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Quantum dynamics and spectra of vibrational Raman-resonance fluorescence in a two-mode cavity
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We study the classically driven two-level system with its center-of-mass motion vibrating in a harmonic trap
and coupled to the photons in a two-mode cavity. The first mode is resonant to the driving field and an electronic
transition. The second mode is off-resonant, forming a vibrational-assisted Raman transition. Using an exact
numerical method, we investigate the quantum dynamics of the light emitted by the atom and the cavity modes.
We analyze and compare the corresponding atomic and intracavity photon spectra for a range of the driving
laser field and the cavity coupling strengths. The results provide better understanding of the effects of the laser
field and atom-cavity coupling strengths on quantum interference effects and photon blockade, particularly the
Mollow’s triplet and the Autler-Townes splitting in the good and bad cavity limits.
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I. INTRODUCTION

The interaction between photons and atoms can be sub-
stantially enhanced if the atoms and photons are confined in
a cavity. The simplest situation is the coupling of a single
electromagnetic field mode with a single two-level atom
inside a cavity. The system is described by the well-known
Jaynes-Cummings Hamiltonian [1]. In addition to the coherent
interaction, there are two main loss processes that affect
the dynamics of the system: spontaneous emission due to
the coupling of the atom to the modes of the surrounding
environment and the relaxation of the atom caused by leakage
of photons to the environment or the Purcell effect [2,3].

The strong-coupling regime of the cavity QED is reached
when the coupling strength of the atom with the cavity mode
dominates over the decoherence processes. Such a regime has
been studied in various systems. In experiments, microwave
cavities and rf cavities are coupled to Rydberg atoms of large
principal quantum number [4]. Strong atom-field coupling has
also been achieved in optical cavities [5]. The availability
of high-quality cavities and ion traps allow an interacting
atom to be localized inside the cavity, providing experimental
realizations for many of the above-mentioned theoretical
predictions. Based on Fabry-Perot interferometry [6], semi-
conductor microcavities have been developed, where excitons
in quantum dots act as quantum systems [7]. Furthermore, the
strong-coupling regime has also been achieved with artificial
atoms, such as superconducting qubits that interact with the
electromagnetic modes of a stripline resonator [8]. One of the
most important applications of the strong-coupling regime is
the photon blockade effect, where a single photon can modify
the resonance frequency of the cavity mode in such a way that
a second photon cannot enter the cavity before the first leaks
out [9].

Cavity QED has been one of the main areas of quantum
optical research for a long time [10]. Many interesting quantum
optical phenomena involving cavities have been predicted,
such as photon antibunching and squeezed light [11], station-
ary occupation inversion [12], and subnatural linewidths [13].
Cavities are also used to slow down or even freeze a light pulse
[14]. The use of two separated cavities has been proposed

to generate two-mode entanglement [15,16], which can be
controlled via cavity parameters [17] . Due to these features,
cavity structures are one of the fundamental resources for
technical implementation of quantum information algorithms
as well as construction of a quantum network (with the aim of
quantum computation).

In general, cavity QED systems can also be used to study
the interaction of the atoms with many photonic modes [18].
The influence of other modes can be neglected if they are
off-resonance as they contribute in an oscillatory manner to
the interaction, which averages to zero over sufficiently large
times. Depending on the atomic system, it may be possible to
excite an additional degree of freedom, such as a vibrational
excitation of a molecule or a trapped ion. In such situations
additional cavity modes may play an important role in the
dynamics. In the case of Raman resonances other cavity
modes follow the dynamics of the resonant mode because
the interaction of the atomic system with Raman-resonance
modes and on the resonant mode are in phase [18]. This
dynamics changes drastically when the Raman transition is
quasiresonant, with the detuning corresponds to the Rabi
frequency of the strongly coupled resonant mode. In such
a case, an irregular behavior of the two cavity modes was
predicted in Refs. [19,20].

In the present paper, we study a classically driven two-level
system with vibrational motion in a bimodal cavity. Note
that it is the two-level system that is driven by the laser
field, and not the cavity field. The first mode is resonant
with the electronic transition. The second mode is Raman
quasiresonant, which also leads to vibrational excitations in
the system. The detuning from the exact Raman resonance
can be varied. We show that for a detuning of the order of
Rabi-oscillation frequency, the Raman-assisted mode becomes
resonantly driven by the Rabi oscillation. This makes the
mean number of Raman-assisted cavity photons comparable
with the resonant mode, even when the Raman coupling is
weaker than a pure electronic one. In practice, such a scheme
is similar to the experiments by Blatt’s group [21] using a
trapped ion in a single cavity. If there are nearby off-resonant
cavity modes, they can couple to the vibrational motion of the
ion.
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This paper is organized as follows. In Sec. II we consider the
model Hamiltonian and its numerical solution for the steady
state in strong- as well as weak-coupling regimes including the
time evolution of the system. Section III discusses the results
with the photon statistics and spectrum of both the cavity
modes as well as cross correlation in various scenarios. We
conclude our results in Sec. IV.

II. THE MODEL HAMILTONIAN

The scheme of the system under study is shown in Fig. 1.
We consider a quantum system in a two-mode cavity, with an
electronic transition that is resonantly coupled to one cavity
mode, a, but is off-resonant to other modes. However, a second
cavity mode, b, of comparable energy can be quasiresonant to
bare electronic transition due to the vibrational excitation of
the center-of-mass motion in a harmonic trap with frequency
ν, as shown in Fig. 1. The classical driving laser field � is
resonant to the bare electronic transition as well as the cavity
mode a.

The system Hamiltonian in a rotating-wave approximation
is given by

Ĥ = Ĥ0 + V̂ , (1)

Ĥ0 = �[ω21σ̂
†σ̂ + νaâ

†â + νbb̂
†b̂ + νvv̂

†v̂], (2)

V̂ = �σ̂ †(gaâ + gbb̂v̂ + 1
2�e−iνl t

) + H.c., (3)

where νa is the cavity photon frequency of mode a, νb is
the cavity photon frequency b, and νv is the frequency of
the vibrational excitation ν in the system; σ̂ij = |i〉〈j |, with
σ̂21 = σ̂ † is the excitation operator from level 1 to level 2;
� is the (real) Rabi frequency of the driving field with the
frequency νl ; and â (b̂) is the annihilation operator for the
cavity mode a(b) and v̂ is the annihilation operator for the vi-
brational mode, with their respective frequencies being νa , νb,
and νv.

The system Hamiltonian can be realized experimentally in
a trapped atom-cavity system where a resonant cavity mode

FIG. 1. (Color online) Energy level scheme of a two-level system
driven by a laser producing photons of frequencies νa and νb into
a two-mode cavity. Cavity mode a is resonant with the electronic
transition as well as the classical driving field � while cavity mode b is
assisted through the vibrational quanta νv , corresponding to resonance
fluorescence and the Raman transition.

strongly couples to the atom and another off-resonant cavity
mode is weakly coupled to the atom. The coupling strength
gj = √

νj/2�ε0V for cavity mode j = a and b depends on
the respective frequency νj of the mode. For the same cavity
volume V , and νb < νa in the present trapped scheme, the
coupling strength for mode b is typically weaker, i.e., gb <

ga . This can also be realized in a quantum-dot–microcavity
system.

Based on the results derived in the Appendix, the Hamil-
tonian in the interaction picture [22] written in terms of three
detunings is

V̂ int = �σ̂ †(gaâe−i�at + gbb̂v̂e−i�bt + 1
2�e−i�t

) + H.c.,
(4)

where � = νl − ω21, �a = νa − ω21, and �b = νb + νv −
ω21 are the detunings of the driving field laser from the atom,
mode a, and mode b, respectively. If we set � = 0 in Eq. (4)
we get the Hamiltonian treated in earlier work [20].

The density operator ρ̂ of the system obeys the von
Neumann equation with Lindblad terms for the different decay
channels:

dρ̂

dt
= 1

i�
[Ĥ ,ρ̂] + 	

2
Lσ̂ [ρ̂] + κa

2
Lâ[ρ̂]

+κb

2
Lb̂[ρ̂] + κv

2
Lv̂[ρ̂], (5)

LX̂[ρ̂] = 2X̂ρ̂X̂† − X̂†X̂ρ̂ − ρ̂X̂†X̂, (6)

where X̂ = â, b̂, v̂, and σ̂ . Here 	 stands for the spontaneous
decay rate of the two-level system; κa , κb, and κv are the
cavity decay rates for mode a, mode b, and vibrational mode
v, respectively. In our numerical simulations, we have taken
the same cavity emission rate for mode a and mode b (i.e.,
κa = κb), for simplicity, as a characteristic parameter of the
cavity.

We focus on the case of the resonant driving field � = 0 and
it is convenient for computation purposes that the exponential
time-dependent terms can be transformed away. The Hamilto-
nian becomes �[�aâ

†â + �bb̂
†b̂] + �σ̂ †(gaâ + gbb̂v̂ + �).

III. PHOTON STATISTICS

The photon statistics are related to the atomic dynamics and
would be useful for understanding the atom-field dynamics in
the presence of vibrational motion. We computed the transient
values for the following quantities:

〈σ̂ (t)〉 = Tr{σ̂ ρ(t)},〈â(t)〉,〈b̂(t)〉,
〈σ̂ †σ̂ 〉(t) = ρee(t) = Tr{σ̂ †σ̂ ρ(t)},〈â†â〉(t),〈b̂†b̂〉(t).

The atom-field coupling mechanism can be understood by
studying the properties of the decaying cavity photons. Using
the quantum regression theorem, we evaluate

〈â†(t + τ )â(t)〉 = Tr{â†(τ )âρ(∞)}
and

〈b̂†(t + τ )b̂(t)〉 = Tr{b̂†(τ )bρ(∞)}
and obtain the spectrum Sa for the intracavity photon mode a

[similarly Sb(ω) for mode b] and the spectrum Satm(ω) of the
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FIG. 2. (Color online) Left and middle panels: Transients of coherences and populations versus normalized laser amplitude �/ga and gat .
(a) Imaginary part of the atomic coherence 〈σ̂ 〉 and real part of the photon number coherence 〈â〉 (here, Re〈σ̂ 〉 = 0 and Im〈â〉 = 0). (b) Atomic
population 〈σ̂ †σ̂ 〉 and number of cavity photons 〈â†â〉 for mode a. Right panel: (c) Power spectra of cavity mode a [Sa(ω)] and the light emitted
by the atom [Satom(ω)] vs normalized frequency ω/ga for various values of the laser drive amplitude �/ga . For all plots we used κ/ga = 20
(bad cavity limit), νa = ω21, νv = 0.2ω21, νl = ω21, and νb = ω21 − νv.

atomic emission:

Sa(ω) =
∫ ∞

−∞
〈â†(t + τ )â(t)〉e−iωτ dτ, (7)

Sb(ω) =
∫ ∞

−∞
〈b̂†(t + τ )b̂(t)〉e−iωτ dτ, (8)

Satm(ω) =
∫ ∞

−∞
〈σ̂ †(t + τ )σ̂ (t)〉e−iωτ dτ. (9)

IV. RESULTS AND DISCUSSIONS

The model Hamiltonian in Eq. (1) is more general compared
to the single-cavity mode-trapped ion system treated earlier
[23], where nearby off-resonant cavity modes always have
a probability to couple with the vibrational motion of the ion
through creation or annihilation of vibrational quanta. Here, we
include a resonant driving laser field to the two-level transition,
which is essentially a resonance fluorescence scheme. The
driving laser introduces the ac Stark shift and Autler-Townes
splitting on both levels, and hence the Mollow’s triplet [24]. In
addition to that, the second cavity mode stimulates the Raman
transition, assisted by the vibrational excitations, leading to
richer dynamics in the generation of nonclassical photons with
antibunching in the case of resonance fluorescence.

Since our results are mostly numerical [25], we have
exhaustively studied the dependence of the time evolution of
the quantum system and the spectra of emitted photons and
the cavity photons of the two modes on the coupling strengths
ga and gb, the driving laser amplitude �, and the cavity
dissipation rate κ , i.e., bad (κ � ga,gb) and good (κ � ga,gb)
cavity limits. The numerical results are shown in a series of

figures that vividly illustrate the transient quantum dynamics
and the resonance peaks in the spectra. For all the figures,
unless mentioned otherwise, we use the following parameters:
	/ga = 0.1, κa = κb = κ , κv = 0.2κ , and νv/ga = 0.2, with
�b = 0. We consider the initial state |na,nn,α〉 = |0〉a|0〉b|e〉
where there is no photon of a mode and b mode in the
surrounding and the atom is excited.

A. Bad cavity limit: κ � ga,gb

For the large cavity damping rate κ/ga = 20 (Fig. 2), we
notice that the power spectrum Sa(ω) of the cavity mode a is
quite identical to Satm(ω), with the Mollow’s triplets clearly
seen in the spectra beyond the threshold at around �/ga = 1
with the corresponding transient Rabi oscillations that are more
rapid as � increases. For finite gb (Fig. 3) the intracavity
spectrum of mode b has a single broad peak which does not
change much with � but increases with gb. For small � (Fig. 4)
the locations of the side peaks of the triplets are not affected by
the coupling gb; i.e., the spectrum is almost independent of gb.
However, there is a slight broadening as gb increases, causing
a drop in the resolution of the three peaks. It is interesting to
find that for large �/ga (Fig. 5), there are no side peaks. It is
just the main peak and no Mollow’s triplets.

B. Good cavity limit: κ � ga,gb

When the cavity loss is reduced to κ/ga = 0.08, more
photons are confined within the cavity than in the case of
large κ . Thus, the intracavity photon numbers 〈â†â〉 and 〈b̂†b̂〉
are significant and increase with � up to a saturation point
around � = 2ga but decrease with gb. Even in the absence of
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FIG. 3. (Color online) Transient quantities [panels (b) and (c)] and power spectra [panel (c)] versus normalized Rabi frequency �/ga when
the coupling strength of mode b is gb/ga = 1 with other parameters being the same as those in Fig. 2. Notice that we now have included the
population and power spectrum of mode b in panels (b) and (c), respectively.

FIG. 4. (Color online) Transient quantities [panels (a) and (b)] and power spectra [panel (c)] versus normalized coupling strength gb/ga of
mode b for weak laser drive �/ga = 1 with other parameters being the same as those in Fig. 2.
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FIG. 5. (Color online) Transient quantities [panels (a) and (b)] and power spectra [panel (c)] versus the coupling strength gb/ga of mode b

for strong field �/ga = 10 with other parameters being the same as those in Fig. 2.

mode b coupling (Fig. 6 ), the spectral peaks do not look like
the Mollow’s triplets. Instead, we have two small side peaks
that are independent of � superimposed with six other small
side peaks that depend on �.

The presence of mode b coupling gb/ga = 1 (Fig. 7) does
not affect the spectra of cavity mode a, Sa(ω) and Satm(ω). An
interesting feature is found for mode b where triplets in Sb(ω)
appear for �/ga < 1 but transform into the double Autler-
Townes peaks at π/4 as � increases. However, the triplets
cannot be regarded as the Mollow’s triplets as they do not
change with �. The figure also shows that the coupling of the
quantum system with the b mode is substantially increased
when the detuning from perfect Raman resonance (ω in the
spectra) is of the order of νv/ga = 0.2. The asymmetry in the
peaks is due to the small shift by the vibrational frequency νv .

For the weak laser field �/ga = 1 (Fig. 8), the dynamics are
governed by the quantum effects, the vacuum Rabi oscillations
have period determined by the couplings gb and ga . Here, the
spectra for mode a and the atom, Sa(ω) and Satm(ω), show
multiple peaks due to the vibrational sidebands. However,
mode b shows a single principal peak with the much weaker
sidebands.

For the larger laser field (Fig. 9), the multiple sidebands
disappear, leaving three distinctive spectra: triplets indepen-
dent of gb in Sa(ω), doublets that depend on gb in Sb(ω),
and a single peak in Satm(ω). The spectrum Sa(ω) for mode a

does not change with gb and remains as double Autler-Townes
peaks. In contrast, the spectrum of b mode, Sb(ω), changes

significantly. This shows that while mode a is subjected to
photon blockade, mode b is immune to the blockade effect.

C. Transient coherences

The transient behavior of the coherences is directly related
to the spectrum of the fields. The 〈â〉 and 〈σ̂ 〉, the coherences
of the photon numbers and the atomic coherence, oscillate
rapidly with time with a rate that is proportional to �. We
notice that in the bad cavity case of κ/ga = 20, the 〈σ̂ 〉
is predominantly imaginary while the 〈â〉 is predominantly
real, i.e., Re〈σ̂ 〉 � Im〈σ̂ 〉 and Re〈â〉 � Im〈â〉. The Im〈σ̂ 〉
and Re〈â〉 vary with time in quite a similar manner. These
characteristics are not shown in the good cavity case of
κ/ga = 0.08. We also find that the dynamics of the coherences
change noticeably when we use a smaller vibrational frequency
of νv = 0.02ω21(not shown); i.e., these quantities are more
sensitive to the vibrational frequency than the populations
and the spectra. From this, we learn that the beating of the
oscillations in Fig. 5 is because of the vibrational frequency
νv = 0.2ω21.

D. Transient populations

The vacuum Rabi oscillations can be clearly seen in the
transients of the populations 〈σ̂ †σ̂ 〉, 〈â†â〉, and 〈b̂†b̂〉 for
κ/ga = 0.08 and small �/ga < 1. The oscillations of 〈â†â〉
and 〈b̂†b̂〉 are in phase but both are out of phase relative to
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FIG. 6. (Color online) Left and middle panels: Transients of coherences and populations versus normalized laser amplitude �/ga and gat .
(a) Imaginary part of the atomic coherence 〈σ̂ 〉 and real part of the photon number coherence 〈â〉 (here, Re〈σ̂ 〉 = 0 and Im〈â〉 = 0). (b) Atomic
population 〈σ̂ †σ̂ 〉 and number of cavity photons 〈â†â〉 for mode a. Right panel: (c) Power spectra of cavity mode a [Sa(ω)] and the light emitted
by the atom [Satom(ω)] vs normalized frequency ω/ga for various values of laser drive amplitude �/ga . Here, we use a much smaller cavity
decay rate, κ/ga = 0.08 (good cavity limit). Other parameters are the same: 	/ga = 0.1, κa = κb = κ , κv = 0.2κ , νa = ω21, νv = 0.2ω21,
νl = ω21, and νb = ω21 − νv.

FIG. 7. (Color online) Transient quantities [panels (a) and (b)] and power spectra [panel (c)] versus normalized Rabi frequency �/ga where
the coupling strength of mode b is gb/ga = 1, with other parameters being the same as those in Fig. 6.
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FIG. 8. (Color online) Transient quantities [panels (a) and (b)] and power spectra [panel (c)] versus normalized coupling strength gb/ga of
mode b for weak field �/ga = 1, with other parameters being the same as those in Fig. 6.

FIG. 9. (Color online) Transient quantities [panels (a) and (b)] and power spectra [panel (c)] versus normalized coupling strength gb/ga of
mode b for strong field �/ga = 10, with other parameters being the same as those in Fig. 6.
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〈σ̂ †σ̂ 〉. These features are seen in both cases of gb = 0 (Fig. 6)
and gb = 1 (Fig. 7). These oscillations can also be seen in
the plot transient populations versus gb for small �/ga = 1
(Fig. 8 ). Beyond the threshold of the driving laser �/ga > 1
or larger �/ga = 10 (Fig. 9), the oscillations in the atomic
population 〈σ̂ †σ̂ 〉 become more rapid while the cavity photon
number 〈â†â〉 oscillates at a slower rate with a period of 2π for
this good cavity regime, and it is independent of gb. However,
the oscillations of 〈b̂†b̂〉 increase with gb. In contrast, in the
bad cavity limit (see Figs. 2, 3, 4, and 5), the oscillations are
damped with periods that reduce with �/ga , but with weak
dependence on gb.

While the laser determines the internal dynamics of the
atom, it has a negligible effect on the dynamical emission of
cavity photons in the good cavity limit due to the dominance
of the atom-cavity coupling strengths. This is connected to
the photon blockade effect which provides a qualitatively
contrasting feature for atoms in free space.

In the photon blockade effect, where coupling of a single
photon to the system hinders the coupling of the subsequent
photons, we have antibunching in the normalized second-
order correlation function g(2)(0) < 1 for a particular cavity
mode. Similarly, in the photon-induced tunneling regime, the
coupling of the initial photons favors the coupling of the
subsequent photons and leads to the condition g(2)(0) > 1.
This work can be extended to study the effects of various
parameters on g(2)

a (0) and g
(2)
b (0) as well as g

(2)
ab (0) with the

help of the numerical techniques.

V. CONCLUSIONS

We have studied a resonantly driven two-level system
harmonically trapped in a lossy bimodal cavity. Cavity mode
a and the classical driving field are resonantly coupled to
the electronic transition. Another cavity mode, b, is far off-
resonant from the electronic transition but is almost resonant
to a vibrational level of the trapped system, with a detuning
that can be varied. This scenario has usually been ignored in
standard cavity QED studies. The laser field has significant
effects on the spectra of the cavity photons, especially in the
bad cavity limit. For the weak field, the cavity mode b has a
significant mean photon number if the detuning is of the order
of its coupling strength gb. For the large detuning regime, the
cavity mode b becomes vanishingly small. The time evolutions
of the photon numbers are computed as well, showing two
types of oscillations, one due to the laser field and the other
due to the cavity coupling strength. The Rabi oscillations, due
to the laser, manifest only in the transient coherences and the
atomic populations, but not in the photon numbers. We have
shown how the power spectrum of mode a differs from the
spectrum of mode b and how they vary with the strengths of
atom-photon coupling and the driving laser field.

This study is important for semiconductor-microcavity as
well as for trapped-ion cavity experiments. In a microcavity,
the frequencies of the modes are distanced by an acoustic
frequency shift. For a quantum dot with a resonant transition
at an optical frequency, there exists a nearby cavity mode.
Temperature variation allows shifting of the exciton frequency

to exact resonance with the mode. According to the Debye
theory, frequencies of the phonons are of the same order as
the mode spacing. This means that an off-resonant cavity
mode with a frequency lower than the exciton transition
frequency can also excite the quantum dot resonantly when
assisted by a phonon excitation. All these are based on the
concept that the vibrational motion energy is used to stimulate
the Raman transition, as in stimulated Raman spectroscopy.
The vibrational degrees of freedom can also be explored in
other ways, for example, using dynamical methods on atomic
transient oscillations [26], the trap-loss rate method of atomic
collisions [27], and the free-expansion method by temperature
measurement [28].
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APPENDIX: DERIVATION OF THE HAMILTONIAN
IN THE LAMB-DICKE REGIME

For simplicity, we can decompose our system Hamiltonian
in the following three parts:

Ĥ = Ĥ0 + V̂ , (A1)

where the free field Hamiltonian is given by

Ĥ0 = �[ω21Â22 + νaâ
†â + νbb̂

†b̂ + νvv̂
†v̂]. (A2)

Now the interaction Hamiltonian is given by

V̂ = �ga(â†σ̂ + σ̂ †â) + �[αĝ(x̂)σ̂ †b̂ + H.c.]

+�σ̂ †(�e−iνl t + H.c.). (A3)

The first bracket in the above equation is the usual Jaynes-
Cummings interaction term between the trapped atom and
the cavity mode a, whereas the second term is for the
interaction between the cavity mode b (assisted by v) coupled
to the trapped atom. Here we have α = d21, where d21 is the
projection of the electric-dipole matrix element in the direction
of the electric-field amplitude.

For a harmonic trap potential, the position vector x̂ can be
expressed in terms of the annihilation and creation operators
v̂ and v̂†, respectively, in the x direction. So, we have

ĝ(x̂) = eikbx̂ ; kbx̂ = η(v̂ + v̂†), (A4)

where η is the Lamb-Dicke parameter and is given by
η = kb�x = �kb

�p
. By using the Baker-Campbell-Hausdorff

formula, we can rewrite ĝ(x̂) as follows:

ĝ(x̂) = e−η2/2eiηv̂†eiηv̂ = e−η2/2
∞∑

l,m=0

(iη)l+m

l!m!
v̂†l v̂m. (A5)

Transforming out the term νvv̂
†v̂ in Ĥ0 the expression for ĝ(x̂)

becomes trapped atom, and the third term is the laser field
interacting with the two-level atom

e−η2/2
∞∑

l,m=0

(iη)l+m

l!m!
v̂†l v̂me−i[m−l]νvt . (A6)
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Let us now assume that the sum of the cavity mode b and
the kth = m − l vibrational sideband of the trapped atom are
resonant with the atomic transition, νb = ω21 − kvv, where
k � 0. In the resolved sideband regime, one can perform a
vibrational-rotating-wave approximation. By choosing k � 0,

the above term, and transforming away the remaining terms
�[ω21Â22 + νbb̂

†b̂] in the free Hamiltonian with the unitary
operator Û0(t) = exp(−iĤ0t/�), the term αĝ(x̂)σ̂ †b̂ in the
interaction picture becomes

�ασ̂ †eiω21t b̂e−iνbt e−η2/2
∞∑

l,m=0

(iη)l+m

l!m!
v̂†l v̂me−i[m−l]νvt

= �ασ̂ †b̂eiω21t e−iνbt [f̂k

(
v̂†v̂,η

)
v̂ke−ikνv t ], (A7)

where the operator function f̂k(v̂†v̂,η) is defined by

f̂k(v̂†v̂,η) = e−η2/2
∞∑
l=0

(iη)2l+k

l!(l + k)!
v̂†l v̂l . (A8)

In particular for the first vibrational sideband (k = 1), we have

�ασ̂ †b̂[f̂1(v̂†v̂,η)v̂e−iνv t ]ei(ω21−νb)t

= �ασ̂ †b̂

[
e−η2/2

∞∑
l=0

(iη)2l+1

l!(l + 1)!
v̂†l v̂l v̂

]
ei(ω21−νb−νv )t . (A9)

For sufficiently small η we have the Lamb-Dicke regime where
only the lowest (zeroth)-order term is kept:

�iηασ̂ †b̂v̂ei(ω21−νb−νv )t . (A10)

The first-order term gives �α(iη)3σ̂ †b̂v̂†v̂2e−η2/2ei(ω21−νb−νv )t

and therefore can be neglected.
On collecting all those terms for the three parts of V̂ , we

have the interaction Hamiltonian in the interaction picture:

V̂ int = �σ̂ †
(

gaâei(ω21−νa )t + gbb̂v̂ei(ω21−νb−νv )t

+�ei(ω21−νl )t

)
+ H.c.,

(A11)
where gb = iηα.
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