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Recently a scheme has been proposed for generating the two-dimensional Rashba-type spin-orbit coupling
(SOCQ) for ultracold atomic bosons in a bilayer geometry [S.-W. Su et al., Phys. Rev. A 93, 053630 (2016)].
Here we investigate the superfluidity properties of a degenerate Fermi gas affected by the SOC in such a bilayer
system. We demonstrate that a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state appears in the regime of small
to moderate atom-light coupling. In contrast to the ordinary SOC, the FFLO state emerges in the bilayer system
without adding any external fields or spin polarization. As the atom-light coupling increases, the system can transit
from the FFLO state to a topological superfluid state. These findings are also confirmed by the Bogoliubov—de

Gennes simulations with a weak harmonic trap added.
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I. INTRODUCTION

The search for new exotic quantum states [1,2] is a funda-
mental issue in current condensed-matter physics. This topic
has drawn enormous interest for ultracold atomic gases [3—8],
enabling simulations of many condensed-matter phenomena.
With recent experimental progress in synthetic spin-orbit
coupling (SOC) for degenerate atomic gases [9—17], diverse
new quantum phases due to the SOC have been predicted
[7,18,19], such as the stripe phase and vortex structure in the
ground states of atomic Bose-Einstein condensates (BECs)
[20-31], as well as the Rashba pairing bound states (Rashbons)
[32,33] and topological superfluidity [34-38] in degenerate
Fermi gases.

The synthetic SOC has been successfully implemented and
explored by Raman coupling of a pair of atomic hyperfine
ground states accompanied by a recoil [9—-13]. This provides
the SOC along the recoil direction representing the one-
dimensional (1D) SOC. The realization of the synthetic SOC
for ultracold atoms in two or more dimensions is very
desirable. The two-dimensional (2D) SOC of the Rashba
type has a nontrivial dispersion. The lower dispersion branch
contains a highly degenerate ground state (the Rashba ring).
Additionally, there is a Dirac cone at an intersection point of
two dispersion branches, and a band gap can be opened by
adding a Zeeman term. This is essential for the topological
superfluidity. Recently, a number of elaborate schemes has
been suggested to create an effective 2D and three-dimensional
(3D) SOC [39-52]. Subsequently the 2D SOC has been
experimentally implemented [14—16] by inducing the Raman
transitions between three atomic hyperfine ground states in a
ring coupling scheme [14,15,45], as well as by using another
approach which relies on optical lattices [16,50]. However, in
the experiments [14,15] one of the three atomic states belongs
to a higher hyperfine manifold leading to losses.
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Recently Su et al. [52] put forward a scheme for generating
the effective Rashba SOC for a two-component atomic BEC
confined in a bilayer geometry. The layer index provides an
extra degree of freedom to form a basis of four combined spin-
layer states composed of two spin and two layer states. The
four spin-layer states are coupled in a cyclic manner by means
of the spin-flip Raman transitions [9] and the laser-assisted
interlay coupling [53-57], both processes being accompanied
by recoil. This provides effectively a ring coupling scheme [52]
leading to the Rashba-type SOC. In contrast to the original ring
coupling scheme [45] involving four atomic internal states, the
bilayer setup makes use of only two atomic spin states [52],
like the NIST scheme for the 1D SOC [9]. Hence there is no
need to employ spin states belonging to a higher hyperfine
manifold which suffers from a collisional population decay
undermining the effective SOC. Therefore, the bilayer scheme
offers a more feasible system to study the many-body physics
due to 2D SOC.

Topological superfluidity has attracted an enormous interest
in SO coupled fermion gases [34-38,58-62]. These works
considered a pure 2D or 3D Rashba-type SOC for ultracold
atoms with two internal (spin up and down) states. However,
in a realistic atomic system the SOC is produced in an
effective manner by laser dressing of a number of atomic
internal states and restricting atomic motion to a manifold of
two-fold degenerate dressed states. As a result, the topological
superfluidity is more involved, an issue which has been little
investigated.

Here, we explore the topological superfluidity of a Fermi
gas affected by the SOC. The SOC is produced using the
bilayer scheme previously considered for bosonic atoms
[52,63]. A characteristic feature of the bilayer system is that
the interaction takes place mostly between atoms belonging
to the same layer [52]. Therefore the atom-atom interactions
differ considerably from the ones featured in the SOC scheme
involving four cyclically coupled atomic internal states [45]. In
the latter situation the atoms in all four internal states interact
with approximately the same strength.

We find that the bilayer scheme provides an intriguing phase
transition of superfluidity. In the regimes of small and moderate
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FIG. 1. Schematic representation of a Fermi gas in a bilayer
structure. An asymmetric double-well potential along the z axis traps
the atoms in two layers separated by a distance d. The combined
spin-layer atomic states |j = 1,2,y =1, |) are cyclically coupled
by the intralayer Raman transitions and interlayer laser-assisted
tunneling characterized by the matrix elements Qe'@~V%% and
J e respectively.

atom-light coupling the FFLO states emerge. The FFLO
states involve pairing with a finite center-of-mass momentum.
These states have received a considerable attention in different
physical contexts [64—69]. In general, the FFLO state arises
in the spin-polarized systems or can be induced by in-plane
Zeeman fields in the SO coupled Fermi gases [67,68]. Here we
show that for the small to moderate atom-light coupling the
FFLO states emerge intrinsically in the bilayer system without
any external magnetic field or spin polarization. As the atom-
light coupling increases, the system can undergo a transition
from the FFLO state to the topological superfluid (TS). The
TSs have been pursued theoretically in model Hamiltonians
with the 2D (3D) Rashba-type SOC [34-38,58-62]. Here we
provide convincing evidences that TSs can also occur in the
experimentally feasible bilayer system.

II. MODEL AND SINGLE-PARTICLE SPECTRUM

We consider a two-component Fermi gas confined in the
bilayer geometry as illustrated in Fig. 1. The atoms are
confined in a deep enough asymmetric double-well potential
[70], so their motion in the z direction is restricted to the
ground states of individual wells separated by a distance d.
On the other hand, the laser-assisted tunneling can induce
transitions between the two wells.

The system is described by four combined spin-layer states
17:7) = 1/ ayer @ [V )spin Which serve as the states required
for the ring coupling scheme [45]. Here j = 1,2 signifies
the jth layer, and y =7, | denotes an internal atomic state.
For example, the states with y =1, | can be the mp =9/2
and mp = 7/2 magnetic sublevels of the F' = 9/2 hyperfine
ground-state manifold of fermion “°K atoms, like in the
experiment [11] on the 1D SOC.

The four atomic states |j,y) are coupled in a cyclic
manner via the spin-flip Raman transitions and the interlayer
laser-assisted tunneling characterized by the matrix elements
Q(r) = Qe VEY and J(r) = Je** ), respectively. As
discussed in Ref. [52], such Raman transitions and interlayer
tunneling can be induced using three properly chosen laser
beams. The Raman coupling provides a recoil in the x + y
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direction, whereas the interlayer tunneling is accompanied by
arecoil in the x — y direction. Here /2 is a magnitude of the
in-plane momentum transferred by the lasers, and 2¢ = k.d
is a phase difference of the Raman coupling between the two
layers due to an out-of-plane recoil momentum k, [52].

The recoil momentum k, can also influence the atomic
center-of-mass motion in the z direction. However, the latter
effect is not important if the atoms are confined strongly by the
potential wells in the z direction. This is justifiable if the depth
of each well comprising the asymmetric double-well potential
exceeds considerably the recoil energy. Consequently in each
layer the atomic ground state is localized in the z direction
over distances much smaller than the wavelength A, = 27 /k,
corresponding to the atomic recoil accompanying the spin-flip
transitions. In that case, the atoms remain in the ground states
of individual potential wells after spin-flip transitions.

A. Hamiltonian and system

Performing a gauge transformation eliminating the position
dependence of the atom-light coupling matrix elements (r)
and J(r), the bilayer system is described by the following
Hamiltonian [71]:

I:I = Hkin + HLaser + HSOC + Hintv (1)

where
~ [R2K? 5
_ 2 T
Hyin = /d rz/ﬁﬂ”jy[ﬂ - Mi|¢jw 2
Hiaser = /der[ei(pl@;rTﬁll + e_i(plﬁgT@2l + H.c.]
+ /erzyJ@y&W +Hec, 3)
LT
Hsoc = [ d 1'7[1/f2¢kx¢2T — Uy ket
+ 1/};[¢k)’1ﬁ2¢ - @kay&IT],
Hiye = —g/d%ZIﬁ;Tlﬁ;u/Afjuﬁjm “4)
J

where V/;,, = 1/, (r) is a fermion field operator for annihila-
tion of an atom positioned at r in a layer j = 1,2 with a spin
state y = , 1. The first term Hy;, represents the Hamiltonian
for an unperturbed atomic motion within the layers, u being
the chemical potential. The second term H »5; accommodates
the spin-flip intralayer Raman transitions characterized by the
Rabi frequency €2, as well as the laser-assisted interlayer
tunneling described by the strength J. The third term Hsoc
represents the SOC due to the recoil momentum « in the
xy plane induced by the interlayer tunneling and Raman
transitions [52]. The latter SOC term was not included in the
previous analysis of the superfluidity for the fermions in a
bilayer geometry [62].

As one can see in Fig. 1 and Eq. (3), the amplitude of the
Raman coupling Qe*¢ contains a relative phase 2¢ = k.d
between the upper and lower layers. The phase 2¢ can be
changed by either varying the double-well separation d or
the out-of-plane Raman recoil momentum k,. For ¢ = /2
a Dirac cone appears in the single-particle spectrum of the
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FIG. 2. Single-particle dispersion of the lowest two branches for
various coupling strengths and ¢ = /2. (a) In a weak coupling
regime Q = J <K E., the dispersion is a superimposition of four
distinct paraboloids nearly centered at (£«, = «). (b) In the strong
coupling regime Q = J > E,, the Rashba-ring minimum (red
dashed line ) with a radius « /2 emerges.

ring coupling scheme [45,52]. A gap is opened in the Dirac
spectrum for ¢ # 7 /2. This is important for formation of the
topological superfluidity.

Finally, Hy, describes the on-site attractive interaction (g >
0) between atoms situated in the same layer. Here the bare
s-wave interaction g is related to the binding energy E}, of the
two-body bound state [72] via

1/g =) 1/Qex — Ep), )

k

where e, = /i’k?/(2m) is the kinetic energy. In experiments,
the binding energy E;, can be tuned via the Feshbach resonance
technique.

B. Effective single-particle Hamiltonian

We shall focus on a situation of a symmetric coupling: Q2 =
J. Figure 2 plots the single-particle dispersion. If 2 = J <«
E'.., the minima of the single-particle dispersive paraboloids
appear at (£«, =+ k), where Ey.. = R2i2 /2m is a characteristic
energy of the in-plane recoil. The dispersion is then built of
four distinct superimposed paraboloids, each corresponding
to individual spin-layer states | j,y). As the coupling increases
(but 2 = J < Ejec), the four paraboloids gradually coalesce.
Yet the dispersion still exhibits four distinguishable minima
in the lowest branch. The locations of the four minima would
gradually move toward the center k = 0 as the coupling in-
creases. Finally in the strong coupling regime, Q2 = J > FEi,
the mixing between the spin states results in the emergence of
a cylindrically symmetric Rashba-ring minimum of radius « /2
[45,52]. In this case, one can project the Hamiltonian onto the
lowest two energy states leading to the usual single-particle
Hamiltonian of the Rashba type (see Appendix A)

_ K2/2m — ' —h, ok, —iky)
M = ( alky +ik)  k/om - +h ) ©

where u' = u — Ap is an effective chemical potential, o =
i/2m, and Ay = Ege — 24/2cos (8¢/2). Here

h, = Q«/zsin(8<p/2), with ¢ = ¢ —m/2, )

is an effective Zeeman field which is controlled by tuning the
relative phase ¢ for the Raman coupling. For ¢ = 7 /2 we have
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h, = 0, leading to the usual Dirac cone at k = 0. The Dirac
cone is opened if the phase ¢ deviates from 7 /2.

III. ANALYSIS OF THE SUPERFLUIDITY
A. Method

By introducing the superfluid order parameters A ;(r) =
&Y ()Y 4+(r)) with r = (x,y), the Hamiltonian (4) can
be diagonalized via a Bogoliubov—Valatin transformation
[73]. In doing so we have additionally included a weak
harmonic trapping potential V (r) = mw?r?/2. The resultant
Bogoliubov-de Gennes (BdG) equation

HBdG(r)¢n = 8n¢n (8)
is described by an 8 x 8 matrix Hamiltonian
_(H@® T
HBdG(r) - ( jT HZ(I‘))’ (9)

where a diagonal 4 x 4 matrix J = diag(J,J, — J, — J)
describes the interlayer coupling, and H; »(r) is a4 x 4 matrix
Hamiltonian for an uncoupled layer j = 1,2:

er(r) Qe 0 AL (F)
Qe'? € (r —A(r 0
mm =1, —Z;E(i) —ET;EI; —Qeiv |’
Aj(r) 0 —Qe'? —efi(r)
(10)
and
€24(r) Qe'? 0 As(r)
Hy(r) = Q60 ! _62;'1)‘) :EA;ig; —Sgei“’ ’
A3(r) 0 —Qe™'? —e;l(r)
(11)
with

e11(r) = —hA*V?/2m) + ik*kdy /m + V() — p,
€1,(r) = —R*V?/Q2m) + iR*kd, /m + V(1) — u,
e (r) = —h*V?/(2m) — ilPkd/m + V(r) — p,
€, (r) = —h*V?/2m) — if*kdy/m+ V() —pn,  (12)

The Nambu basis is chosen as ¢, =
(14,81 )., V14,0 V1 g s Uag 2] s V21020 9], and gy
is the corresponding energy of Bogoliubov quasiparticles
labeled by an index n. The order parameter A »(r) is to be

determined self-consistently by

Ajr) =gy [ujp v, f(=eg) +uj g5, flE)],
n

where f(E) = 1/[ef/*T 4 1] is the Fermi-Dirac distribution
function at a temperature 7. The chemical potential p is
determined using the number equation N = | dr n(r), where
the total atomic density is given by

() =Y [ujy,@F f(e) + [y @P f(=g)l. (13)

Jjv:n
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FIG. 3. (a) Real-space density profile (left panel) and phase
configurations (middle panel) of the order parameters A, , for 2 =
J =0.05E,. and ¢ = /2. Here we have taken Ny,, = 100 and
E;, = 2E,.. The right panel shows the corresponding momentum-
space distribution. (b) An illustration of the FFLO-type of the Cooper
pairing mechanism. The red and blue solid arrows represent the
Cooper pairing momenta of atoms in the first and second layers,
with Q, » denoting the total paring momentum.

We have solved the BAG equation self-consistently by using
the basis expansion method [61]. In the numerical simulations
we take a large energy cutoff ¢, = 6E. to ensure the
layer-2 layer-1
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accuracy of the calculation, where E... = 10/iw assures the
trap oscillation frequency is much smaller than the recoil
frequency. Throughout this work we focus on the case of
zero temperature. The temperature of the gas 7 is about
0.2 ~ 0.3Tf for a total number of atoms Nom = 100 used
in the calculations if one takes the Fermi temperature 7r to
be around 300 nK [74]. Such a temperature T is sufficiently
low, so the results of the calculation are almost unaffected by
taking the zero temperature limit.

B. Results

We start with a weak coupling limit Q = J < Ejec.
Figure 3 plots the corresponding density profiles and phase
configurations for the order parameter A (r). The fermions
are assumed to populate only the lowest branch, so the Fermi
surface forms four Fermi pockets centered at (£«, & k). The
first two points (k,0) and (0,«) correspond to the spin up and
down states for the first layer, whereas the remaining two points
(—«,0) and (0, — x) correspond to the spin up and down states
for the second layer. Note that atoms prefer to pair in the same
layer, since only the atoms situated in the same layer interact.
We have found that the order parameters A »(r) = Age'Qar
exhibit an oscillating structure along the diagonal directions
Q; = (e, +e,) and Q, = —Qy, as shown in Fig. 3(a). This
is a key feature of the so-called FFLO phase. In Fig. 3(b),
we illustrate the underlying pairing mechanism of the FFLO
state.

If we choose the first layer, the wave vectors for the
two pockets (k,0) and (0,«) can be written as ki; = ke, +
K;; and k;, = ve, + Kj,. Here Ky}, denotes the atomic
momentum calculated with respect to the center of each Fermi
pocket. When K;; = —Kj, fermions can pair together in
different pockets with opposite momenta. In this case the
total momentum k4 +K;; of the atomic pair in the first
layer reads Q; = k(e + e,). In a similar manner, the pairing
center-of-mass of momentum is Q, = —« (e, + e,) for the
second layer, as one can see in Fig. 3(b).

As the coupling €2 = J increases, the four paraboloids
are mixed by the intralayer spin-flip atomic transitions and
interlayer tunneling. In that case the four Fermi surface pockets

layer-2

22

A

0.2 JJE,. =0.6

rec

II <>I‘\>

JJE
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oY L.
- »

JJE,. =13

rec

FIG. 4. (a) Profiles of the order parameter A(r) (up) and the corresponding momentum distributions (down) in the first and second layers

for the @ = J = 0.2,0.6,1.3E.. Other parameters are E, = 2F.,

¢ =m/2, and Nyom = 100. (b) Evolution of the order parameter A,

(maximum of the order parameter in the whole region) (blue solid line) and the magnitude of the FFLO vector |Q; »| (red dashed-dotted line)

are plotted as a function of the interlayer tunneling strength J = Q.
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still remain, but the central locations of the pockets shrink
toward the momentum center k = 0. In this case, the FFLO
state sustains, but with the FFLO pairing amplitude A being
reduced. Figure 4 depicts the evolution of the order parameters
A1, and corresponding momentum dispersions Q;, for
various coupling strengths. We see that the pairing momentum
decreases as the coupling increases. Around J 2, E.., the four
paraboloids begin to merge together, the atoms tend to pair
with zero relative momentum, and the system enters a normal
superfluid state.

Let us now investigate a feasibility of the topological
superfluidity in the bilayer system for €2 = J. For this purpose,
we allow the relative phase of the Raman coupling ¢ to
deviate from /2, so §¢ = ¢ — /2 # 0. Consequently the
energy gap E(S¢) = 2h. = 2/2Qsin(8¢/2) appears in the
single-particle spectrum at the Dirac point k = 0 in the strong
coupling (Rashba) regime. The phase diagram is illustrated in
Fig. 5. As anticipated, at the strong coupling one can find a
TS phase which is characterized by a nonzero Chern number
C =1 and a zero pairing momentum Q = 0. Here the Chern
number is calculated by a self-consistent solution of the BdG
equation (8) at the center of the trap where the changes in
the trapping potential are minimum (see the Appendix B).
As shown in Fig. 5, there is a phase transition from normal
to topological superfluids when the chemical potential enters
the energy gap. Moreover, the FFLO and NS states have
also been identified by observing the states with Q # 0

@ 15 g=0,c=1

~1.0 1 1 1
1.0 15 2.0 0.0 0.5 1.0 1.5 2.0

I/ B

E, (© J=0 (FFLO)

E, (d)  J=1.0Exec (NS) i () J=15Erec (TS)

FIG. 5. Phases of the bilayer system for 2 = J and ¢ = 0.67. (a)
Phase diagram in the (E}, J) plane for Nyom = 100. Three phases are
formed: a FFLO superfluid represented by a dark red region, a normal
superfluid (NS, white region) and a topological superfluid (TS, yellow
region). The latter phase is characterized by a nonzero Chern number
C and a zero pairing momentum Q. (b) Chemical potential x as a
function of the interlayer tunneling J at the binding energy E, =
1.0E.. (c)—(e) Two lowest branches of the single-particle dispersion
for different values of J corresponding to different phases. Here the
chemical potential is represented by a gray plane. The dispersion
branches become lower with an increase of J, leading to a decrease
of the chemical potential, as one can see in (b)—(e). The NS phase
transforms to the TS phase when the chemical potential enters the
energy gap, as one can see comparing (d) and (e). In (c)—(e) the
momentum is measured in the units of the recoil momentum «.
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FIG. 6. Evolution of parameters of the system across the topo-
logical phase boundary. (a) Behavior of the minimum excitation
gap E, (blue dashed line) and the order parameter A, = A
(red solid line) with increasing chemical potential for E;, = 3E,
J=Q=2E., and ¢ = 3/4x. (b) Minimum excitation gap and
pairing order parameter against the tunneling phase ¢ for E, = 3E .,
J =Q =2E.and u = —0.5E.. The yellow filled circles indicate
the integer Chern number C which is a topological invariant.

and Q =0, C = 0, respectively. For the moderate coupling,
Q = J < E., the bilayer system stays in the FFLO state.
Similar to the ¢ = /2 case discussed above, such a FFLO
state would undergo a transition to the NS when the coupling
strength is increased to J.; 2 E. In the strong coupling
regime, Q = J 2 1.5E., corresponding to the limit of the
effective Rashba-type SOC, the system can be in a TS state if
the chemical potential is situated within the energy gap E(5¢).
Hence there exists another critical coupling strength J,, for the
transition between the NS and TS. In Fig. 5 the dashed blue
and red solid lines indicate the phase transitions FFLO — NS
and NS — TS, respectively. It is noteworthy that the critical
coupling J,, for the transition between the NS and TS states
increases with the binding energy E;, because of the increase
of the chemical potential.

To explore in detail the transition from nontopological (NS)
to topological (TS) phases, we have observed the closing
and reopening of the excitation gap E,, which is necessary
to change the topology of the Fermi surface. In Fig. 6, we
present a behavior of the order parameter A; , = A, the bulk
quasiparticle gap E,, and the Chern number C while increasing
the chemical potential i and the interlayer phase ¢. One can
see that across the critical point where the Chern number
changes abruptly, the excitation gap E, vanishes, indicating the
topological phase transition. The order parameter A increases
with increasing chemical potential u, and decreases with an
increase of the interlayer phase ¢ with respect to m /2.

Finally, we show how the FFLO state evolves with
increasing temperature in this bilayer system. Figure 7 gives
BdG results for the density profiles, the phase configurations,
as well as the momentum-space distributions of the order
parameter for the first layer at different temperatures. (The
order parameter looks similar in the second layer, so we
have not displayed such plots.) With increasing temperature,
the order parameter is destroyed gradually, and a large
FFLO momentum ~(0.9«,0.9«) is nearly independent of the
temperature. In this case, it is much more difficult to disturb
the FFLO state by thermal fluctuations compared to the TS
phase. A further increase of the temperature will destroy the
superfluid state eventually at around 7' ~ 0.8TF.
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FIG. 7. Density profiles, phase configurations, and corresponding
momentum-space distributions of the order parameter of the first
layer at several temperatures: 7 = 0.157 (upper panel), T = 0.45TF
(middle panel), and T = 0.7Tr (bottom panel). Other parameters
are Q = J =04E, Ey = 1E, ¢ = 0.6, and Nyom = 100. The
characteristic temperature scale Tr = Er/kp is given by the Fermi
energy. The momentum is measured in the units of the recoil
momentum .

IV. CONCLUDING REMARKS

We have investigated the superfluidity properties of a
bilayer spin-orbit-coupled degenerate Fermi gas. The anal-
ysis has elucidated a diverse phase diagram of the bilayer
superfluidity in a wide range of magnitudes of the atom-light
coupling and atom-atom interaction. For the small to moderate
atom-light coupling, the FFLO states occur. In the stronger
coupling regime, the system undergoes a transition from
the NS to TS phases. These effects can be experimentally
detected for atomic fermions in a bilayer system. As discussed
previously in the context of bosons [52], the bilayer scheme
can be readily realized using three laser beams to induce the
interlayer tunneling and the intralayer spin-flip transitions. In
a similar manner, the bilayer scheme can be implemented for
fermion atoms used in the previous experiments on the 1D
SOC, such as K [11].
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APPENDIX A: SINGLE-PARTICLE HAMILTONIAN

A single-particle part of the bilayer Hamiltonian (1) reads
in the matrix representation

ein(k) Qe ? J 0
_ Qei“’ éu(k) 0 J
HO - J* O E2T(k) Qei(p ) (Al)
0 J* Qe‘i‘” €2 (k)

where the diagonal elements provide the SOC due to the recoil
momentum /2

enn(k) = [k + (ky — )] /2m —
ey (&) = [k — 00> + k7]/2m —
(k) = [(ke +)° +k7]/2m — p,
e,(K) = [k2 + (ky +1)*]/2m — p. (A2)

Note that the Hamiltonian (A1) is related via a unitary trans-
formation to the original Hamiltonian containing a position-
dependent Raman coupling Qe/*“—»%¢l and a position-
dependent interlayer tunneling Je/**+Y) [52].

The Hamiltonian given by Eq. (A1) looks different from the
one describing the SOC of the pure Rashba (or Dresselhaus)
type. To establish a relation with the Rashba SOC, we set
Q = J and diagonalize the Hamiltonian (A1) for kK = 0 via
the following unitary transformation:

1—e”i¢ e i1
-1 2—2cos(p) 2—2cos(¢p) 1
1 1 14e7'¢ 1+e % 1
— _ Zt?wcoi(w) \/21-+239;(<p) (A3)
2| -1 2—2cos(p) /2—2cos(p) 1
1 _ 1+e~'% _ 14e7'% 1
242 cos(p) V242 cos(p)
Thus one finds
Hso = SHyS™!
€1+ oalky —ik,) 0 atk, +ik,)
| atky +ike) e alky —iky) 0
= 0 alky+ik) € ok —ik) ]|
atky —iky) 0 alk, +ik) e
(A4)

where
€14 = k2/2m + Eree — 1t + 282 sin(p/2),
€1- =K?*/2m 4 Eec — 11+ 2Q cos(p/2),
€2+ = k*/2m + Eree — ;1 — 282 sin(p/2),
€r- =Kk?/2m + Eree — 1 — 22 cos(¢/2), (AS5)

and o = «/2m.

053628-6



FULDE-FERRELL-LARKIN-OVCHINNIKOV STATE TO ...

By tuning the strength € and the phase difference ¢
of the Raman coupling, one can reach a regime where
2Qsin(¢/2) > E.. and sin(¢/2) ~ cos(p/2), so ¢ ~ /2.
Under these conditions the low-energy physics is described
by the two lowest energy branches €,. characterized by
the eigenvectors |2+). Neglecting the upper two dispersion
branches €1 separated from €,+ by approximately 42, one
arrives at an effective low-energy 2 x 2 matrix Hamiltonian:

_ K2/2m — ' —h, alky, —iky)
Horr = ( atk, +ik)  K2m—w +n ) B

where £, is an effective Zeeman term generated by a slight
change of the phase around ¢ = /2 [45]:

h, = Q[sin(¢/2) — cos(p/2)] = Q+/2sin bp/2), (A7)

with 8¢ = ¢ — /2. Here &’ = u — A is an effective chem-
ical potential with Au = Ey.. — Q[sin(¢/2) 4 cos(¢/2)].

The Hamiltonian (A6) can be cast in terms of the unit 2 x 2
matrix / and three Pauli matrices oy , .:

Her = (& /2m — )1 + a(koy + ko) + heo.. (A8

The SOC term k.o, + ko, is equivalent to the Rashba SOC
term —k,o, + k,o, after interchanging the dressed states
|24+) <> |2—). In fact, such an interchange leads to o, — —o,
and o, ; = Oy ;.

Unlike in the previous study on the bilayer bosons
[52], we do not take the phase ¢ to be m/2 in the ef-
fective Hamiltonian H.g. This allows one to include the
Zeeman term playing an important role in the topological
superfluidity.

APPENDIX B: CALCULATION OF THE CHERN NUMBER

To calculate the Chern number, we assume that the whole
region is homogenous for a sufficiently weak harmonic trap,
and transform the BAG Hamiltonian to the momentum space,

H=53 %¢]J£HBdG(k)¢k, where

H(k) T )

PHYSICAL REVIEW A 95, 053628 (2017)

with
EIT(k) Qe™i* 0 Ay
. Qei“’ Eu(k) —Al 0
(k) = 0 —A7 —en(=k)  —Qe |
AT 0 —Qe'? —ep (=Kk)
(B2)
and
62¢(k) Qei‘p 0 Az
_ Qe~¢ €2¢(k) —Ay 0
HZ(k) = 0 —A; _EZT(fk) _Qeitp
A3 0 —Qe ™ —e (k)
(B3)
Here we have chosen the Nambu basis ¢k =
T
[ClT,k,Cl¢,k,Ch,_k,Ch,_k,CzT,k,Cu,k,C;T,_k,C;l,_k] . To

determine the topological character, we then proceed to
calculate the Chern number C = 1/2x f dk*Q(Kk), where the
Q(Kk) is the usual Berry curvature for the momentum states
[75]

Qi) =-2) "% f

n m#n

(Y v, [ (K)) (W ()01, [ (K))
[em(K) — &,(K)]? '

Here f, =1/ [ee/*sT 1+ 1] is the Fermi-Dirac distribution
function, a subscriptn (n = 1,2, ... ,8)labels all eight particle-
hole bands of the momentum-space BdG Hamiltonian, and
Y¥n(K) is a wave function of eigenenergy ¢,(k), with v, and
vk, being velocity operators.

“In Fig. 5 the order parameter and the chemical potential
are given by the self-consistent solution of the BAdG equation
(8) at the center of the trap where the changes in the trapping
potential are minimum. For the NS and TS phases the order
parameter is constant, so the momentum representation is
relevant.

x Im (B4)
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