↑↓)/4, and b5 = b6 = (g↓ − g↑)/2.

We take the ansatz ψG ≡ 〈�̂〉 = ∑
j=1,2;± aj±ψ±Qj

, where
ψ±Q1,2 ≡ φ±Q1,2e

±iQ1,2·r denote four eigenfunctions which
correspond to the minimum energy and are given by Eq. (A15).
The complex amplitudes aj± satisfy the normalization con-
dition

∑
j,± |aj±|2 = 1. Subsequently, by replacing �̂ in

Eq. (B1) with ψG, we derive the mean-field interacting energy
functional E[a1±,a2±] = 〈Ĥint〉 as shown in Eq. (17). The
corresponding coefficients C1−5 in Eq. (17) read

C1 = 1

2

∑
m

bm

(
φ̄Q1MmφQ1

)2
,

C2 = 1

2

∑
m

bm

[(
φ̄Q1MmφQ1

)(
φ̄Q2MmφQ2

) + (
φ̄Q1MmφQ2

)(
φ̄Q2MmφQ1

)]
,

C3 = 1

2

∑
m

bm

[(
φ̄Q1MmφQ1

)(
φ̄−Q2Mmφ−Q2 ) + (

φ̄Q1Mmφ−Q2

)(
φ̄−Q2MmφQ1

)]
, (B2)

C4 = 1

2

∑
m

bm

[(
φ̄Q1MmφQ1

)(
φ̄−Q1Mmφ−Q1

) + (
φ̄Q1Mmφ−Q1

)(
φ̄−Q1MmφQ1

)]
,

C5 = 1

2

∑
m

bm

[(
φ̄Q1MmφQ2

)(
φ̄−Q1Mmφ−Q2

) + (
φ̄Q1Mmφ−Q2

)(
φ̄−Q1MmφQ2

) + H.c.
]
.

The variational phase diagram is obtained by minimizing the energy E[a1±,a2±].
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