
PHYSICAL REVIEW A 94, 033629 (2016)

Double-quantum spin vortices in SU(3) spin-orbit-coupled Bose gases
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We show that double-quantum spin vortices, which are characterized by doubly quantized circulating spin
currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit-coupled Bose gases.
It is found that the SU(3) spin-orbit coupling and spin-exchange interaction play important roles in determining
the ground-state phase diagram. In the case of effective ferromagnetic spin interaction, the SU(3) spin-orbit
coupling induces a threefold degeneracy to the magnetized ground state, while in the antiferromagnetic spin
interaction case, the SU(3) spin-orbit coupling breaks the ordinary phase rule of spinor Bose gases and allows
the spontaneous emergence of double-quantum spin vortices. This exotic topological defect is in stark contrast
to the singly quantized spin vortices observed in existing experiments and can be readily observed by the current
magnetization-sensitive phase-contrast imaging technique.
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I. INTRODUCTION

The recent experimental realization of synthetic spin-orbit
(SO) coupling in ultracold quantum gases [1–10] is considered
as an important breakthrough, as it provides new possibilities
for ultracold quantum gases to be used as quantum simulation
platforms and paves a new route towards exploring novel states
of matter and quantum phenomena [11–19]. It has been found
that the SO coupling can not only stabilize various topological
defects, such as half-quantum vortex, Skyrmion, composite
soliton, and chiral domain wall, contributing to the design and
exploration of new functional materials [20–23], but also lead
to entirely new quantum phases, such as magnetized phase
and stripe phase [24–26], providing support for the study of
novel quantum dynamical phase transitions [27,28] and exotic
supersolid phases [29–31].

All the intriguing features mentioned above are based
on the characteristics that the SO coupling (either of the
NIST [1], Rashba [24], or Weyl [32] types) makes the internal
states coupled to their momenta via the SU(2) Pauli matrices.
However, if the (pseudo)spin degree of freedom involves more
than two states, the SU(2) spin matrices cannot describe
completely all the couplings among the internal states. For
example, a direct transition between the states |1〉 and | − 1〉
is missing in a three-component system [24,33]. From this
sense, an SU(3) SO coupling with the spin operator spanned
by the Gell-Mann matrices is more effective in describing the
internal couplings among three-component atoms [33,34]. The
SU(3) SO-coupled system has no analog in ordinary condensed
matter systems and hence may lead to new quantum phases
and topological defects.

In this article, we show that a type of topological defects,
double-quantum spin vortices, can exist in the ground states
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of SU(3) SO-coupled Bose-Einstein condensates (BECs). It is
found that the SU(3) SO coupling leads to two distinct ground-
state phases, a magnetized phase or a lattice phase, depending
on the spin-exchange interaction being ferromagnetic or
antiferromagnetic. In the magnetized phase, the SU(3) SO
coupling leads to a ground state with threefold degeneracy, in
stark contrast to the SU(2) case where the degeneracy is two,
and thus may offer insights into quantum dynamical phase
transitions [27]. In the lattice phase, the SU(3) SO coupling
breaks the ordinary phase requirement 2w0 = w1 + w−1 for
ordinary spinor BECs, where wi is the winding number of
the ith spin component [35–37] and induces three types of
exotic vortices with cores filled by different magnetizations.
The interlaced arrangement of these vortices leads to the
spontaneous formation of multiply quantized spin vortices
with winding number 2. This type of topological defects
can be observed in experiments using magnetization-sensitive
phase-contrast imaging techniques.

II. SU(3) SPIN-ORBIT COUPLING

We consider the F = 1 spinor BECs with SU(3) SO cou-
pling. Using the mean-field approximation, the Hamiltonian
can be written in the Gross-Pitaevskii form as

H =
∫

dr
[
�†

(
−�

2∇2

2m
+ Vso

)
� + c0

2
n2 + c2

2
|F|2

]
, (1)

where the order parameter � = [�1(r),�0(r),�−1(r)]� is
normalized with the total particle number N = ∫

dr�†�. The
particle density is n = ∑

m=1,0,−1 �∗
m(r)�m(r), and the spin

density vector F = (Fx,Fy,Fz) is defined by Fν(r) = �†fν�,
with f = (fx,fy,fz) being the vector of the spin-1 matrices
given in the irreducible representation [35,38–40]. The SO
coupling term is chosen as Vso = κλ · p, where κ is the
spin-orbit coupling strength, p = (px,py) represents two-
dimensional (2D) momentum, and λ = (λx,λy) is expressed
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FIG. 1. Scheme for creating SU(3) spin-orbit coupling in spinor
BECs. (a) Laser geometry. Three laser beams with different frequen-
cies and polarizations, intersecting at an angle of 2π/3, illuminate
the cloud of atoms. (b) Level diagram. Each of the three Raman
lasers dresses one hyperfine Zeeman level from |F = 1,mF = 1〉,
|F = 1,mF = 0〉, and |F = 1,mF = −1〉 of the 87Rb 5S1/2, F = 1
ground state. δ1, δ2, and δ3 correspond to the detuning in the Raman
transitions. (c) Triple-well dispersion relation. The SU(3) spin-orbit
coupling induces three discrete minima of the single-particle energy
band on the vertices of an equilateral triangle in the kx-ky plane.
(d) Projection of the first energy band on a 2D plane. Units with
� = m = 1 are used for simplicity.

in terms of λx = λ(1) + λ(4) + λ(6) and λy = λ(2) − λ(5) + λ(7),
with λ(i)(i = 1, . . . 8) being the Gell-Mann matrices, i.e., the
generators of the SU(3) group [41]. Note that the SU(3) SO
coupling term in the Hamiltonian involves all the pairwise
couplings between the three states. This is distinct from the pre-
viously discussed SU(2) SO coupling in spinor BECs, where
the states �1(r) and �−1(r) are coupled indirectly [24,42,43].
The parameters c0 and c2 describe the strengths of density-
density and spin-exchange interactions, respectively.

The Hamiltonian with SU(3) SO coupling can be realized
using a similar method of Raman dressing as in the SU(2)
case [1,9,44]. As shown in Fig. 1(a), three laser beams with
different polarizations and frequencies, intersecting at an angle
of 2π/3, are used for the Raman coupling. Each of the
three Raman lasers dresses one hyperfine spin state from
the F = 1 manifold (|F = 1,mF = 1〉, |F = 1,mF = 0〉, and
|F = 1,mF = −1〉) to the excited state |e〉 [see Fig. 1(b)].
When the standard rotating wave approximation is used and the
excited state is adiabatically eliminated due to far detuning, one
can obtain the effective Hamiltonian in Eq. (1), as discussed
in Appendix A.

By diagonalizing the kinetic energy and SO coupling terms,
we can obtain the single-particle energy spectrum, which
can provide useful information about the ground state of
Bose condensates. For the SU(2) case, it is known that the
single-particle spectrum with the NIST-type SO coupling
acquires either a single or two minima, depending on the
strength of the Raman coupling [1], while for the case of
Rashba type there exist an infinite number of minima locating
on a continuous ring in momentum space [45]. For the SU(3)
SO coupling discussed here, we find that there are in general
three discrete minima residing on the vertices of an equilateral
triangle [see Figs. 1(c)–1(d)]. This unique property of the
energy band implies the possibility of a threefold-degenerate
many-body magnetized state [27] or a topologically nontrivial
lattice state, depending on the choices among the three minima
made by the many-body interactions.

III. PHASE DIAGRAM

Next we discuss the phase diagram of the many-body
ground states. For the case of SU(2) SO coupling, it is
shown that two many-body ground states, the magnetized
state and stripe state, can be stabilized in a homogeneous
system [7,24,26]. Although the Rashba SO coupling provides
infinite degenerate minima in the single-particle spectrum, a
many-body ground state condensed in one or two points in
momentum space is always energetically favorable due to
the presence of spin-exchange interaction [24]. As a result,
a lattice state with the condensates occupying three or more
momentum points for SU(2) SO coupling is unstable, unless a
strong harmonic trap is introduced [21,42,46].

For the present case of SU(3) SO coupling, we first
analytically calculate the possible ground states using a
variational approach with a trial wave function � = α1�1 +
α2�2 + α3�3, where

�1 = 1√
3

⎛
⎝1

1
1

⎞
⎠e−i2κx, (2a)

�2 = 1√
3

⎛
⎝e−i π

3

ei π
3

eiπ

⎞
⎠eiκ(x−√

3y), (2b)

�3 = 1√
3

⎛
⎝ ei π

3

e−i π
3

eiπ

⎞
⎠eiκ(x+√

3y), (2c)

correspond to the many-body states with all particles con-
densing on one of the three minima of the single-particle
spectrum, and αi=1,2,3 are expansion coefficients. Substituting
Eqs. (2a)–(2c) into the interaction energy functional

E =
∫

dr
(

c0

2
n2 + c2

2
|F|2

)
, (3)

one obtains

E

N
=

(
c0

2
+ 4c2

9

)
n̄ − 7c2

9n̄

∑
i �=j

|αi |2|αj |2, (4)

where n̄ = |α1|2 + |α2|2 + |α3|2 is the mean particle density.
By minimizing the interaction energy with respect to the

033629-2



DOUBLE-QUANTUM SPIN VORTICES IN SU(3) SPIN- . . . PHYSICAL REVIEW A 94, 033629 (2016)

FIG. 2. Two distinct phases present in SU(3) spin-orbit-coupled
BECs. (a)–(d) The topologically nontrivial lattice phase for antifer-
romagnetic spin interaction (c2 > 0) with (a) the density and phase
of �1 represented by heights and colors, (b) the phase within one unit
cell showing the positions of vortices (white circles) and antivortices
(black circles), (c) the corresponding momentum distributions, and
(d) the structural schematic drawing of the phase separation. (e)–(f)
The threefold-degenerate magnetized phase for ferromagnetic spin
interaction (c2 < 0) with (e) the density and phase distributions of �1

and (f) the corresponding momentum distributions.

variation of |αi |2, one finds that the spin-exchange interaction
plays an important role in determining the phase diagram.

When c2 > 0, it favors |α1|2 = |α2|2 = |α3|2 = n̄/3, indi-
cating that the ground state is a triangular lattice phase with
an equally weighted superposition of the three single-particle
minima. On the other hand, as c2 < 0, the system prefers a
state with either |α1|2 = n̄, |α2|2 = |α3|2 = 0, or |α2|2 = n̄,
|α1|2 = |α3|2 = 0, or |α3|2 = n̄, |α1|2 = |α2|2 = 0, indicating
that the ground state occupies one single minimum in the
momentum space and corresponds to a threefold-degenerate
magnetized phase.

Note that the variational wave function equations (2a)–(2c)
is a good starting point as the SO coupling is strong enough to
dominate the chemical potential. For the case with weak SO
coupling, one must rely on numerical simulations to determine
the many-body ground state. In such a situation, we find a
stripe phase with two minima in momentum space occupied
for c2 � κ2, which will be discussed latter.

The many-body ground states can be numerically obtained
by minimizing the energy functional associated with the
Hamiltonian Eq. (1) via the imaginary time evolution method.
It is found that the numerical results are consistent with the
analytical analysis discussed above for rather weak interaction
with c2 � κ2. Figure 2 illustrates the two possible ground
states of spinor BECs with SU(3) SO coupling. When c2 >

0, the three components are immiscible and arranged as
an interlaced triangular lattice with the spatial translational
symmetry spontaneously broken [see Figs. 2(a)–2(d)]. This
lattice is topologically nontrivial and embedded by vortices
and antivortices as shown in Fig. 2(b). From this result, we
conclude that a lattice phase can be stabilized in a uniform
SU(3) SO-coupled BEC, which is in clear contrast to the SU(2)
case where a strong harmonic trap is required [21,42,46]. More
details on the structure of vortices as well as their unique spin

FIG. 3. (a) Energy comparison between the lattice and stripe
phases. The energy difference 	E between the numerical simulation
and the variational calculation are shown by solid (lattice state) and
dashed (stripe state) lines. (b)–(d) The ground-state density, phase,
and momentum distributions of the stripe phase with the parameters
c2 = 20κ2 and c0 = 10c2.

configurations will be investigated later. On the other hand,
as c2 < 0, the three components are miscible, and the system
forms a magnetized phase with the spatial transitional sym-
metry preserved but the time-reversal symmetry broken [see
Figs. 2(e)–2(f)]. This magnetized phase occupies one of the
three minima of the single-particle spectrum by spontaneous
symmetry breaking and hence is threefold degenerate instead
of doubly degenerate in the SU(2) case [26,27].

For strong antiferromagnetic spin interaction with c2 � κ2,
however, a stripe phase is identified with two of three minima
occupied in the momentum space. We take the states with
two or three minima occupied in the momentum space as trial
wave functions and perform an imaginary time evolution to
find their respective optimized ground-state energy. A typical
set of results is summarized in Fig. 3(a), showing the energy
comparison with different values of interatomic interactions.
Obviously, one finds that the stripe phase will have lower
energy than the lattice phase when the interatomic interaction
exceeds a critical value. Due to the finite momentum in
vertical direction of the stripe [see Fig. 3(d)], both the spatial
translational and time-reversal symmetries are broken [see
Figs. 3(b) and 3(c)]. This is distinct from the stripe phase
induced by SU(2) SO coupling, where the time-reversal
symmetry is preserved [24].

IV. PHASE REQUIREMENT

The vortex configuration of spinor BECs depends on the
phase relation between the three components. We next discuss
the influence of SO coupling on the phase requirement of the
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vortex configuration. We first assume that the spinor order
parameter of a vortex in the polar coordinate (r,θ ) can be
described as

ψj (r,θ ) = φje
iwj θ+αj , (5)

where j = 0,±1 and φj � 0.

A. Without spin-orbit coupling

In the absence of SO coupling, the phase-dependent terms
in the Hamiltonian are

H phase = E
phase
kin + E

phase
int

= −1

2

∫
�∗ 1

r2

∂2

∂θ2
�dr + 2c2

∫
Re

(
ψ∗

1 ψ∗
−1ψ

2
0

)
dr,

(6)

where the first term results from the kinetic energy and
the second from the spin-exchange interaction. Substituting
Eq. (5) into Eq. (6), one obtains

E
phase
kin =

∑
j=1,0,−1

w2
j

∫
πφ2

j

r
dr, (7)

E
phase
int = 2c2

∫
φ1φ−1φ

2
0rdr

∫
cos [(w1 − 2w0 + w−1)θ + (α1 − 2α0 + α−1)]dθ. (8)

It is easy to read from Eq. (7) that the system favors small
winding numbers energetically. Moreover, from Eq. (8) the
energy minimization requires the winding number and phase
to satisfy the following relations:

w1 − 2w0 + w−1 = 0, (9a)

α1 − 2α0 + α−1 = nπ, (9b)

where n is odd for c2 > 0 and even for c2 < 0. The
phase requirement of Eq. (9a) indicates that the following
types of winding combination, such as 〈±1,×,0〉, 〈0,×,±1〉,
〈±1,0,∓1〉, 〈±1,±1,±1〉, 〈±2,±1,0〉, and 〈0,±1,±2〉, are
allowed in a spinor BEC, where the symbol “×” denotes the
absence of the �0 component.

B. With SU(2) spin-orbit coupling

For the case of SU(2) SO coupling, we take the Rashba type
as an example and write the Hamiltonian as

Esoc =
∫

κψ†

⎛
⎝ 0 −i∂x − ∂y 0
−i∂x + ∂y 0 −i∂x − ∂y

0 −i∂x + ∂y 0

⎞
⎠ψdr,

(10)

where ψ = [ψ1,ψ0,ψ−1]�. Substituting Eq. (5) into Eq. (10),
one can obtain

Esoc =
∫

drdθ [(φ0r∂rφ1 − w1φ0φ1)ei[(w1−w0+1)θ+(α1−α0− π
2 )]

− (φ1r∂rφ0 + w0φ1φ0)e−i[(w1−w0+1)θ+(α1−α0− π
2 )]

+ (φ0r∂rφ−1 + w−1φ0φ−1)ei[(w−1−w0−1)θ+(α−1−α0− π
2 )]

− (φ−1r∂rφ0 − w0φ−1φ0)e−i[(w−1−w0−1)θ+(α−1−α0− π
2 )]].

(11)

In order to minimize the SO coupling energy, it is preferred
that

w1 − w0 + 1 = 0, (12a)

w−1 − w0 − 1 = 0, (12b)

α1 − α0 − π

2
= mπ, (12c)

α−1 − α0 − π

2
= nπ. (12d)

Then the SO coupling energy is rewritten as

Esoc = 2π

∫
[φ0r∂rφ1−φ1r∂rφ0−(w1+w0)φ0φ1]dr cos mπ

+ 2π

∫
[φ0r∂rφ−1 − φ−1r∂rφ0

+ (w−1 + w0)φ0φ−1]dr cos nπ, (13)

where m and n are odd or even, which can be determined
by minimizing the energy expressed in Eq. (13). It is found
that the SU(2) SO coupling does not violate the ordinary
requirement on the winding combination in Eq. (9a) but
introduces further requirements in Eqs. (12a) and (12b). As
a result, while 〈−1,0,1〉, 〈−2,−1,0〉, and 〈0,1,2〉 are still
allowed, some winding combinations such as 〈±1,±1,±1〉,
〈±1,×,0〉, 〈0,×,±1〉, 〈1,0,−1〉, 〈2,1,0〉, and 〈0,−1,−2〉 are
forbidden. Obviously, one can see that the SO coupling breaks
the chiral symmetry, thus may lead to chiral spin textures.

C. With SU(3) spin-orbit coupling

For the case of SU(3) SO coupling, the effective Hamilto-
nian can be written as

Esoc=
∫

κψ†

⎛
⎝ 0 −i∂x − ∂y −i∂x + ∂y

−i∂x + ∂y 0 −i∂x − ∂y

−i∂x − ∂y −i∂x + ∂y 0

⎞
⎠ψdr.

(14)

Substituting Eq. (5) into Eq. (14), we get

Esoc =
∫

drdθ [(φ0r∂rφ1 − w1φ0φ1)ei[(w1−w0+1)θ+(α1−α0− π
2 )]

− (φ1r∂rφ0 + w0φ1φ0)e−i[(w1−w0+1)θ+(α1−α0− π
2 )]

+ (φ0r∂rφ−1 + w−1φ0φ−1)ei[(w−1−w0−1)θ+(α−1−α0− π
2 )]

− (φ−1r∂rφ0 − w0φ−1φ0)e−i[(w−1−w0−1)θ+(α−1−α0− π
2 )]

+ (φ−1r∂rφ1 + w1φ−1φ1)ei[(w1−w−1−1)θ+(α1−α−1− π
2 )]

− (φ1r∂rφ−1−w−1φ1φ−1)e−i[(w1−w−1−1)θ+(α1−α−1− π
2 )]].

(15)

By minimizing the SO coupling energy, one obtains the
following relations:

w1 − w0 + 1 = 0, (16a)

w−1 − w0 − 1 = 0, (16b)
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w1 − w−1 − 1 = 0, (16c)

α1 − α0 − π

2
= mπ, (16d)

α−1 − α0 − π

2
= nπ, (16e)

α1 − α−1 − π

2
= lπ. (16f)

Then the SO coupling energy can be rewritten as

Esoc = 2π

∫
[φ0r∂rφ1 − φ1r∂rφ0 − (w1 +w0)φ0φ1]dr cos mπ

+ 2π

∫
[φ0r∂rφ−1 − φ−1r∂rφ0

+ (w−1 + w0)φ0φ−1]dr cos nπ

+ 2π

∫
[φ−1r∂rφ1 − φ1r∂rφ−1

+ (w1 + w−1)φ−1φ1]dr cos lπ, (17)

where m, n, and l are odd or even, which can be determined
from Eq. (17). However, the three winding requirements
equations (16a)–(16c) cannot be satisfied simultaneously. Thus
the SU(3) SO coupling may choose two out of the three
winding requirements for the following three cases:

Case I:

w1 − w0 + 1 = 0, (18a)

w−1 − w0 − 1 = 0, (18b)

α1 − α0 − π

2
= mπ, (18c)

α−1 − α0 − π

2
= nπ. (18d)

Case II:

w1 − w0 + 1 = 0, (19a)

w1 − w−1 − 1 = 0, (19b)

α1 − α0 − π

2
= mπ, (19c)

α1 − α−1 − π

2
= lπ. (19d)

Case III:

w−1 − w0 − 1 = 0, (20a)

w1 − w−1 − 1 = 0, (20b)

α−1 − α0 − π

2
= nπ, (20c)

α1 − α−1 − π

2
= lπ. (20d)

For case I, the winding combination 〈−1,0,1〉 is allowed,
while 〈1,0,−1〉 is not allowed, indicating the chiral symmetry
is broken. For case II and case III, one can find that the SU(3)
SO coupling breaks the ordinary requirement on the winding
combination in Eq. (9a); thus new winding combinations, such
as 〈0,1,−1〉 and 〈1,−1,0〉, are possible.

V. VORTEX CONFIGURATIONS

The vortex configurations of spinor BECs can be classi-
fied according to the combination of winding numbers and
the magnetization of vortex core [35–37]. For example, a
Mermin-Ho vortex has winding combination 〈±2,±1,0〉 with
a ferromagnetic core, where the plus and minus signs represent
different chirality of the vortices [47], and the expression
of 〈w1,w0,w−1〉 indicates that the components of �1, �0,
and �−1 in the wave function acquire winding numbers
of w1, w0, and w−1, respectively. Using this notation, a
polar-core vortex has winding combination 〈±1,0,∓1〉 with an
antiferromagnetic core, and a half-quantum vortex has winding
combination 〈±1,×,0〉 with a ferromagnetic core, where the
symbol “×” denotes the absence of the �0 component.

In the lattice phase induced by the SU(3) SO coupling with
antiferromagnetic spin interaction, there exists three types of
vortices: one is a polar-core vortex with winding combination
〈−1,0,1〉, and the other two are ferromagnetic-core vortices
with winding combinations 〈1,−1,0〉 and 〈0,1,−1〉 [see
Fig. 4(a)]. However, the vortex configurations with opposite
chirality of each type, such as 〈1,0,−1〉, 〈−1,1,0〉, and
〈0,−1,1〉, are not allowed, because the chiral symmetry
is intrinsically broken in SU(3) SO-coupled systems, as
discussed in Sec. IV.

Surprisingly, one finds that the two types of ferromagnetic-
core vortices 〈1,−1,0〉 and 〈0,1,−1〉 violate the conven-
tional phase requirement 2w0 = w1 + w−1 for ordinary spinor

FIG. 4. Vortex configurations in antiferromagnetic spinor BECs
with SU(3) spin-orbit coupling. (a) Vortex arrangement among the
three components of the condensates. One can identify three types of
vortices, including a polar-core vortex with winding combination
〈−1,0,1〉 (blue line) and two ferromagnetic-core vortices with
winding combinations 〈1,−1,0〉 (green line) and 〈0,1,−1〉 (red
line). (b)–(d) Spherical-harmonic representation of the three types of
vortices. The surface plots of |�(θ,φ)|2 for (b) the polar-core vortex
〈−1,0,1〉, (c) the ferromagnetic-core vortex 〈1,−1,0〉, and (d) the
ferromagnetic-core vortex 〈0,1,−1〉 are shown with the colors rep-
resenting the phase of �(θ,φ). Here, �(θ,φ) = ∑1

m=−1 Y1m(θ,φ)�m,
and Y1m is the rank-1 spherical-harmonic function.
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BECs [35–37]. This can be understood by noting that the
relative phase among different wave-function components
are no longer uniquely determined by the spin-exchange
interaction but also affected by the SU(3) SO coupling,
as qualitatively explained in Sec. IV. Thus, the interlaced
arrangement of the three types of vortices forms a class of
vortex lattice which has no analog in systems without SO
coupling.

The configurations of the three types of vortices induced
by the SU(3) SO coupling with antiferromagnetic interaction
are essentially different from those usually observed in ferro-
magnetic spinor BECs, as can be illustrated by the spherical-
harmonic representation [35]. From Figs. 4(b)–4(d) one can
find that for the polar-core vortex, the antiferromagnetic
order parameter varies continuously everywhere, while for
the ferromagnetic-core vortex, the magnetic order parameter
acquires a singularity at the vortex core. In contrast, in
the ordinary ferromagnetic spinor BECs, the ferromagnetic
order parameter varies continuously everywhere for the
ferromagnetic-core vortex but has a singularity at the core
for the polar-core vortex [35].

VI. DOUBLE-QUANTUM SPIN VORTICES

A spin vortex is a complex topological defect resulting
from symmetry breaking, characterized by zero net mass
current and quantized spin current around an unmagnetized
core [35,38,48–51]. It is not only different from the magnetic
vortex found in magnetic thin films [52–54], but also from
the 2D Skyrmion [55,56] due to the existence of singularity
in the spin textures [57]. A single-quantum spin vortex with
the spin current showing one quantum of circulation has been
experimentally observed in ferromagnetic spinor BECs [58].
Multiquantum spin vortices with l (l � 2) quanta circulating
spin current, however, are considered to be topologically
unstable and have not been discovered yet [35].

A particularly important finding of our present work is that
the polar-core vortex in the lattice phase has a spin current
with two quanta of circulation around the unmagnetized core
and hence can be identified as a double-quantum spin vortex.
Figure 5 presents the transverse magnetization F+ = Fx +
iFy , longitudinal magnetization Fz, and amplitude of the total
magnetization |F| in the lattice phase, which are experimen-
tally observable by a magnetization-sensitive phase-contrast
imaging technique [59]. From these results, one can find
two distinct types of topological defects: the double-quantum
spin vortex (DSV) and half-Skyrmion (HS) [60,61], which
correspond to the polar-core vortex with winding combinations
〈−1,0,1〉 and the ferromagnetic-core vortex with winding
combinations 〈1,−1,0〉 or 〈0,1,−1〉, respectively. In particular,
for the double-quantum spin vortex, the core is unmagnetized
and the orientation of the magnetization along a closed path
surrounding the core acquires a rotation of 4π . This finding
indicates that a regular lattice of multiquantum spin vortices
can emerge spontaneously in antiferromagnetic spinor BECs
with SU(3) SO coupling. By exploring the effect of a small but
finite temperature, we confirm that the double-quantum spin
vortices are robust against thermal fluctuations and hence are
observable in experiments, as discussed in Appendix B.

FIG. 5. Double-quantum spin vortex in antiferromagnetic spinor
BECs with SU(3) spin-orbit coupling. (a) Spatial maps of the
transverse magnetization with colors indicating the magnetization
orientation. (b) Longitudinal magnetization. (c) Amplitude of the total
magnetization |F|. Two kinds of topological defects, double-quantum
spin vortex (DSV) and half-Skyrmion (HS) are marked by big and
small circles, respectively. The transverse magnetization orientation
argF+ along a closed path (indicated by big circles) surrounding the
unmagnetized core shows a net winding of 4π , revealing the presence
of a double-quantum spin vortex.

The emergence of spin current with two quanta of circu-
lation can be analytically understood by expanding the wave
function obtained by the variational methods around the center
of a double-quantum spin vortex. We suppose that the wave
function of the lattice phase is written as

ψ = 1

3

⎛
⎝1

1
1

⎞
⎠e−i2κx + 1

3

⎛
⎝e−i π

3

ei π
3

eiπ

⎞
⎠eiκ(x−√

3y)

+ 1

3

⎛
⎝ ei π

3

e−i π
3

eiπ

⎞
⎠eiκ(x+√

3y). (21)

Then one can expand ψ around the center of a vortex with
winding number 〈−1,0,1〉, e.g., at the location of (x,y) =
[0,π/(3

√
3κ)]. Substituting x = ε cos θ and y = π/(3

√
3κ) +

ε sin θ into ψ and expanding with respect to the infinitesimal
ε, we obtain

ψ =

⎛
⎜⎝

−iκe−iθ ε − 1
2κ2ei2θ ε2

1 − κ2ε2

−iκeiθ ε − 1
2κ2e−i2θ ε2

⎞
⎟⎠ + O(ε3). (22)

Notice that the second-order terms with e±i2θ have no
essential influence on the phases; thus the winding number
for each component can still be represented as 〈−1,0,1〉
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FIG. 6. (a)–(c) Phases of the polar-core vortex described by the
wave function in Eq. (22), displaying the winding combination
〈−1,0,1〉. (d) Direction of the transverse magnetization, indicating
the emergence of spin current with two quanta of circulation.

[see Figs. 6(a)–6(c)]. However, since the first-order terms are
canceled out when calculating the transverse magnetization
F+ = √

2[ψ∗
1 ψ0 + ψ∗

0 ψ−1], the second-order terms play a
dominant role, leading to the emergence of spin current with
two quanta of circulation around an unmagnetized core,

F+ ∝ ε2e−i2θ , (23)

as illustrated in Fig. 6(d).

VII. CONCLUSION

To summarize, we have mapped out the ground-state phase
diagram of SU(3) spin-orbit-coupled Bose-Einstein conden-
sates. Several phases are discovered, including a threefold-
degenerate magnetized phase, a vortex lattice phase, as well
as a stripe phase with time-reversal symmetry broken. We
also investigate the influence of SU(3) spin-orbit coupling
on the phase requirement of the vortex configuration and
demonstrate that the SU(3) spin-orbit coupling breaks the
ordinary phase rule of spinor Bose-Einstein condensates and
allows the spontaneous emergence of stable double-quantum
spin vortices. As a member in the family of topological defects,
the double-quantum spin vortex has never been discovered in
any other systems. Our work deepen the understanding of
spin-orbit phenomena and will attract extensive interest from
scientists in the cold atom community.
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APPENDIX A: DERIVING THE EFFECTIVE
HAMILTONIAN

We consider spinor Bose-Einstein condensates (BECs)
illuminated by three Raman laser beams which couple two
of the three hyperfine spin components, respectively, as
illustrated in Figs. 1(a) and 1(b) of the main text. The internal
dynamics of a single particle under this scheme can be
described by the Hamiltonian

H =
3∑

j=1

(
�

2k2

2m
+ εj

)
|j 〉〈j | +

n∑
l=1

El|l〉〈l|

+
3∑

j=1

n∑
l=1

[�je
i(Kj ·r+ωj t)Mlj |l〉〈j 〉 + H.c.], (A1)

where �k is the momentum of the particles, and εj and El are
the energies of the ground and excited states, respectively.
In the atom-light coupling term, Kj and ωj are the wave
vectors and frequencies of the three Raman lasers, with �j the
corresponding Rabi frequencies, and Mlj is the matrix element
of the dipole transition. One can see that this Hamiltonian is
similar to that used in the scheme for creating 2D spin-orbit
(SO) coupling in ultracold Fermi gases [9], and thus can be
readily realized in Bose gases. Taking the standard rotating
wave approximation to get rid of the time dependence of the
Hamiltonian, and adiabatically eliminating the excited states
for far detuning, the Hamiltonian can be rewritten as

H =

⎛
⎜⎝

�
2(k+K1)2

2m
+ δ1 �12 �13

�21
�

2(k+K2)2

2m
+ δ2 �23

�31 �32
�

2(k+K3)2

2m
+ δ3

⎞
⎟⎠,

(A2)

where δ1, δ2, and δ3 are the two-photon detunings, and the real
parameters �jj ′ = �j ′j describe the Raman coupling strength
between hyperfine ground states |j 〉 and |j ′〉, which can be
expressed as [9,62]

�jj ′ = −
√

Ij Ij ′

�2cε0

∑
m′

〈j ′|erq |m′〉〈m′|erq |j 〉
	

. (A3)

Here, Ij is the intensity of each Raman laser, and 	 denotes
the one-photon detuning. Other parameters c, ε0, and e in
Eq. (A3) are the speed of light, permittivity of vacuum, and
elementary charge, respectively. In Eq. (A3), q = x,y,z is an
index labeling the components of r in the spherical basis, and
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|m′〉 describes the middle excited hyperfine spin state in the
Raman process. For simplicity, we assume � = �12 = �13 =
�23, which can always be satisfied by adjusting the system
parameters, such as the laser intensity.

By introducing a unitary transformation

U = 1√
3

⎛
⎝ 1 1 1

−e−i π
3 −ei π

3 1
−ei π

3 −e−i π
3 1

⎞
⎠ (A4)

and a time-dependent unitary transformation U (t) =
ei(

�
2K2

0
2m

+δ2−�)t , the effective Hamiltonian becomes

H =

⎛
⎜⎝

�
2k2

2m
+ δ1 − δ2 0 0

0 �
2k2

2m
0

0 0 �
2k2

2m
+ δ3 − δ2 + 3�

⎞
⎟⎠

+Vso, (A5)

where the laser vectors K1 = −K0êy , K2 =
√

3K0
2 êx + K0

2 êy ,

and K3 = −
√

3K0
2 êx + K0

2 êy are defined with K0 = 2mκ/�.
The spin-dependent uniform potential induced by the Raman
detuning δi and Raman coupling strength � can be eliminated
by applying a Zeeman field, leading to

H =

⎛
⎜⎝

�
2k2

2m
+ ε1 0 0

0 �
2k2

2m
0

0 0 �
2k2

2m
+ ε2

⎞
⎟⎠ + Vso, (A6)

where ε1 = δ1 − δ2 + 	1 + 	2 and ε2 = δ3 − δ2 − 	1 +
	2 + 3�, with 	1 and 	2 denoting the linear and quadratic
Zeeman energy, respectively. By tuning the detuning the
Zeeman energy and the Raman coupling strength, one can
reach the regime 	1 = δ3−δ1+3�

2 and 	2 = δ2 − δ1+δ3+3�

2 ,
which satisfies ε1 = ε2 = 0. Then we have

H = �
2k2

2m
+ Vso, (A7)

which is the single-particle Hamiltonian with SU(3) SO
coupling considered as in the main text.

APPENDIX B: STABILITY OF THE DOUBLE-QUANTUM
SPIN VORTEX STATES

In order to verify the stability of the phases discovered
in this manuscript, we have explored the effects of a small
but finite temperature and concluded that the double-quantum

FIG. 7. Stable double-quantum spin vortex under a random
fluctuation. The images are taken at t = 20 ms in the real-time
evolution, with thermal fluctuation in the energy scale of kBT with
T ∼ 300 nK. (a) Spatial maps of the transverse magnetization with
colors indicating the magnetization orientation. (b) Longitudinal
magnetization. (c) Amplitude of the total magnetization |F|. It is
shown that the double-quantum spin vortices are topologically stable
under external fluctuations with a fairly long lifetime of tens of
milliseconds.

spin vortex states are robust against the thermal fluctuations.
In particular, we considered a random fluctuation 	φ in the
real-time evolution of the Gross-Pitaevskii equation, which
causes an energy fluctuation about 	E = 0.03Eg with Eg

the ground-state energy. An estimation shows that this level
of fluctuation corresponds to the energy scale kBT with
T ∼ 300 nK, which is higher enough for a usual system of
Bose-Einstein condensates in realistic experiments. According
to numerical simulations, we find that the structure of the
double-quantum spin vortex state is stable under this level of
fluctuation in tens of milliseconds (see Fig. 7), suggesting that
this phase is indeed observable in experiments.
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