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Finite-field calculation of static polarizabilities and hyperpolarizabilities of In+ and Sr
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The dipole polarizabilities, dipole hyperpolarizabilities, quadrupole moments, and quadrupole polarizabilities
of the 5s2 1S and 5s5p 3P o states of In+ and Sr are calculated by using the finite-field method. The electron corre-
lation effect and the basis set convergence are investigated in the relativistic coupled-cluster and configuration in-
teraction calculations in order to obtain polarizabilities of high accuracy. Comparative study of the fully and scalar
relativistic calculations reveals the effect of the spin-orbit coupling on the dipole polarizabilities of In+ and Sr. The
blackbody-radiation shifts of the clock transition 5s2 1S0-5s5fp 3P o

0 due to the dipole polarizabilities, quadrupole
polarizabilities, and dipole hyperpolarizabilities are evaluated to be 0.017, 8.33×10−10, and 1.93×10−17 Hz for
In+ and 2.09 and 5.82×10−8, and 1.69×10−15 Hz for Sr. The blackbody-radiation shifts from the quadrupole
polarizabilities and dipole hyperpolarizabilities are significantly less than that from the dipole polarizabilities and
therefore can be safely omitted for the quoted 10−18 uncertainty of the optical frequency standard of In+ and Sr.
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I. INTRODUCTION

In recent years, tremendous progresses of optical clocks
have stimulated a great deal of interest in performing precision
calculations of atomic polarizabilities and hyperpolarizabili-
ties [1–5]. The highly accurate data of atomic polarizabilities
and hyperpolarizabilities are very useful for the estimation
of the energy shifts in an optical clock. For example, the
difference in the static dipole polarizabilities between two
states of a clock transition determines the blackbody-radiation
(BBR) shift that is one of important sources of the frequency
uncertainty budget of an optical clock [6,7]. The dipole
polarizabilities and the BBR shifts of the optical clock
transitions of Al+, Ca+, Sr, Yb, In+, Sr+, Hg+, Mg, and Ca and
so on have been calculated [8–11]. The higher multipolar po-
larizabilities, like the magnetic dipole and electric quadrupole
polarizabilities, are also related to the energy shift of the optical
clock transitions through the multipolar radiation channels.
The multipolar BBR shifts have been studied for Mg, Ca, Sr,
Yb, and Ca+ [12,13]. The energy shifts due to the multipolar
and higher-order polarizabilities are generally small but not
necessarily negligible, for example, the energy shifts caused by
the multipolar polarizabilities and dipole hyperpolarizabilities
have been analyzed in detail for a Sr optical clock [14,15].

Among the current atomic optical clock candidates, an
important category is the ns2 1S0-nsnp 3P o

0 optical transition
for the two valence electrons atoms or ions [3,6,7], where
the upper state is one of the triplet states 3P o

J , with J = 0,
1, and 2. Two good examples are In+ and Sr optical clocks
using the 5s2 1S0-5s5p 3P o

0 transition. The Sr optical clock is
one of the most accurate atomic clock to date, for which the
fractional frequency uncertainty has recently been estimated
as 2.1×10−18 [5]. The BBR shift of the In+ 5s2 1S0-5s5p 3P o

0
optical transition has also been calculated to be very small [9],
which makes In+ a good candidate for development of optical
clock with the fractional frequency uncertainty at the 10−18
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level. The polarizabilities of such systems have been targeted
with increasing theoretical efforts to perform precision cal-
culations. For example, Sahoo and Das have calculated the
ground-state dipole polarizability of Sr by using the relativistic
coupled-cluster (CC) method [16]. Safronova et al. have given
high-accuracy data for the dipole polarizabilities of the 5s2 1S0
and 5s5p 3P o

0 states of In+ and Sr using the configuration
interaction (CI) + all-order method [9,11]. Mitroy et al. have
calculated the 5s2 1S0 and 5s5p 3P o

1 states of Sr by using the
CI method with a semiempirical core polarization potential
(CICP) [17,18]. Porsev et al. have calculated the Sr 5s2 1S0
and 5s5p 3P o

0,1 states using the CI method with many-body
perturbation theory (CI + MBPT) [19] and the CI + all-order
method [20]. From these works, one can see that the most
currently available data of the dipole polarizabilities of In+
and Sr are concentrated on the 5s2 1S0 and 5s5p 3P o

0 states,
while the data for the 5s5p 3P o

2 state of Sr and the 5s5p 3P o
1

and 3P o
2 states of In+ have never been calculated. Besides,

the quadrupole moment of the 5s5p 3P o state and the
quadrupole polarizabilities of the 5s2 1S and 5s5p 3P o states of
Sr have been calculated in earlier works [17,20–22]. However,
the recommended data for the quadrupole moment and the
quadrupole polarizabilities of In+ remain very scarce.

The finite-field method has been implemented in many
computational codes for atomic and molecular property
calculations [23–25]. In this method the employed external
field breaks the degeneracy of multiple states and thus the J -
and MJ -resolved polarizabilities of the nsnp 3P o

J states can be
obtained directly, where J and MJ are the total angular mo-
mentum and the magnetic quantum number, respectively [26].
In particular, the effect of the spin-orbit coupling on the
J -resolved polarizability can be revealed through comparative
studies between fully and scalar relativistic calculations. The
polarizabilities of high accuracy of the 3s2 1S0 and 3s3p 3P o

J

states of Al+ have been calculated successfully by using the
finite-field method [27,28]. However, the finite-field method
has not been widely applied to calculate the polarizabilities
of heavy atoms and ions. Polarizability studies of sufficient
accuracy for heavy atoms and ions require careful treatment of
electron correlation arising from core shells. The contribution
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of the high-order excitations also needs to be evaluated strictly.
All of these factors pose a great challenge for the finite-field
calculations of In+ and Sr.

In this work, the dipole polarizabilities, dipole hyperpo-
larizabilities, quadrupole moments, and quadrupole polariz-
abilities for the 5s2 1S and 5s5p 3P o states of In+ and Sr are
calculated by applying the finite-field method. The effects of
the hierarchies of electron correlation and the basis sets of the
increasing sizes are investigated in the relativistic CC and CI
calculations in order to obtain polarizabilities of high accuracy.
Our results of the dipole polarizabilities of the 5s2 1S0 and
5s5p 3P o

0 states of In+ and Sr are in good agreement with
previously reported data. The effect of the spin-orbit coupling
is analyzed through comparing the L- and J -resolved values
of the 5s5p 3P o states, where L is the total orbital angular
momentum. Besides, we recommend the values of the dipole
hyperpolarizabilities, quadrupole moments, and quadrupole
polarizabilities of 5s2 1S and 5s5p 3P o states of In+ and Sr.
Based on these data, the BBR shifts of the clock transition
5s2 1S0-5s5p 3P o

0 due to the quadrupole polarizabilities and
dipole hyperpolarizabilities are evaluated to be 8.33×10−10

and 1.93×10−17 Hz, respectively, for In+ and 5.82×10−8 and
1.69×10−15 Hz, respectively, for Sr. The BBR shifts due to the
quadrupole polarizabilities and dipole hyperpolarizabilities are
shown to be far less than that due to the dipole polarizabilities
and, hence, can be safely omitted for the quoted 10−18

uncertainty of the optical frequency standard of In+ and Sr.

II. THEORY

The energy shift of an atom or ion in a homogeneous electric
field can be expressed as [29]

�Ed (Fz) = −αF 2
z /2 − γF 4

z /24 − · · · , (1)

where Fz is the electric-field strength along the z direction,
and α is the dipole polarizability, and γ is the dipole
hyperpolarizability, respectively.

In a pure quadrupole electric field, the corresponding energy
shift is

�Ed (Fzz) = −θFzz/2 − α2F
2
zz/8 − · · · , (2)

where Fzz is the electric-field gradient in the z direction, θ is the
quadrupole moment, and α2 is the quadrupole polarizability,
respectively.

For a state with nonzero angular momentum J , the scalar
and tensor polarizabilities are defined as

Q̄J = 1

2J + 1
�
MJ

Q(J,MJ ), (3)

QJ
a = Q(J,|MJ | = J ) − Q̄J , (4)

where Q denotes α, γ , and α2; Q(J,MJ ) denotes polariz-
abilities for each MJ component; and Q̄ and Qa denote the
scalar and tensor polarizabilities. In the L representation, the
scalar and tensor polarizabilities are defined by expressions of
identical form to Eqs. (3) and (4) with J replaced with L. The
quadrupole moment θ is generally defined with ML = L or
MJ = J . In details, θL is taken from the 5s5p 3P o state with
ML = 1, and θJ is taken from the 5s5p 3P o

2 state with MJ = 2.
Upon the approximation known as LS coupling, the L- and

J -resolved polarizabilities have a relationship like ᾱL = ᾱJ

when the spin-orbit coupling interaction is not strong and then
can be treated as a perturbation [26].

III. METHOD OF CALCULATION

First, the self-consistent field (SCF) calculation is carried
out for a given electric field to generate the reference state
as well as the optimized atomic orbitals by using the SCF
module in the relativistic quantum chemistry calculation
package DIRAC [30]. Either the Dirac-Coulomb Hamiltonian
or spin-free Dyall Hamiltonian [31] is employed in the SCF
calculations. The Dirac-Coulomb Hamiltonian gives a full
description of the relativistic effects. The spin-free Dyall
Hamiltonian is based on the Dirac formalism by Dyall that
decomposes the Dirac operator into a spin-free part and a
spin-dependent part that represents the spin-orbit operators.
The spin-free Dyall Hamiltonian neglects the spin-dependent
part. Next, the electron correlation calculation is performed
based on the SCF reference state and optimized atomic orbitals.
The relativistic CC calculation is implemented by applying
the quantum chemistry calculation package MRCC [32], and
the relativistic CI calculation is implemented by applying the
LUCIAREL module in the DIRAC package. The scalar relativistic
CI calculation is carried out by applying the LUCITA module
in the DIRAC package that is built on the spin-free Dyall
Hamiltonian.

In DIRAC and MRCC, the wave function can be specified by
an arbitrary number of active orbital spaces with arbitrary
electron occupation constraints, thus providing maximum
flexibility for the treatment of electron correlations by taking
advantage of the concept of generalized active spaces [32,33].
In our calculations, the Dirac-Fock orbitals are divided into
the inner-core, outer-core, valence, and virtual shells. No
excitation is allowed in the inner-core shells, but the excitation
in the outer-core and valence shells can be defined to any
order. The outer-core shells are designed to contain more and
more core orbitals in order to investigate the convergence of
the calculated results with the increasingly correlated core
shells. In details, the (4d), (4s,4p,4d), and (3d,4s,4p,4d)
core orbitals that contain 10, 18, and 28 electrons, which are
labeled as (core10), (core18), and (core28), respectively, are
taken as the outer-core shells for In+. Similarly, the (4s,4p),
(3d,4s,4p), and (3s,3p,3d,4s,4p) core orbitals that contain
8, 18, and 26 electrons, which are labeled as (core8), (core18),
and (core26), respectively, are taken as the outer-core shells
for Sr. The (5s,5p) orbitals constitute the valence shells of In+

and Sr. The virtual orbitals with the orbital energy larger than a
given cutoff value are neglected in our CC and CI calculations.
We have carried out the calculations of the different cutoff
values in order to check the influence of the truncation of the
virtual orbitals on the results.

In the following, the CC calculation is referred to as (core
n)SD and (core n)SDT that include single and double (SD)
excitations and single, double, and triple (SDT) excitations
from the outer-core and valence shells into the virtual orbitals,
where n means the number of outer-core electrons that are
involved in the CC calculations. The CI calculation is referred
to as (core n)SD(2in4)SDT and (core n)SD(2in4)SDTQ,
where (core n)SD means that the outer-core shells are restricted
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to single and double (SD) excitations and (2in4) means that
two valence electrons are distributed in four (5s,5p) valence
shells with the addition of excited electrons from the outer-core
to valence shells, for which all single, double, and triple (SDT)
excitations and single, double, triple, and quadruple (SDTQ)
excitations into virtual orbitals are taken into account.

The Dyall’s uncontracted correlation-consistent double-,
triple-, and quadruple-ζ basis sets are used, which are called
Xζ with X = 2, 3, and 4, respectively [34,35]. Each shell is
augmented by two additional diffused functions. The expo-
nential coefficients of the augmented functions are determined
according to

ζN+1 =
[

ζN

ζN−1

]
ζN, (5)

where ζN and ζN−1 are the two most diffused exponents for
the respective atomic shells in the original basis set. Four to
eight arbitrary finite-field strengths are chosen in the range
of Fz = (0,4.5×10−3) and of Fzz = (0,4.5×10−5) in atomic
units. The fitting is checked to remove the dependence of
the properties studied on sampling. In our calculations, the
criterion for energy convergence is set to be 10−10 hartree.

We use the composite scheme [27] to give the final value,
Pfinal, of a studied property. In the CC calculation,

Pfinal = PSD + �PT + �Pcore, (6)

where PSD is the value calculated for property P using the
(core10)SD method with the X = 4 basis set, �PT and �Pcore

are the corrections due to the triple excitation and more outer-
core shells. In the CI calculation,

Pfinal = PSDT + �PQ + �Pcore, (7)

where PSDT is the value calculated for property P using the
(core10)SD(2in4)SDT method with the X = 4 basis set, and
�PQ is the correction due to the quadruple excitation. In the
following CC and CI calculations, the virtual orbitals with the
orbital energy larger than 20 a.u. for In+ and 10 a.u. for Sr are
neglected. The calculations of the cutoff value of the virtual
orbitals being 100 a.u. have also been carried out. Increasing
the cutoff value to 100 a.u. causes only 0.5% change in αJ in
comparison to the cases of cutoff value being 20 a.u. for In+

and 10 a.u. for Sr. Therefore, the influence of the truncation of
the virtual orbitals on our results is expected to be small and
then neglected in the composite scheme.

We consider the possible error sources that cause the
uncertainty in Pfinal. The first error is due to the finite basis
set used for calculating PSD and PSDT , i.e., the errors in PSD

and PSDT . The convergence of the value of P with respect to
the basis set is very quick when the basis set is larger than
X = 3, as shown by the Al+ results [28]. Thus, we assume
empirically that the errors in PSD and PSDT are equal to half
of the difference of the P values obtained by using X = 3 and 4
basis sets. This error can be regarded as the possible correction
with respect to the value computed in the complete basis-set
limit. The second error comes from estimations of �PT and
�PQ. Previous experience [28] has shown that the �PT and
�PQ corrections computed even with the much small basis
set of X = 2 are never in error by more than 50% with respect
to the complete basis-set limit, and hence the errors of �PT

and �PQ are taken to be half of themselves, i.e., 0.5�PT and
0.5�PQ. The third error is due to the estimation of �Pcore. This
error is determined as the difference of the results obtained with
the increasing outer-core shells. Finally, the overall uncertainty
in Pfinal is evaluated by root-mean-square of the above three
errors.

Throughout this paper, atomic units (a.u.) are used,
unless otherwise stated. The atomic units of α, α2, γ ,
Fz, and Fzz are, respectively, 1.648 778×10−41 C2 m2 J−1,
4.617 048×10−62 C2 m4 J−1, 6.235 378×10−65 C4 m4 J−3,
5.142 250×109 V/cm, and 5.142 250×1011 V/cm2.

IV. RESULTS AND DISCUSSION

A. Dipole polarizability and hyperpolarizability

Table I summarizes the results of αJ for the 5s2 1S0 and
5s5p 3P o

0,1,2 states of In+ calculated by using the relativistic
CC method. First, the obtained values of αJ in the (core10)SD
calculation with the X = 2, 3, and 4 basis sets show a good
convergence with the increasing size of the basis set. The error
in PSD is only about 0.01–0.06. Then, the �Pcore correction
is estimated with the X = 3 basis set. The αJ value decreases
upon inclusion of the more core shells, 4s and 4p, in the
(core18)SD calculation. Including more core shells, 3d, in the
(core28)SD calculation leads to rather small changes of αJ .
This means that αJ has entered the convergence region with the
increasing correlated core shells; then �Pcore is estimated to
be the difference of the αJ values obtained by the (core28)SD
and (core10)SD calculations, being about −0.09 to − 0.30.
Next, �PT is estimated to be the difference of the αJ values
obtained by the (core10)SD and (core10)SDT calculations
with the X = 2 basis set, being around −0.08 to − 0.46. The
magnitudes of the �PT and �Pcore corrections are obviously
larger than the error in PSD . The reference data for the 5s2 1S0

and 5s5p 3P o
0 states of In+ are also given in Table I, as

calculated by Safronova et al. by using the CI + all-order
method [9]. Our results are consistent with their data with
a discrepancy of around 1%. Finally, we recommend that
ᾱJ = 27.31 for 5s5p 3P o

1 , with |MJ | = 1, and ᾱJ = 28.78 and
αJ

a = −1.53 for 5s5p 3P o
2 .

The results of γ J are summarized in Table II for the 5s2 1S0

and 5s5p 3P o
0,1,2 states of In+. Similar to the case of αJ , the

γ J values show a good convergence trend with respect to
the size of basis set, and the magnitudes of the �PT and
�Pcore corrections are also larger than the error in PSD . The
Pfinal values are recommended as γ J = 2989, 13 467, and
19 679 for the 5s2 1S0, 5s5p 3P o

0 , and 5s5p 3P o
1 , |MJ | = 1

states, respectively, and γ̄ J = 16 531 and γ J
a = −9052 for

the 5s5p 3P o
2 state. The uncertainties for the Pfinal values of γ J

are slightly larger than those for αJ , which is comprehensible
because the hyperpolarizability is a higher-order response that
is more sensitive to a small energy variation and thus various
contributions bring substantial corrections to γ J .

We also give the results of the relativistic CI calculation
that is implemented at the level of (core10)SD(2in4)SD < 2
with the X = 3 basis set, where “<2” means the cutoff for
the virtual orbitals being 2 a.u. in energy, in the footnotes
of Tables I and II for comparison. In the relativistic CI
calculations, we neglect the triple excitation, cut off more
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TABLE I. Values of the dipole polarizabilities αJ of the 5s2 1S0 and 5s5p 3P o
0,1,2 states of In+ obtained by the relativistic CC calculations.

3P o
1

3P o
2

Level of excitationa 1S0
3P o

0 |MJ | = 1 |MJ | = 0 |MJ | = 1 |MJ | = 2 ᾱJ αJ
a

Basis: 2ζ (23s,17p,13d,4f )
(core10)SD 24.83 27.91 29.12 32.34 31.47 28.88 30.61 –1.73
(core10)SDT 24.54 27.50 28.75 32.26 31.13 28.42 30.27 –1.85
�PT –0.29 –0.41 –0.37 –0.08 –0.35 –0.46 –0.34 –0.12
Error in �PT ±0.15 ±0.21 ±0.19 ±0.04 ±0.18 ±0.23 ±0.17 ±0.06
Basis:3ζ (30s,23p,17d,5f,3g)
(core10)SD 24.90 27.01 27.98 30.75 30.09 28.10 29.42 –1.33
(core18)SD 24.71 26.81 27.83 30.68 30.09 27.84 29.31 –1.47
(core28)SD 24.67 26.77 27.79 30.63 29.93 29.79 29.21 –1.42
�Pcore –0.24 –0.25 –0.19 –0.12 –0.16 –0.30 –0.21 –0.09
Error in �Pcore ±0.04 ±0.04 ±0.04 ±0.05 ±0.16 ±0.05 ±0.09 ±0.05
Basis:4ζ (35s,29p,20d,7f,5g,3h)
(core10)SD,PSD 24.86 26.91 27.87 30.64 29.98 28.01 29.32 –1.31
Error in PSD ±0.03 ±0.05 ±0.06 ±0.06 ±0.05 ±0.04 ±0.05 ±0.01

Pfinal = PSD + �Pcore + �PT

Final data, Pfinal 24.33 26.25 27.31 30.44 29.48 27.25 28.78 –1.53
Uncertainty (%) 0.62 0.82 0.73 0.28 0.82 0.87 0.69 4.99
Ref. [9] 24.01 26.02

aThe relativistic CI calculation is performed using the 3ζ basis set at (core10)SD(2in4)SD < 2 level, which yields α = 25.06 and 27.93 for the
5s2 1S0 and 5s5p 3P o

0 states, ᾱJ = 28.59 and αJ
a = 0.34 for the 5s5p 3P o

1 state, and ᾱJ = 30.30 and αJ
a = −1.38 for the 5s5p 3P o

2 state.

virtual orbitals, and use a small basis set of X = 3, which
reduces the computational cost but causes large errors in the
results of αJ and γ J . The errors of the relativistic CI results
are about 10% compared with the Pfinal values obtained by the
relativistic CC calculations shown in Tables I and II.

In Table III we summarize the results of αL and γ L for the
5s2 1S and 5s5p 3P o states of In+ calculated by the scalar

relativistic CI method. The PSDT value is determined by
the (core10)SD(2in4)SDT calculation with the X = 4 basis
set. Further, the �Pcore and �PQ corrections are estimated
with X = 2 basis set. The �Pcore correction is equal to the
difference of the results obtained by the (core10)SD(2in4)SDT
and (core28)SD(2in4)SDT calculations, and the �PQ cor-
rection is equal to the difference of the results obtained

TABLE II. Values of the dipole hyperpolarizabilities γ J of the 5s2 1S0 and 5s5p 3P o
0,1,2 states of In+ obtained by the relativistic CC

calculations.

3P o
1

3P o
2

Level of excitationa 1S0
3P o

0 |MJ | = 1 |MJ | = 0 |MJ | = 1 |MJ | = 2 γ̄ J γ J
a

Basis:2ζ (23s,17p,13d,4f )
(core10)SD 3695 14 752 21 119 27 116 20 729 7294 16 632 –9338
(core10)SDT 3640 15 134 21 611 27 546 20 989 7773 1 7014 –9241
�PT –55 381 492 431 260 479 382 97
Error in �PT ±28 ±191 ±246 ±216 ±130 ±240 ±191 ±49
Basis:3ζ (30s,23p,17d,5f,3g)
(core10)SD 3143 13 435 19 265 26 644 20 951 6820 16 437 –9617
(core18)SD 3072 13 467 19 368 26 472 20 755 6968 16 384 –9645
(core28)SD 3065 13 464 19 327 26 480 20 703 7056 16 400 –9344
�Pcore –78 28 62 –164 –248 236 –38 273
Error in �Pcore ±7 ±3 ±42 ±9 ±52 ±88 ±16 ±72
Basis:4ζ (35s,29p,20d,7f,5g,3h)
(core10)SD,PSD 3122 13057 19125 26265 20571 6765 16187 –9422
Error in PSD ±11 ±189 ±70 ±190 ±190 ±28 ±125 ±97

Pfinal = PSD + �Pcore + �PT

Final data, Pfinal 2989 13 467 19 679 26 532 20 583 7479 16 531 –9052
Uncertainty (%) 1.01 1.99 1.32 1.08 1.15 3.43 1.38 1.44

aThe relativistic CI calculation is performed using the 3ζ basis set at (core10)SD(2in4)SD < 2 level, which yields α = 2715 and 16164 for the
5s2 1S0 and 5s5p 3P o

0 states, ᾱJ = 17247 and αJ
a = 4263 for the 5s5p 3P o

1 state, and ᾱJ = 18614 and αJ
a = −8518 for the 5s5p 3P o

2 state.
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TABLE III. Values of the dipole polarizabilities αL and the dipole hyperpolarizabilities γ L for the 5s2 1S and 5s5p 3P o states of In+ obtained
by the scalar relativistic CI calculations.

αL γ L

3P o 3P o

Level of excitation 1S0 |ML| = 0 |ML| = 1 ᾱL αL
a

1S0 |ML| = 0 |ML| = 1 γ̄ L γ L
a

Basis:2ζ (23s,17p,13d,4f )
(core10)SD(2in4)SDT 24.42 32.24 27.98 29.40 –1.42 2832 35528 7099 16576 –9476
(core18)SD(2in4)SDT 24.28 32.23 27.84 29.31 –1.46 2521 35712 6972 16552 –9580
(core28)SD(2in4)SDT 24.26 32.19 27.82 29.28 –1.46 2567 35679 6967 16538 –9571
(core10)SDT(2in4)SDTQ 24.41 32.17 27.82 29.27 –1.45 3650 35577 7381 16780 –9398
�PQ –0.015 –0.07 –0.16 –0.13 –0.03 789 49 282 204 78
Error in PQ ±0.008 ±0.035 ±0.08 ±0.065 0.015 ±395 ±25 ±141 ±102 ±39
�Pcore –0.16 –0.05 –0.16 –0.12 –0.04 –294 151 –132 –38 –94
Error in Pcore ±0.02 ±0.05 ±0.0.02 ±0.03 ±0.01 ±46 ±33 ±5 ±14 ±9
Basis:3ζ (30s,23p,17d,5f,3g)
(core10)SD(2in4)SDT 24.38 30.43 27.17 28.26 –1.08 2182 34283 6742 15922 –9180
Basis:4ζ (35s,29p,20d,7f,5g,3h)
(core10)SD(2in4)SDT, PSDT 24.34 30.35 27.12 28.20 –1.08 2270 34257 6761 15926 –9165
Error in PSDT ±0.02 ±0.04 ±0.03 ±0.03 ±0.005 ±44 ±13 ±9 ±2 ±8

Pfinal = PSDT + �Pcore + �PQ

Final data, Pfinal 24.16 30.22 26.80 27.94 –1.14 2765 34457 6910 16092 –9182
Uncertainty(%) 0.13 0.23 0.33 0.28 1.56 14.46 0.13 2.05 0.64 0.44

by the (core10)SD(2in4)SDT and (core10)SDT(2in4)SDTQ
calculations. We can find that the magnitudes of the �PQ and
�Pcore corrections are also larger than the error in PSDT in the
scalar relativistic CI calculations. This trend is in accordance
with that found in the relativistic CC calculations shown in
Tables I and II.

The results shown in Tables I, II, and III have proven that the
error in PSD has decreased to be very small when expansion of
the basis set goes to X = 4 in the calculation of α and γ of the
5s2 1S and 5s5p 3P o states of In+. In this situation, the �Pcore

correction arising from more outer-core shells and the �PT

and �PQ corrections arising from the higher-order excitations
become crucial for the accuracy of the final α and γ values. In
this work, the �PT correction in the relativistic CC calculation
and the �PQ correction in the scalar relativistic CI calculation
are calculated only with the X = 2 basis set in order to avoid
very high computational demand in using larger basis sets.
In Tables I, II, and III, our estimations of �PT and �PQ are
reasonable for most of states of In+, although the X = 2 basis
set is small. However, there are a few anomalous cases, like the
�PT corrections for the αJ

a value of the 5s5p 3P o
2 state shown

in Table I and the γ J value of the 5s5p 3P o
2 state with MJ = 2

shown in Table II, as well as the �PQ correction for the γ L

value of the 5s2 1S0 state shown in Table III. For such above
states the �PT and �PQ corrections are anomalously larger
than the other states. This may be due to the incompleteness
of the basis set at the X = 2 level that causes large errors in
some states.

Table IV summarizes the results of αJ for the 5s2 1S0 and
5s5p 3P o

0,1,2 states of Sr calculated by using the relativistic
CC method. The (core8)SD calculations are conducted with
the X = 2, 3, and 4 basis sets. Upon the increasing sizes of
the basis sets, the αJ value of the 5s2 1S0 state shows very

rapid convergence, whereas the αJ values of the 5s5p 3P o
0,1,2

states converge slowly. The increments of the αJ values of the
5s5p 3P o

0,1,2 states are substantial when the basis set goes from
X = 3 to 4 and consequently lead to the rather large error in
PSD , being about 12.1–15.7, except for the αJ

a value of the 3P o
2

state. For the 3P o
2 state, the αJ

a value is determined to be the
ᾱJ value minus the αJ value of the MJ = 2 component. The
error cancellation yields a small error in PSD of the αJ

a value of
the 3P o

2 state. We also carry out the relativistic CI calculation
at the (core8)SD(2in4)SD < 2 level with the X = 3 basis set
for the 5s2 1S0 and 5s5p 3P o

0,1,2 states of Sr. Its results are
given in the footnote to Table IV for comparison. The error
of these relativistic CI results are about 12% compared with
the corresponding Pfinal values obtained by the relativistic CC
calculations shown in Tables IV.

From Table IV we can see that the error in PSD is basically
larger than the magnitudes of the �PT and �Pcore corrections
for the 5s5p 3P o

J states of Sr. This indicates that the primary
dominant factor that affects the accuracy of the Pfinal value of
αJ for the 5s5p 3P o

J states of Sr comes from the size of the
basis set. This trend is different from that found for In+. Note
that the error in �PSD is very small and is far less than �PT

and �Pcore for the case of In+. The possible reason can be
ascribed to the different electron distribution of In+ and Sr. As
a positively charged ion, in general, In+ has a compact electron
distribution around the nucleus. However, as a neutral atom,
Sr is expected to have more diffused electron distribution than
In+, indicating that larger basis sets are required for Sr.

The previously reported dipole polarizabilities of Sr are also
listed in Table IV for comparison. It includes the calculation
of Sahoo and Das using the relativistic couple cluster (RCC)
method [16], the calculation of Porsev et al. using the
CI + MBPT method [19], the calculation of Safronova et al.
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TABLE IV. Values of the dipole polarizabilities αJ of the 5s2 1S0 and 5s5p 3P o
0,1,2 states of Sr obtained by the relativistic CC calculations.

3P o
1

3P o
2

Level of excitationa 1S0
3P o

0 |MJ | = 1 |MJ | = 0 |MJ | = 1 |MJ | = 2 ᾱJ αJ
a

Basis:2ζ (23s,17p,12d,3f )
(core8)SD 205.1 349.3 377.1 418.7 397.1 331.7 375.3 –43.5
(core8)SDT 200.1 348.8 379.5 422.2 499.8 332.0 377.2 –45.2
�PT –5.0 –0.5 2.4 3.5 2.8 0.2 1.9 –1.7
Error in �PT ±2.5 ±0.3 ±1.2 ±1.8 ±1.4 ±0.1 ±1.0 ±0.9
Basis:3ζ (31s,22p,15d,7f,3g)
(core8)SD 204.8 423.8 460.8 515.1 490.5 415.7 465.5 –49.8
(core18)SD 204.6 415.3 450.3 503.8 478.8 406.3 454.8 –48.5
(core26)SD 204.7 418.8 454.4 509.0 486.9 410.1 460.6 –50.5
�Pcore –0.2 –5.0 –6.4 –6.2 –7.6 –5.6 –6.5 0.9
Error in �Pcore ±0.01 ±3.5 ±4.0 ±5.2 ±4.1 ±3.9 ±4.2 ±0.3
Basis:4ζ (35s,27p,17d,9f,7g,3h)
(core8)SD, PSD 204.8 446.4 484.9 546.6 520.0 441.9 494.1 –52.2
Error in PSD 0.0 ±11.3 ±12.1 ±15.7 ±14.8 ±13.1 ±14.3 ±1.2

Pfinal = PSD + �Pcore + �PT

Final data,Pfinal 199.7 444.1 480.9 543.9 519.2 436.5 491.1 –54.5
Uncertainty (%) 1.2 2.7 2.7 3.1 3.0 3.1 3.1 2.8
RCC [16] 199.7
CI + MBPT [19] 197.2 457.0 498.8
CI + all-order [11] 194.4 441.9
CICP [17] 204.5 497.0 (27.7)b

CI + all-order [20] 459.2 (26.0)b

Expt. [36] (24.5)b

aThe relativistic CI calculation is performed using the 3ζ basis set at (core8)SD(2in4)SD < 2 level, which yields α = 179.5 and 394.5 for the
5s2 1S0 and 5s5p 3P o

0 states, ᾱJ = 409.7 and αJ
a = 23 for the 5s5p 3P o

1 state, and ᾱJ = 455.2 and αJ
a = −51.8 for the 5s5p 3P o

2 state.
bHere given are the scalar and tensor (in parentheses) polarizabilities for 5s5p 3P o

1 .

using the CI + all-order method [11], the calculation of Mitroy
and Zhang using the CICP method [17], and the calculation
of Porsev et al. using CI + all-order method [20]. Noteworthy
to mention are the CI + all-order results of Safronova et al.
that give αJ = 194.4 and 441.9 for 5s2 1S0 and 5s5p 3P o

0 ,
respectively. For such two states, we obtain αJ = 199.7 and
444.1 in the relativistic CC calculation, which are slightly
larger than the values of Safronova et al. Such discrepan-
cies indicate that the magnitudes of �PT and �Pcore are
underestimated in our calculations. Porsev et al. obtained
αJ = 498.8 for the 5s5p 3P o

1 state with MJ = 1 state by using
the CI + MBPT method, which is close to our calculated
result αJ = 480.9. The scalar and tensor polarizabilities of
5s5p 3P o

1 have also been given as ᾱJ = 497.0 and αJ
a = 27.7

by Mitroy and Zhang [17] and ᾱJ = 459.2 and αJ
a = 26.0 by

Porsev et al. [20]. The experimental value of αJ
a for 5s5p 3P o

1
is 24.5 [36]. By using the relativistic CI method we obtain
ᾱJ = 409.7 and αJ

a = 23.0 for Sr 5s5p 3P o
1 , which is closed

to Porsev’s values within a 11% error. There is no reported
data available for the dipole polarizability of the Sr 5s5p 3P o

2
state. We recommend ᾱJ = 491.1 and αJ

a = −54.5 for the
5s5p 3P o

2 state of Sr in Table IV. The data of the dipole
hyperpolarizabilities of Sr are very scarce. In Table V we
recommend γ J = 691 957 and 3 228 219 for the 5s2 1S0 and
5s5p 3P o

0 states of Sr by using the relativistic CC calculation.
The results of αL for the 5s2 1S and 5s5p 3P o states of Sr

calculated by using the scalar relativistic CI method are given

in Table VI. Being similar to the situation in the relativistic CC
calculation shown in Table IV, the αL value of the 5s2 1S state
converges very rapidly with the increasing size of the basis set,
and the corresponding �PQ and �Pcore corrections are also
small; on the other hand, the convergence of the αL values
of the 5s5p 3P o states with the increasingly large basis sets is
slow. The induced error in PSD is rather large. The magnitudes
of the �PT and �Pcore corrections of the αL values of the
5s5p 3P o state are also large. But their opposite signs lead to a
certain cancellation in the uncertainty of the Pfinal values of αL.
Analyzing the relativistic CC and scalar relativistic CI results
of Sr shown in Tables IV and VI, we can find that the calculated
values of α of the 5s5p 3P o states of Sr are dependent on the
basis set strongly. A further expansion of the basis set will
improve the accuracy of α. Besides, we can find that �Pcore

has reached convergence upon inclusion of the 3d, 4s, and
4p shells into the electron correlations. This indicates that the
required correlated outer-core shells should at least contain the
3d, 4s, and 4p shells in order to achieve the accurate α values.

The relativistic effect in the four-component relativistic
formalism can be understood as a combination of the spin-orbit
coupling effect and contraction or decontraction of the radial
electron density, i.e., the scalar relativistic effect. Among the
5s5p 3P o

J states, the 3P o
0 state is of a spherically symmetric

electronic density and therefore has only the scalar dipole
polarizabilities. In this situation, the difference of the J -
resolved polarizabilities, αJ and γ J , of the 3P o

0 state and the
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TABLE V. Values of the dipole hyperpolarizabilities γ J of the 5s2 1S0 and 5s5p 3P o
0 states of Sr obtained by the relativistic CC calculations.

Level of excitation 1S0
3P o

0

Basis:2ζ (23s,17p,12d,3f )
(core8)SD 484 500 7 050 552
(core8)SDT 510 144 6 905 904
�PT 25 644 –144 648
Error in �PT ±128 22 ±72 324
Basis:3ζ (31s,22p,15d,7f,3g)
(core8)SD 680 965 3 568 344
(core18)SD 672 720 3 452 688
(core26)SD 674 592 3 289 040
�Pcore –6373 –279 304
Error in �Pcore ±1872 ±163 648
Basis:4ζ (35s,27p,17d,9f,7g,3h)
(core8)SD, PSD 672 686 3 652 171
Error in PSD ±8279 ±83 827

Pfinal = PSD + �Pcore + �PT

Final data, Pfinal 691 957 3 228 219
Uncertainty (%) 2.22 6.12

ML-averaged polarizabilities, ᾱL and γ̄ L, for the 3P o state
can be understood as the sole effect of the spin-orbit coupling
on the polarizabilities, as has been studied for the group-13
atoms [24] and Al+ [28]. The fractional difference is defined
as

Q̄L(3P o) − QJ
(

3P o
0

)
QJ

(
3P o

0

) . (8)

Using our relativistic CC and scalar relativistic CI results given
in Tables I, II, and III, the fractional difference of formula (8)
is evaluated to be about 8% in α and 22% in γ for the 5s5p 3P o

states of In+, indicating an evident spin-orbit effect in α and γ .
The fractional difference of formula (8) is evaluated to be 2%
in α for Sr using the our relativistic CC and scalar relativistic

CI results shown in Tables IV and VI, which is smaller than that
of In+. This implies that the effect of the spin-orbit coupling
on α for Sr is weaker than that for In+.

B. Quadrupole moment and polarizability

Table VII summarizes our results of the quadrupole moment
θ and the quadrupole polarizabilities α2 of the 5s2 1S0 and
5s5p 3P o

0,1,2 states of In+ and Sr. Here, given for the 5s5p 3P o
1,2

states, are the scalar quadrupole polarizabilities. The L-
resolved values are obtained by the (core10)SD(2in4)SDTQ
(In+) and (core8)SD(2in4)SDTQ (Sr) calculations by using
the scalar relativistic CI method, and the J -resolved val-
ues are obtained by the (core10)SD (In+) and (core8)SD

TABLE VI. Values of the dipole polarizabilities αL of the 5s2 1S and 5s5p 3P o states of Sr obtained by the scalar relativistic CI calculations.

3P o

Level of excitation 1S0 |ML| = 0 |ML| = 1 ᾱL αL
a

Basis:2ζ (23s,17p,12d,3f )
(core8)SD(2in4)SDT 199.5 443.7 312.6 356.3 –43.7
(core18)SD(2in4)SDT 198.2 427.5 302.3 344.0 –41.8
(core26)SD(2in4)SDT 197.8 427.6 302.3 344.1 –41.7
(core8)SDT(2in4)SDTQ 198.7 457.2 325.2 369.3 –44.0
�PQ –0.7 13.5 12.6 12.9 –0.3
Error in �PQ ±0.4 ±6.8 ±6.3 ±6.5 ±0.2
�Pcore –1.6 –16.2 –10.3 –12.3 2.0
Error in �Pcore ±0.35 ±0.01 ±0.05 ±0.04 ±0.04
Basis:3ζ (31s,22p,15d,7f,3g)
(core8)SD(2in4)SDT 198.4 528.4 381.9 430.7 –48.8
Basis:4ζ (35s,27p,17d,9f,7g,3h)
(core8)SD(2in4)SDT, PSD 197.1 547.7 396.7 447.0 –50.3
Error in PSD ±0.7 ±9.6 ±7.4 ±8.1 ±0.7

Pfinal = PSDT + �Pcore + �PQ

Final data, Pfinal 194.7 544.9 398.9 447.6 –48.7
Uncertainty(%) 1.3 1.8 2.5 2.1 3.5
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TABLE VII. L- and J -resolved values of the quadrupole moments θ and the quadrupole polarizabilities α2 of the 5s2 1S and 5s5p 3P o states
of In+ and Sr. For the 5s5p 3P o

1,2 states the scalar quadrupole polarizabilities are given.

State θL θJ

In+ 5s5p 3P o 4.36 4.64
Sr 5s5p 3P o 15.56, 15.52 [21] 15.76, 15.6 [22]

αL
2 αJ

2

In+ 5s2 1S 127 129
Sr 5s2 1S 4688, 4640 [17] 4608, 4545 [20]
In+ 5s5p 3P o 145 1425 (3P o

0 )
1678 (3P o

1 )
–859.3 (3P o

2 )
Sr 5s5p 3P o 6756, 6949 [17] 9.75×104 (3P o

0 )
1.17×105 (3P o

1 ), 1.05×105 [20]
–7.39×104 (3P o

2 )

(Sr) calculations by using the relativistic CC method. The
results of θ and ᾱ2 of the 5s5p 3P o

1 state is obtained by
the relativistic CI calculations that are carried out at the
(core10)SD(2in4)SD < 2 (In+) and (core8)SD(2in4)SD < 2
(Sr) levels. All calculations are carried out with the X = 3
basis set. For the quadrupole moment of the 5s5p 3P o state
and the quadrupole polarizabilities of the 5s2 1S0 state of
In+ and Sr, the relativistic CC and the scalar relativistic
CI calculations produce much close results, which indicates
the negligible spin-orbit coupling effect. In contrast, for the
quadrupole polarizabilities of the 5s5p 3P o state, there are
great discrepancies between the L- and J -resolved values.
The αJ

2 values of the 5s5p 3P o
J states vary greatly for the

different J .
The available literature data are also given in Table VII for

comparison. The quadrupole moment of the 5s5p 3P o state of
Sr has been calculated in earlier works, yielding 15.52 [21] and
15.6 [22]. All these data are in agreement with our data with
a 1% error. Mitroy et al. have recommended the quadrupole
polarizabilities of the 5s2 1S0 and 5s5p 3P o states of Sr to be
4640 and 6949, respectively, by using the CICP method [17].
Their recommended data are consistent with our L-resolved
data obtained by the scalar relativistic CI method. Porsev, et al.,
have recently calculated the quadrupole polarizabilities of the
5s2 1S0 and 5s5p 3P o

1 states of Sr by using the CI + all-order
method with the random-phase approximation [20]. Their
recommended values for the quadrupole polarizabilities of the
5s2 1S0 and 5s5p 3P o

1 states of Sr are 4545 and 1.05×105,
respectively, consistent with our J -resolved data obtained by
the relativistic CC and CI calculations with errors being around
2% and 11%, respectively. From the above comparisons, we
can see that our results of θ and α2 for the 5s2 1S0 and
5s5p 3P o

0,1,2 states of In+ and Sr have good accuracy and
therefore can be used for estimation of the energy shifts of
the related optical transitions.

C. Blackbody-radiation shift

Finally, our results for the dipole polarizabilities, dipole
hyperpolarizabilities, and quadrupole polarizabilities are used
to estimate the BBR shift in the clock transition frequency of

In+ and Sr. The BBR shift can be written in the form [12,13]

δEBBR = − 1
2�α

〈
E2

E1

〉 − 1
24�γ

〈
E2

E1

〉2 − 1
2�α2

〈
E2

E2

〉
, (9)

where 〈E2
E1〉 and 〈E2

E2〉 are the averaged electric fields induced
by the electric dipole E1 and the electric quadrupole E2 and
they are, respectively,

〈
E2

E1

〉 = 4π3α3
fs

15

(
kBT

Eh

)4

(10)

and

〈
E2

E2

〉 = 8π5α5
fs

189

(
kBT

Eh

)6

. (11)

In the above, αfs is the fine structure constant, kBT /Eh ≈
10−9, for the temperature T = 300 K, kB is the Boltzmann
constant, Eh is the Hartree energy, and �α, �α2, and �γ ,
expressed in atomic units, are, respectively, the differences of
the dipole polarizability, quadrupole polarizability, and dipole
hyperpolarizability between the 5s2 1S0 and the 5s5p 3P o

0 states
of In+ and Sr. In Eq. (9) we have neglected the dynamic
fractional correction to the total shift [12] and assume that
the contribution of the hyperpolarizability to the BBR shift
can be approximated by the ac-Stark shift 〈E2

E1〉2 for a given
electric field. Using our relativistic CC results shown in
Tables I, II, and VII for the 5s2 1S0 and 5s5p 3P o

0 states of
In+, the BBR shifts due to α, α2, and γ are determined to
be 0.017, 8.33×10−10, and 1.93×10−17 Hz, respectively, for
the In+ clock transition frequency; and using our relativistic
CC results shown in Tables IV, V, and VII for the 5s2 1S0

and 5s5p 3P o
0 states of Sr, the BBR shifts due to α, α2, and γ

are determined to be 2.09, 5.82×10−8, and 1.69×10−15 Hz,
respectively, for the Sr clock transition frequency.

V. CONCLUSION

In summary, we have calculated the values of α, γ , θ ,
and α2 of the 5s2 1S and 5s5p 3P o states of In+ and Sr
by using the finite-field method. A satisfactory accuracy of
the polarizabilities is achieved through convergence studies
of the basis sets and sufficient inclusion of the electron
correlations. In addition to the dipole polarizabilities, the
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BBR shifts of the clock transition 5s2 1S0-5s5p 3P o
0 due to

the quadrupole polarizabilities and dipole hyperpolarizabilities
are also evaluated, being 8.33×10−10 and 1.93×10−17 Hz,
respectively, for In+ and 5.82×10−8 and 1.69×10−15 Hz,
respectively, for Sr. The BBR shifts due to the quadrupole
polarizabilities and dipole hyperpolarizabilities are far less
than that due to the dipole polarizabilities; hence, they can be
safely omitted for the quoted 10−18 uncertainty of the optical
frequency standard of In+ and Sr.

The finite-field method can also be applied with similar
accuracy to the calculations of the polarizabilities of atomic
cores (see the Appendix for α, γ , and α2 of In3+ and Sr2+).
It will be useful to employ the finite-field method to perform
a fast evaluation of required properties, especially when high-
precision experimental studies and sophistical sum-over-state
calculations are not available or all available results are not

in complete agreement. It is noteworthy to mention that the
errors of the finite-field calculations need to be examined
carefully and minimized for such applications, which requires
a detailed knowledge about the rate of convergence of basis
set and electron correlations for a property of interest.

We have investigated the influences of the basis set and the
level of electron correlations on the computed properties in the
finite-field calculations. For the case of In+, the convergence
for α and γ can be reached when the basis set is increased up
to X = 4 and the correlated outer-core shells includes at least
the 4s, 4p, and 4d shells. In the relativistic CC calculations the
dominant correction is from �PT , and thus a more accurate
evaluation of the contribution of the triple excitation is needed
for higher accuracy. For example, the relativistic CCSDT
calculation with the X = 4 basis set may give more accurate
results, although such a study is prohibited at this moment

TABLE VIII. The dipole polarizability αJ , hyperpolarizability γ J , and quadrupole polarizability αJ
2 for the ground states of In3+ and Sr2+

obtained by the relativistic CC calculations.

αJ γ J αJ
2

In3+

Basis:2ξ (23s17p13d4f )
(core10)SD 3.186 24.679
Basis:3ξ (30s23p17d5f 3g)
(core10)SD 3.228 28.110 8.52
(core18)SD 3.2882 27.036
(core28)SD 3.2879 25.413
(core10)SDT 3.242 28.556
�PT 0.014 0.446
Error in �PT ±0.007 ±0.223
�Pcore 0.060 –2.697
Error in �Pcore ±0.0003 ±1.623
Basis:4ξ (35s29p20d7f 5g3h)
(core8)SD, PSD 3.271 28.320
Error in PSD ±0.022 ±0.211

Pfinal = PSD + �Pcore + �PT

Final data, Pfinal 3.345 26.063
Uncertainity(%) 0.87 6.38
Coupled HF data [37] 3.22 8.386

Sr2+

Basis:2ξ (23s17p13d4f )
(core8)SD 5.810
Basis:3ξ (30s23p17d5f 3g)
(core8)SD 5.831 63.993 17.18
(core18)SD 5.797 60.629
(core26)SD 5.820 61.439
(core8)SDT 5.839 64.626
�PT 0.008 0.633
Error in �PT ±0.004 ±0.317
�Pcore –0.011 –2.555
Error in �Pcore ±0.023 ±0.81
Basis:4ξ (35s29p20d7f 5g3h)
(core8)SD < 10, PSD 5.849 64.556
Error in PSD ±0.009 ±0.282

Pfinal = PSD + �Pcore + �PT

Final data, Pfinal 5.846 62.635
Uncertainty(%) 0.42 1.46
coupled HF data [37] 5.813 17.15
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given the present computing resources. For the case of Sr, the
convergence of α and γ are strongly dependent on the quality
of the basis set because a neutral atom has more diffused
electron density in an external field than a positive charged
ion. In this case, the predominant factor will be the expansion
and optimization of the basis sets beyond X = 4.

Some general trends about the sole effect of the spin-orbit
coupling have been found through comparative studies by
using the fully and scalar relativistic approaches. The fractional
difference between the L- and J -resolved values of α of the
5s5p 3P o state is about 8% for In+, but only 2% for Sr,
implying that the effect of the spin-orbit coupling on α of
In+ is stronger than that for Sr.
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APPENDIX

In Table VIII, we present the αJ and γ J values for
the ground states of In3+ and Sr2+ by the relativistic CC
calculations. The obtained αJ and γ J values have reached
the convergence with the increasing basis sets when X = 3ζ .

The errors in PSD of αJ and γ J are less than 1%. The �PT

corrections to αJ and γ J are also less than 1%. The largest
corrections to αJ and γ J come from �Pcore. The changes of
the αJ and γ J values between the (core10)SD and (core18)SD
calculations for In3+ and the (core8)SD and (core18)SD
calculations for Sr2+ are substantial, whereas the changes
induced by inclusion of more core shells are very small, as
shown by the (core28)SD calculation for both In3+ and Sr2+.
This means that the obtained αJ and γ J values have reached
convergence when the 4s, 4p, and 4d core shells are correlated
for In3+ and the 3d, 4s, and 4p core shells are correlated for
Sr2+. We also present the αJ

2 values for the ground states of
In3+ and Sr2+, as obtained by the relativistic CC calculations
at the (core10)SD (In3+) and (core8)SD (Sr2+) levels. Our αJ

and αJ
2 data are compared with the previously recommended

data by using coupled Hartree-Fock (HF) theory [37], which
shows good agreements. The accurate αJ , γ J , and αJ

2 data for
the ground states of In3+ and Sr2+ can provide useful reference
data for the CICP for the semiempirical calculation of
the atomic structure. On the other hand, our results demon-
strate the application of the finite-field calculation for the
polarizabilities of the highly charged ions. The highly charged
ions have very compact electronic distribution around nucleus
generally. In this case, as Table VIII shows, the convergence
of the obtained polarizability values with the increasing basis
sets is excellent, and the contribution of the triple excitation
is also small. The primary factor that influences the accuracy
of the obtained polarizability value is to tackle the electron
correlation arising from the core shells sufficiently in the
finite-field calculations.
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