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We report Dirac monopoles with a polar-core vortex induced by spin-orbit coupling in ferromagnetic Bose-
Einstein condensates, which are attached to two nodal vortex lines along the vertical axis. These monopoles are
more stable in the time scale of experiment and can be detected through directly imaging vortex lines. When the
strength of spin-orbit coupling increases, Dirac monopoles with a vortex can be transformed into those with a
square lattice. In the presence of spin-orbit coupling, increasing the strength of the interaction can induce a cyclic
phase transition from Dirac monopoles with a polar-core vortex to those with a Mermin-Ho vortex. The spin-orbit
coupled Bose-Einstein condensates not only provide a unique platform for investigating exotic monopoles and
relevant phase transitions but also can hold stable monopoles even though a quadrupole field is turned off.
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I. INTRODUCTION

Dirac monopoles have drawn great interest in solid state
physics [1–8], quantum field [9,10], and gauge field theories
[11–13]. In particular, the recent realization of spinor Bose-
Einstein condensates (BECs) has brought a new way to create
monopoles [14,15] and topologically nontrivial structures
[16–19]. So far, monopoles with and without terminating
nodal lines have been realized in BEC experiments [9,10].
Theoretically, several typical monopole structures like two-
dimensional and two-component monopoles in BECs have
been investigated [20–29]. In previous studies on monopoles
only spin-dependent interaction has been considered, whereas
spin-orbit (SO) coupling, i.e., the interaction between the
spin of a quantum particle and its momentum, has not been
considered in spinor BECs.

The SO coupling in quantum gases can be controlled
by using optical or magnetic fields [30–40], which provides
possibly new opportunities to search for novel quantum states
[41–49]. These novel quantum states can be induced because
of coupling of atomic internal states and momenta. Meanwhile,
due to the SO coupling, atoms with pseudospins are not
constrained by fundamental symmetries, like global and mirror
symmetries. Therefore, novel monopole structures may be
induced by the SO coupling in spinor BECs, which we are
eager to explore.

In this paper, we find a configuration of monopoles, Dirac
monopoles with a polar-core vortex, induced by the SO cou-
pling in ferromagnetic BECs. Differently from the monopoles
in the absence of the SO coupling [9,15], the monopoles in
the SO coupled spinor BECs locate at the endpoints of two
nodal lines along the vertical axis. The nodal lines remain
stable for a very long time, indicating that the monopoles with
the polar-core vortex are a long-lived structure. Therefore,
experimental observation of the monopoles with a polar-core
vortex will be easier, as compared with the monopole structures
found in previous works in the absence of the SO coupling
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[9,24]. Further, a monopole configuration with the square
lattice is found for strong SO coupling. Such a configuration is
independent of the strength of interactions and therefore can be
observed in a wide range of parameters. In particular, a cyclic
phase transition from the monopoles with the polar-core vortex
to the monopoles with the Mermin-Ho vortex is found through
increasing the strength of the spin-independent interaction
when the SO coupling is weak.

II. DIRAC MONOPOLES WITH A POLAR-CORE VORTEX

We consider the three-dimensional spin-1 BECs with a two-
dimensional SO coupling [38] and a controllable magnetic
field [9]. In the mean-field approximation, the Hamiltonian is
written as [15,23,24,41–43,50]

H =
∫

d3r
(

�†[T +Vopt(r)+Vso+gF μBB(r) · F]�

+
{

c0

2
n2+ c2

2
[(n1−n−1)2 + 2|�∗

1 �0 + �∗
0 �−1|2]

})
,

(1)

where � = [�1(r),�0(r),�−1(r)]T is the order parameter of
the BECs with normalization

∫
d3r�†� = N , and N is the

total particle number. The kinetic energy T = −h̄2∇2/(2m).
The total particle density is defined by n = ∑

m nm, wherein
nm = |�m(r)|2 with m = 0,±1. The optical trapping potential
Vopt(r) = m[ω2

r (x2 + y2) + ω2
zz

2]/2, where ωr and ωz are the
radial and axial trapping frequencies, and m is the mass of
a 87Rb atom. The vector of spin-1 matrices is defined by
F = (Fx,Fy,Fz)T , whereinFx,Fy , andFz are the 3 × 3 Pauli
spin-1 matrices. The SO coupling term is written as Vso =
−ih̄(κxFx∂x + κyFy∂y), where κx and κy are the strengths
of the SO coupling. We define κx = κy = κ for isotropic
SO coupling (Rashba-type) and κx �= κy for anisotropic SO
coupling. The external magnetic field is given by B(r) =
B

′
1(xêx + yêy) + B

′
2ẑez, where the condition 2B

′
1 + B

′
2 = 0

must be satisfied according to Maxwell’s equation ∇ · B = 0.
The Land é factor gF = −1/2 and μB is the Bohr magneton.
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FIG. 1. The monopoles with the polar-core vortex. (a) Isosurface of particle densities. (b) Particle densities for y � 0. The position of
the nodal line (Dirac string) is highlighted by the red arrow. The position of the monopole is highlighted by the black dot. The result for
x � 0 is the same as that for y � 0. (c) and (d) Densities and phase distributions in the y = 0 planes. The phases at both sides of the y = 0
planes are inverse, as highlighted by the black arrow in (d). (e) Particle densities for z � 0. (f) and (g) Densities and phase distributions in
the z = 0 planes. The single vortex and antivortex are highlighted by the black and red circles, respectively. The simulation is conducted by
using the dimensionless SO coupling strength κ = 2, spin-dependent interaction parameter λ2 = −75, spin-independent interaction parameter
λ0 = 7500, strength of the magnetic field gradient B1 = 0.6, and isotropic optical trap ωr = ωz = 2π × 250 Hz [15].

For the interaction terms, the coupling parameters are given
by c0 = 4πh̄2(a0 + 2a2)/3m and c2 = 4πh̄2(a2 − a0)/3m,
where h̄ is the Planck constant and a0,2 are two-body s-wave
scattering lengths for total spin 0,2. The wave functions of
spin-1 BECs are formulated as the dimensionless coupled
Gross-Pitaevskii equations [15,23,24,41–43,50]

i
∂ψ1

∂t
=

[
−1

2
∇2 + V + λ0ρ + λ2(ρ1 + ρ0 − ρ−1)

+B2z

]
ψ1 + B1(x − iy)ψ0

+ κ(−i∂x − ∂y)ψ0 + λ2ψ
∗
−1ψ

2
0 , (2)

i
∂ψ0

∂t
=

[
−1

2
∇2 + V + λ0ρ + λ2(ρ1 + ρ−1)

]
ψ0

+B1(x + iy)ψ1 + B1(x − iy)ψ−1

+ κ(−i∂x + ∂y)ψ1 + κ(−i∂x − ∂y)ψ−1

+ 2λ2ψ1ψ−1ψ
∗
0 , (3)

i
∂ψ−1

∂t
=

[
− 1

2
∇2 + V + λ0ρ + λ2(ρ0 + ρ−1 − ρ1)

−B2z

]
ψ−1 + B1(x + iy)ψ0

+ κ(−i∂x + ∂y)ψ0 + λ2ψ
∗
1 ψ2

0 , (4)

where the dimensionless wave function ψj = N−1/2a
3/2
h �j

and the total condensate density ρ = ρ1 + ρ0 + ρ−1 with
ρj = |ψj |2 (j = 1,0, − 1). The dimensionless optical trap-
ping potential V (r) = 1

2 (γ 2
r x2 + γ 2

r y2 + γ 2
z z2) with γr =

ωr/ω, γz = ωz/ω and ω = min{ωr,ωz}. The dimensionless
interaction strengths λ0 = 4πN (a0 + 2a2)/3ah and λ2 =
4πN (a2 − a0)/3ah. We choose a2 = (100.4 ± 0.1)aB for total
spin channel Ftotal = 2 and a0 = (101.8 ± 0.2)aB for total
spin channel Ftotal = 0 [51–53], where aB is the Bohr radius.
The characteristic length of the harmonic trap is defined as
ah = √

h̄/mω. The dimensionless strength of the magnetic
field gradient complies the condition 2B1 + B2 = 0. The time,
energy, strength of the SO coupling, and strength of the
magnetic field gradient are scaled by ω−1, h̄ω,

√
h̄ω/m, and

ωh̄/(gF μBah), respectively.
The stationary state of the monopole is obtained by using

the standard imaginary-time propagation combined with finite-
difference methods [54–56]. Equations (2)–(4) are solved
by using the second-order centered finite difference for the
spatial discretization and the backward and forward Euler
schemes of the linear and nonlinear terms for the time
discretization. The average energy decays monotonically with
time until the steady states are reached. The computational
grids are 120 × 120 × 120, corresponding to the volume being
20 × 20 × 20 (a3

h) or 34.2 × 34.2 × 34.2 (μm3). The final
steady state is independent of the initial trial wave function.
The trial wave function is given by the normalized random
number of complex values. The dynamic evolution is obtained
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by using the split-operator Crank-Nicolson method with the
time stepping being 10−4/ω.

We first study the structures of the monopoles in the
absence of the SO coupling, as seen in Appendix B. To
our knowledge, the homogeneous bias field is a necessary
condition for observing the monopole creation process [9,15].
However, our emphasis is to investigate the final steady state
of the monopole, not the creation process of the monopole.
Therefore, the homogeneous bias field is not a necessary
condition in the present work and therefore is not included
in our model. In this case, the vortex line corresponding to the
monopole will not be along the symmetry axis of the system
[15]. Therefore, the doubly quantized vortex line attached to
the monopole shows a branchlike distribution, splitting into
two singly quantized vortex lines partially in the mF = +1
and −1 components.

When the SO coupling is weak, the monopoles with the
polar-core vortex are found, as shown in Fig. 1. The structure
of the monopoles with the polar-core vortex represents a single
vortex line in the mF = +1 component, a soliton in the mF =
0 component, and a single antivortex line in the mF = −1
component. Compared with the monopoles in BECs without
the SO coupling [9,15], in the present system there exist two
monopoles that locate at the endpoints of two nodal lines along
the vertical axis [as highlighted by the red arrows in Fig. 1(b)],
which is caused by the coupling between the spin and the
center-of-mass motion of the atom. In addition, we study the
dynamics of the monopoles with the polar-core vortex and the
dynamics of the monopoles when the quadrupole field is turned
off (for details see Appendixes E and F). We further discuss
the influence of the anisotropic optical trap and the magnetic
field gradient on the monopoles [for details see Appendix C].

Next we investigate the influence of the interaction on
the morphology of the monopoles. As shown in Fig. 2, the
monopole with a Mermin-Ho vortex [57] is obtained for a
smaller λ2 value. The monopole with a Mermin-Ho vortex
represents a soliton in the mF = +1 component, a single
vortex line in the mF = 0 component, and a double quantized
vortex line in the mF = −1 component. In previous study,
the monopole with a Mermin-Ho vortex has been observed
in spinor BECs with a synthetic magnetic field [9]. Figure 2
confirms that the monopole with a Mermin-Ho vortex can also
exist in the condensates with the SO coupling.

III. DIRAC MONOPOLES WITH SQUARE LATTICE

The monopoles with the square lattice are found as the SO
coupling strength increases, as shown in Fig. 3. The square
lattice is observed in the central region of the BECs. Mean-
while, the density distribution in the longitudinal direction is
of the stripe structure. The phases at both sides of the x = 0
and y = 0 slice planes are inverse for all spin components.
The morphology of the monopole with the square lattice is
not affected by the interactions, because the corresponding
lowest-energy state is actually not affected by the interactions
when the SO coupling is strong. Finally, we also briefly discuss
the influence of the anisotropic SO coupling on the structure
of the monopole. The monopole may be canceled because
the Dirac strings are removed in the case of anisotropic SO
coupling, as shown in Appendix D.
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FIG. 2. The monopoles with the Mermin-Ho vortex. (a) Isosur-
face of particle densities. (b) Segments of isosurface of particle
densities (y � 0). The position of the nodal line (Dirac string) is
highlighted by the red arrow. (c) Phase distributions in the z = 0
planes. The single vortex (mF = 0) and double vortex (mF = −1)
have the same circulations, as highlighted by the red circles. The
simulation uses λ2 = −15 and κ = 2 with the other parameters being
the same as the ones in Fig. 1.

The spinor BECs can be considered as a magnetic
system, which can reflect physical properties of topolog-
ical defects [53]. We study topological spin textures of
the monopoles. The components of the spin vector are
given by Fx = [ψ∗

1 ψ0 + ψ∗
0 (ψ1 + ψ−1) + ψ∗

−1ψ0]/
√

2, Fy =
i[−ψ∗

1 ψ0 + ψ∗
0 (ψ1 − ψ−1) + ψ∗

−1ψ0]/
√

2, and Fz = |ψ1|2 −
|ψ−1|2 [42,43,57–61]. The spin textures of the monopoles
with the polar-core vortex are shown in Fig. 4(a). The spin
aligns with the radially inward hedgehog distribution in the
x-y plane, representing the spin texture of a south magnetic
pole, while the spin textures in the x-z and y-z planes show
the cross-hyperbolic distribution [58,62]. Compared with the
case without the SO coupling [24], in our case the SO coupling
changes the spin direction, which causes the north magnetic
pole to transform into the south magnetic pole. As shown in
Fig. 4(b), the spin textures of the antimonopoles represent the
north magnetic poles. For the case of the strong SO coupling
[see Fig. 4(c)], the spin textures are divided into four portions in
the x-y plane, which behaves as the ferromagnetic distribution
at each portion. The spin orientations at two diagonal portions
are opposite, which indicates the structures of monopoles and
antimonopoles that locate in the boundaries of the condensates.
The spin textures in the x-z and y-z planes form the spin stripe.
The dynamic evolution of the spin texture is shown in Fig. 14
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FIG. 3. The monopoles with the square lattice. (a), (c), and (e) Particle densities for y � 0, x � 0, and z � 0. (b), (d), and (f) Phase
distributions in the y = 0, x = 0, and z = 0 planes. The phases at both sides of the y = 0 and x = 0 planes are inverse, as highlighted by the
black arrows. The simulation uses κ = 16 with the other parameters being the same as the ones in Fig. 1.

in Appendix G, which further proves that the monopoles with
the polar-core vortex are stable.

IV. PHASE DIAGRAM AND EXPERIMENTAL PROTOCOL

The interplay between the SO coupling and the interaction
leads to the rich phase diagrams of the monopoles. Figure 5(a)
shows the phase diagram of the monopole structure as func-
tions of κ and λ0 for λ2 = −75. The monopole is metastable
when κ is less than a critical value κc = 0.8. The corresponding
monopole structure is the same as the monopole structure
when κ = 0, as shown in Fig. 7 in Appendix B. For 0.8<

κ � 3, the monopoles with the polar-core vortex exist when
0 < λ0 � 3000 and 5000 < λ0 � 8000, while the monopoles
with the Mermin-Ho vortex emerge when 3000 < λ0 � 5000
and 8000 < λ0 � 11 000. Because the spin-independent in-
teraction causes the variation of the local magnetic order, a
cyclic phase transition from Dirac monopoles with a polar-
core vortex to those with a Mermin-Ho vortex can occur
as the increasing λ0. The monopoles with the square lattice
appear when κ > 3, confirming that the monopoles are not
affected by the interactions and are able to exist in the wide
parameter region for the case of the strong SO coupling.
Figure 5(b) shows the phase diagram of the monopole structure
as functions of κ and λ2 for λ0 = 7500. The obtained monopole
is metastable for κ � 0.8, where the monopole structure is the
same as the structure when κ = 0. For 0.8 < κ � 3, there exist
the monopoles with the Mermin-Ho vortex when λ2 < 60,
while the monopoles with the polar-core vortex emerge when
λ2 > 60. Increasing λ2 leads to the direct phase transition from
the monopoles with the Mermin-Ho vortex to the monopoles
with the polar-core vortex.

Finally, we discuss the experimental feasibility of creating
the monopoles in SO coupled BECs in Appendix A. We
consider spin-1 BECs of alkali 87Rb atoms, where particle
number N ≈ 0.6(1.8) × 105. First, a quadrupole field realized
by a pair of Helmholtz coils is turned on. The strength of the
magnetic field is zero at the center of the quandrupole field,
which corresponds to a point source of the superfluid flow.
Afterward, when the formed point source of the superfluid
flow is stable [15], the quadrupole field is turned off. At the
same time, the pulsed magnetic fields are utilized to produce
two-dimensional SO coupling [38]. We take some parameters
from the recent experiments [9,15,38], including the isotropic
optical trap ωr = ωz = 2π × 250 Hz, the anisotropic optical
trap ωr = 2π × 160Z Hz and ωz = 2π × 220 Hz, the constant
bias magnetic field B(0) = 20 G, and the quadrupole field
gradient B

′
1 = 0.03−0.1 T/m. In the case of the monopoles

with the polar-core vortex, the SO coupling strength κ ∼
0.8−3. We find the dynamic period of the monopoles with the
polar-core vortex t ′ ∼ 11 ms, which can be stably observed in
experiments.

V. CONCLUSION

We have shown that the weak SO coupling leads to the
emergence of monopoles with the polar-core vortex that are
long-lived, and the strong SO coupling leads to the emergence
of monopoles with the square lattice in spinor BECs. We have
predicted the rich phase diagrams of the monopoles by chang-
ing the SO coupling strength, the spin-dependent interaction,
and the spin-independent interaction. The influence of the
anisotropic SO coupling, the anisotropic optical trap, and the
magnetic field gradient on the properties of the monopoles have

043633-4



DIRAC MONOPOLES WITH A POLAR-CORE VORTEX . . . PHYSICAL REVIEW A 95, 043633 (2017)

5=x5=y5=z

κ=2

10

0

-10

0101

00

01-01-
01-01-01- 000 010101

010101

010101

000

000

-10

-10

-10

-10

-10

-10

01-01-01-

01-01-01-

0

0

0

0

0

0

010101

010101

-1

0

1

-1

-1

0

0

1

1

y

y

y

x

x

x

z

z

z

x

x

x

z

z

z

y

y

y

B =0.6

(a)

(b)

(c)

κ=2
B =-0.6

κ=16
B =0.6

S

SS

N

NN

N

N

S

S

FIG. 4. (a) Spin textures of monopoles with the polar-core vortex describe the south magnetic poles (the black dot S). (b) Spin textures
of the antimonopoles describe the north magnetic poles (the red dot N). (c) Spin textures of the monopoles with the square lattice. The other
parameters are the same as the ones in Fig. 1.

also been investigated. We provide an experimental scheme to
observe these monopoles as well, which can be proved by
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FIG. 5. (a) Phase diagram of the monopole with the SO coupling
strength κ and spin-independent interaction parameter λ0 for a given
spin-dependent interaction parameter λ2. (b) Phase diagram of the
monopole with κ and λ2 for a given λ0. Four phases are identified,
including the metastable monopoles (M-MS), the monopoles with
the polar-core vortex (M-PCV), the monopoles with the Mermin-Ho
vortex (M-MHV), and the monopoles with the square lattice (M-SL).

means of imaging the vortex lines. This work paves the way
for future explorations of the monopole with respect to gauge
field, topological defects, and the corresponding dynamical
stability in quantum systems.
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APPENDIX A: EXPERIMENTAL SETUP OF CREATING
THE MONOPOLES IN SPIN-ORBIT COUPLED

BOSE-EINSTEIN CONDENSATES

The experimental setup is shown schematically in Fig. 6(a).
We consider spin-1 BECs of alkali 87Rb atoms, where the
87Rb BECs contain about N ≈ 0.6(1.8) × 105 atoms. First, a
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duration. (b) Energy spectrum. The single-particle energy spectrum of the monopole with SO coupling strength κ = 2 in the kx-ky plane is
divided into three branches E+, E0, and E−, and the black circular ring represents the Rashba ring from the minimum energy spectrum.

quadrupole field is applied and turned on, which is realized by
a pair of Helmholtz coils with oppositely circulating currents.
The strength of the magnetic field is zero at the center of the
quandrupole field, which corresponds to a point source of the
superfluid flow. The superfluid flow of the spinor condensates
can be characterized by its vorticity �s = h̄êr ′/(mr ′2), where
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κ = 0, and the other parameters used in numerical calculation are the
same as the ones in Fig. 1.

r ′ is the sphere radius. The vorticity �s is equivalent to
the magnetic field of a monopole that distributes radially
outward in a hedgehog form. Therefore, a monopole can
be considered as a point source of the superfluid flow [15].
In experiments, due to the fluctuating background fields and
mechanical instabilities in the optical trap, the point source
may be drifted to outside of the condensates. In order to avoid
the occurrence of such phenomenon, we make the point source
stay inside the condensates by controlling and adjusting the
strength of the magnetic field gradient. When a point source
of the superfluid flow is stably formed, the quadrupole field
is turned off. Subsequently, the pulsed magnetic fields are
utilized to create two-dimensional spin-orbit (SO) coupling
[38]. The cloud of atoms is situated 50 μm above the surface
of the atom chip. A constant bias magnetic field B(0)ez is
applied out of plane, which leads to splitting of the magnetic
sublevels. Two pairs of microwires parallel to ex and ey provide
the rf magnetic fields Bx(r,t) and By(r,t). In the first stage
(0 � t < τ ), the rf magnetic field Bx(r,t) with the frequency
ω1 leads to an effective coupling vector in the x direction and
a spin-dependent phase gradient in the y direction, where the
SO coupling is written as −ih̄κxFx∂x . In the second stage
(τ � t < 2τ ), the rf magnetic field By(r,t) with frequency ω2

leads to an effective coupling vector in the y direction and a
spin-dependent phase gradient in the x direction, where the
SO coupling is written as −ih̄κyFy∂y . When both rf magnetic
fields Bx(r,t) and By(r,t) are applied, the two-dimensional SO
coupling is created, which is written as Vso = −ih̄(κxFx∂x +
κyFy∂y) in the first-order approximation for a sufficiently short
duration τ . The strengths of the SO coupling κx and κy are
determined by the strengths of the magnetic field gradient
of Bx(r,t) and By(r,t). Due to the SO coupling, the spin
degeneracy of three-component bosons is lifted. The free
particle energy spectrum splits into three energy branches with
the different helicities [see Fig. 6(b)]. The Rashba ring can be
seen from the minimum energy spectrum, as denoted by the
black circular ring in Fig. 6(b). Some simulated parameters
are taken from the recent experiments [9,15,38]. The isotropic
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optical trap ωr = ωz = 2π × 250 Hz, the anisotropic optical
trap ωr = 2π × 160 Hz and ωz = 2π × 220 Hz, the constant
bias magnetic field B(0) = 20 G, and the quadrupole field
gradient B

′
1 = 0.03 − 0.1 T/m.

APPENDIX B: STRUCTURES OF THE MONOPOLES IN
THE ABSENCE OF THE SPIN-ORBIT COUPLING

Figure 7 shows the result of the monopoles in the absence
of the SO coupling. To our knowledge, the homogeneous bias
field is a necessary condition for observing the monopole cre-
ation process [9,15]. However, our emphasis is to investigate

the final steady state of the monopole, not the creation process
of the monopole. Therefore, the homogeneous bias field is
not a necessary condition in the present work and therefore
is not included in our model. In this case, the vortex line
corresponding to the monopole will not be along the symmetry
axis of the system [15]. In addition, due to a doubly quantized
vortex line, it is expected to be prone to splitting into two
vortex lines each carrying one angular momentum quantum.
Therefore, the doubly quantized vortex line attached to the
monopole shows a branchlike distribution, splitting into two
singly quantized vortex lines partially in the mF = +1 and
−1 components [as highlighted by the red arrow in Fig. 7(b)].
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The vortex lines for the mF = +1 component locate in the
part of z < 0. The vortex lines for the mF = −1 component
locate in the part of z > 0. These vortex lines extend along
the ±y directions to the boundary of the BECs. The phases at
both sides of the vortex line are the same. For the case of the
mF = 0 component, the two vortex lines in the x = 0 plane
cross each other and topologically invariant winding number
is 1. The phases of the vortex line along the z and y axes are
opposed, being similar to the vortex-antivortex pair [63,64]. In
fact, the doubly quantized vortex will split into two separated
singly quantized vortices gradually as time goes on [65,66].
Therefore, Fig. 7 indicates that the monopole is metastable in
the absence of the SO coupling.

APPENDIX C: EFFECTS OF THE ANISOTROPIC
OPTICAL TRAP AND THE QUADRUPOLE FIELD

GRADIENT ON THE MONOPOLES

In this section, we investigate the monopole structures for
an anisotropic optical trap. For comparison, we first consider
the isotropic optical trap with ωr = ωz = 2π × 250 Hz [15], as
shown in Figs. 8(a1)–8(a3). The monopoles with the polar-core
vortex are obtained, which represents a single vortex line in
the mF = +1 component, a soliton in the mF = 0 component,
and a single antivortex line in the mF = −1 component.
In Figs. 8(b1)–8(b3), the trapping frequencies are given
by ωr = 2π × 160 Hz and ωz = 2π × 220 Hz [9], and the
anisotropy parameters of the optical trap are given by γr = 1
and γz = 1.375. The Dirac string embedded in the BECs splits
into two strings with a singly quantized vortex. In this case,
the result indicates that this anisotropic trapping potential leads
to the metastable monopole. In fact, the monopoles with the

polar-core vortex exist in the condensates when the anisotropy
of the optical trap is less than the magnitude of γr = 1 and
γz = 1.375. In Figs. 8(c1)–8(c3), the trapping frequencies are
given by ωr = 2π × 160 Hz and ωz = 2π × 320 Hz, and
the anisotropy parameters of the optical trap are given by
γr = 1 and γz = 2. The monopoles with the polar-core vortex
continue to exist in the BECs. Therefore, Fig. 8 confirms that
the monopoles with the polar-core vortex can also occur in the
presence of the oblate trap.

The external magnetic fields affect the positions of Dirac
strings and the spin direction [24]. In Fig. 9 we investigate the
influence of the quadrupole field gradient on the monopoles.
In Figs. 9(a1)–9(a3), when the strength of the quadrupole field
gradient is negative, such as B1 = −0.6, the antimonopoles
emerge in the system. The structures of the antimonopoles
represent a singly antivortex line in the mF = +1 component,
a soliton in the mF = 0 component, and a single vortex line
in the mF = −1 component, which is caused by the exchange
of the vortex lines between the mF = +1 component and the
mF = −1 component. In this case, the antimonopole stucture
essentially represents the polar-core vortex, while the charge
corresponding to the antimonopole is the north magnetic pole
[see Fig. 4(b)]. In Figs. 9(b1)–9(b3), when the strength of the
quadrupole field gradient is positive, such as B1 = 0.2, the
corresponding monopole structure is similar to the monopole
structure obtained for B1 = 0.6, which represents a single
vortex line in the mF = 1 component, a soliton in the mF = 0
component, and a single antivortex line in the mF = −1
component. In Figs. 9(c1)–9(c3), when B1 is increased, such
as B1 = 3.8, the atomic cloud expands along the ±z direction,
because increasing B1 results in stronger magnetic forces [9].
The atoms are difficult to be bounded in the central region of
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FIG. 11. (a) When the SO coupling κx = κy = κ = 2, we obtain the spin textures of the monopoles with the polar-core vortex in the slice
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textures are similar to those in (b). The simulation uses B1 = 0.6, λ2 = −75, λ0 = 7500, and ωr = ωz = 2π × 250 Hz.

trap when the strength of the magnetic field gradient is strong.
A vortex line is terminated in the middle of the atomic cloud
for the mF = +1 and mF = −1 components, and the phase
winding of the vortex line is 4π between the mF = +1 and
mF = −1 component. In addition, for the mF = 0 component,
the vortex line locates in the positive and negative z axis, and
the corresponding phase winding number of the vortex line is 1.

APPENDIX D: GROUND STATES FOR THE ANISOTROPIC
SPIN-ORBIT COUPLING

In Fig. 10 we briefly discuss the case of the anisotropic
SO coupling, where the SO coupling strength is strong in
the x direction with κx = 8, but is weak in the y direction
with κy = 2. The result shows that the monopole may be
canceled, as the anisotropic SO coupling can remove the Dirac
string. Instead, the condensate splits into many segments along
the x direction, representing a stripe distribution along the x

direction and a plane wave distribution in the y-z plane. The

phases along the x direction are inverse, as shown in Fig. 10(c).
The spin textures of the spinor BECs for the anisotropic SO
coupling are shown in Fig. 11. For comparison, when the
SO coupling is isotropic, such as κ = 2, the spin aligns with
the radially inward hedgehog distribution in the x-y plane,
while the spin textures in the x-z and y-z planes show the
cross-hyperbolic distribution [see Fig. 11(a)]. When the SO
coupling is anisotropic, such as κx = 8 and κy = 2, the spin
textures in the x-y plane are the same as ones in the x-z plane,
and the spin textures in the y-z plane show the ferromagnetic
distribution [see Fig. 11(b)]. Meanwhile, for the x-y and
x-z planes, the spin distribution is the same in the y and z

directions but is contrary in the x direction. Furthermore, as
the anisotropy of the SO coupling is increased, for example,
κx = 12 and κy = 2 [see Fig. 11(c)], we find that the spin
textures are similar to the spin textures shown in Fig. 11(b).
This indicates that the spin textures are independent of the
strength of the anisotropic SO coupling.
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FIG. 13. The monopoles with the polar-core vortex remain stable even when the quadrupole field is turned off. (a1)–(a3) t = 0, (b1)–(b3)
t = 6, and (c1)–(c3) t = 12. (a1), (b1), and (c1) Isosurface of particle densities. (a2), (b2), and (c2) Particle densities for y � 0. The red arrow
denotes the location of the nodal line (Dirac string). (a3), (b3), and (c3) Phase distributions in the z = 0 planes. The single vortex and antivortex
are highlighted by the black and red circles, respectively. The simulation uses κ = 2, λ2 = −75, λ0 = 7500, and ωr = ωz = 2π × 250 Hz. The
real time t ′ = 0.64t ms.
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APPENDIX E: DYNAMIC EVOLUTION OF THE
MONOPOLES WITH THE POLAR-CORE VORTEX

We simulate the dynamic evolution of the monopoles with
the polar-core vortex in order to investigate the stability
of the monopoles with the polar-core vortex. Figure 12 shows
the morphology of the monopoles with the polar-core vortex
when t = 36 corresponding to the real time t ′ = 23 ms.
The nodal line corresponding to monopole is very stable
during the dynamic evolution, as highlighted by the red
arrows in Fig. 12(b). Moreover, the phase profile of the wave
function in the z = 0 plane shows that the singly vorticity is
well maintained, and no vortex splitting is observed during
the dynamic evolution [see Fig. 12(e)]. The nodal lines
corresponding to the monopoles with the polar-core vortex
are in contrast to the nodal lines observed in the absence of
the SO coupling that were unstable to decay after only only
10 ms [9]. The stable morphology of the monopoles with the
polar-core vortex is well kept in our whole simulation time
window. The monopole structures at the different times will
be discussed in Fig. 15 in Appendix G.

APPENDIX F: DYNAMIC EVOLUTION OF THE
MONOPOLES IN THE ABSENCE OF

THE QUADRUPOLE FIELD

In this section, we further discuss the dynamics of the
monopole structure in the absence of the quadrupole field.
The initial states of the monopoles are shown in Figs. 13(a1)–
13(a3). The evolution of the monopole structure has been
simulated for t = 6 and t = 12 with a time step 10−4/ω [see
Figs. 13(b1)–13(c3)]. During the time evolution, the isosurface
of density becomes rough, as shown in Figs. 13(b1) and
13(c1). The Dirac strings still exist in the condensates, which

is highlighted by the red arrow in Figs. 13(b2) and 13(c2).
Furthermore, as seen in the phase profile of the wave function,
the singly quantized vortex and antivortex are stable against
splitting, which are highlighted by the black and red circles,
as shown in Figs. 13(b3) and 13(c3). In previous work [24],
the Dirac strings were observed to expand at about t = 8
(t ′ = 5.12 ms) when the quadrupole field is turned off. In the
present work, the Dirac strings are not observed to expand until
a longer time such as t = 12 (t ′ = 7.68 ms), confirming that
the monopoles with the polar-core vortex remain the excellent
stability against decaying even though the quadrupole field
is turned off. The results are interesting, which indicates that
the SO coupling can protect such monopole structures during
the time evolution in the absence of the external magnetic
field.

APPENDIX G: DYNAMIC EVOLUTION OF THE
SPIN TEXTURE

In Fig. 14 we investigate the dynamic evolution of the spin
texture in order to more clearly ascertain the stabilities of the
monopoles with the polar-core vortex. Figures 14(a1)–14(a3)
indicate the dynamic of the spin texture in the presence of
the quadrupole field. The spin texture remains the structure
of the south magnetic pole during the time evolution, where
the spin aligns with the radially inward hedgehog distribution
in the x-y plane. Furthermore, when the quadrupole field is
turned off, the spin texture of the south magnetic pole remains
immobile; see Figs. 14(b1)–14(b3). Figure 14 further indicates
that the monopoles with the polar-core vortex are stable during
the time evolution. Finally, we further check the dynamics
of the monopoles at different times such as a shorter time
t = 12 (t ′ = 7.6 ms) and a longer time t = 72 (t ′ = 46 ms)
(see Fig. 15), indicating that the monopoles have excellent
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FIG. 15. Dynamics of the monopoles with the polar-core vortex at different times. (a1)–(a3) t = 12, (b1)–(b3) t = 18, and (c1)–(c3) t = 72.
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stability even for a longer time. Figure 15 confirms that the
monopoles with the polar-core vortex have very long lifetimes
that are even beyond the time window of our simulations,

which allows for the facile experimental observation. We can
expect that the monopoles with the polar-core vortex are able
to exist in an atomic gas as a long-lived configuration.
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