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Multiple Majorana zero modes in atomic Fermi double wires with spin-orbit coupling
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Majorana zero modes, quasiparticles with non-Abelian statistics, have gained increasing interest for their
fundamental role as building blocks in topological quantum computation. Previous studies have mainly focused
on two well-separated Majorana zero modes, which could form two degenerate states serving as one nonlocal
qubit for fault-tolerant quantum memory. However, creating and manipulating multiple Majorana zero modes,
which could encode more qubits, remain an ongoing research topic. Here we report that multiple Majorana zero
modes can exist in atomic Fermi double wires with spin-orbit coupling and perpendicular Zeeman field. This
system belongs to the topological BDI class, thus all the topological superfluids are classified by integer numbers.
Especially, diverse topological superfluids can be formed in a trap, where the zero energy modes can be found at
the interfaces between different topological superfluids. The structure of these zero energy modes in the trap can
be engineered by the trapping potential as well as other system parameters. This system would be a significant
step towards utilization of Majorana zero modes in quantum computation.

DOI: 10.1103/PhysRevA.96.023623

I. INTRODUCTION

Majorana fermions [1–4], unlike Dirac fermions, are fun-
damental fermionic particles that are their own antiparticles;
mathematically, they can be represented as

γ = γ †. (1)

For all the known particles in the standard model, the neutrino
with almost zero energy is most likely to be a Majorana
fermion; yet in experiments the direct answer is still far
from inconclusive. Nevertheless, this exotic particle can still
be simulated using the quasiparticles in condensed-matter
physics, in which the zero energy modes in superconductors
with particle-hole symmetry naturally satisfy the above self-
Hermitian condition. These zero energy modes hereafter
throughout this work are called Majorana zero modes (MZMs).

These intriguing MZMs are exotic for their non-Abelian
exchange statistics [5], rather than Fermi or Bose statistics [4]
and their robustness against local perturbations, thus offering
a unique platform in fault tolerant topological quantum
computation [6–9], quantum memory [10–14], and quantum
random-number generation [15,16]. Therefore in the past
several years in condensed-matter physics there have been
various theoretical proposals for the realization of these
zero energy modes [17–34]. Some are worth mentioning
among a growing number of diverse proposals, including
one-dimensional semiconductor-superconductor heterostruc-
ture based quantum wire [18–24], vortices in a spinless
p + ip superconductor [25–28], Moore-Read-type states in
the ν = 5/2 fractional quantum Hall effect [29,30], and
even one-dimensional Fe chains [31–33]. Especially, the ob-
servation of a magnetic-field-induced zero-bias conductance
peak in InAs and InSb semiconductor nanowires [35–38], Fe
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chains [39], and vortex cores in topological insulator-s-wave
superconductor hybrid structure [40–42] provide promising
evidences for the realization of these MZMs.

Based on previous proposals with only one band in the
spin-orbit coupled system, it triggers a topological phase
when the magnitude of the Zeeman field exceeds the critical
field [18,19,43],

|h| � hc =
√

�2 + μ2, (2)

where μ and � are chemical potential and s-wave pairing
strength, respectively. In this case the topological index such
as the Pfaffian and Chern number are nonzero. Otherwise the
system is trivial. A pair of MZMs, say γ1 and γ2, are formed at
the two open ends, where γ1 and γ2 may localize arbitrarily far
apart from one another; consequently two nonlocal fermionic
states via f = (γ1 + iγ2)/2 could serve as one nonlocal
topological qubit for fault-tolerant quantum memory [8–14].
Nevertheless, creating and manipulating multiple MZMs,
which would be essential for subsequent braiding experiments
to demonstrate its non-Abelian nature, still remain a challenge.
Up to date the non-Abelian statistics was only simulated based
on photonic qubits in the transverse Ising chains [44]. This
greatly limits our ability to realize the topological quantum
computation based on these systems.

In this article, we propose and validate a specific exper-
imental setup for the realization of multiple MZMs—one-
dimensional Fermi double wires with Raman laser-induced
SO coupling [45]. The double wires can be readily created
by adding a two-dimensional double-well optical lattice. The
atoms in each wire are affected by the same SO coupling
induced by the Raman lasers. Meanwhile, the same spin atoms
in the two wires are linked with the interwire tunneling.
Different from the previous studies [46–51], by tuning the
interwire tunneling, we find that the traditional gap-closing
condition induced by the collective effect of spin-orbit (SO)
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(a) (b)

FIG. 1. (a) Schematics diagram for the double-wire system with
SO coupling. A double-well optical lattice that has two local minima
in a unit cell is formed by the interference of two pairs of counter-
propagating laser beams. There is a resulting double-well periodic
potential along ẑ axis, which allows the interwell tunneling without
spin flip. Additionally, two magnetic sublevels |↑〉 = |9/2,9/2〉 and
|↓〉 = |9/2,7/2〉 in each wire are coupled by a pair of Raman
lasers counterpropagating along x̂ axis with the recoil momentum
kr = k0 sin(θ/2), where k0 = 2π/λ with λ being the wavelength
and θ = π is the angle between two Raman lasers. (b) Effective
coupling between four atomic levels |j,σ 〉 (j = 1,2,σ = ↑,↓), where
J denotes the interwire tunneling without spin flipping, and 	

represents the intrawire spin-orbit coupling induced by the Raman
lasers.

coupling and Zeeman field is shifted and split into two
critical transition points hc,1,2 ≡

√
�2 + (μ ± J )2, where the

quasiparticle excitation gap vanishes. As a consequence, phase
transitions between different topological regions characterized
by (integer) winding numbers can be realized by tuning
the chemical potential, Zeeman field, as well as interwire
tunneling. We further demonstrate the MZMs within the
bulk energy gap by the self-consistent Bogoliubov–de Gennes
(BdG) simulations for a cloud trapped in a harmonic potential.
These zero modes can be found at the interface between two
distinct phases, which is consistent with the local density
approximation (LDA). These findings not only provide an
splendid platform for exploring multiple MZMs, but also
enrich our understanding of topological quantum matters.

II. HAMILTONIAN AND SINGLE-PARTICLE SPECTRUM

The SO coupling for ultracold Fermi atoms has been suc-
cessfully demonstrated in ultracold 40K and 6Li gases [52,53],
in which the Raman dressing scheme is based on coupling
two magnetic sublevels of the ground-state manifold with
two counterpropagating Raman lasers [54–65]. The system
considered in this work is depicted in Fig. 1(a), where the
Raman dressed 40K Fermi gases are loaded in a double-
wire geometry, which can be readily realized by adding
a two-dimensional double-well optical lattice [66,67]. Note
that the optical lattice is spin independent and induces
spin-independent tunneling between the coupled wires. We
choose the two atomic internal hyperfine states |9/2,9/2〉 and
|9/2,7/2〉 in 40K to label the spin-up (|j,↑〉) and spin-down
(|j,↓〉) states in both wires for j = 1,2. The atoms move along
the x̂ axis within a wire and two wires are separated by a
distance d in the ẑ direction. Moreover, the dynamics along
the ŷ axis are frozen to the ground states by optical lattice

with high potential depth. The interwire tunneling has the
form Jσ = ∫

dzψ∗
1,σ (z)[V (z) ± δ]ψ2,σ (z), where δ denotes the

detuning from Raman resonance and V (z) = c(z2 − d2)2 with
c is the intensity of the laser beams. The positive and negative
signs label the detuning to spin-up and spin-down atoms,
respectively. We assume them to be real and set J↑ = J↓ = J .
The four-level topology has been schematically shown in
Fig. 1(b), where the blue dashed lines represent the interwire
tunneling and the green circles denote the Raman-assisted
intrawire interaction with momentum transfer kr . Four atomic
states couple with each other in a cyclic manner with no
momentum transferred during a closed-loop transition.

The Hamiltonian is described by H = ∫
dx[HS +

Hint], with the single-particle component HS and Hint =∑
j=1,2 gj�

†
j↑(x)�†

j↓(x)�j↓(x)�j↑(x) describing the s-wave
contact interaction between the two spin states in the j th wire.
The single-particle Hamiltonian is written as

HS =
∑
j=1,2

�
†
j (x)

(
ξk + V (x) 	eikrx

	e−ikrx ξk + V (x)

)
�j (x)

+ J
∑

σ

(�†
1,σ (x)�2,σ (x) + H.c.) (3)

with �j (x) = [�j,↑(x),�j,↓(x)]T being the j th wire atomic
annihilation operators, ξk = εk − μ, where εk = k2

x/2m is the
kinetic energy, μ is the chemical potential, m is the mass
of an atom, and V (x) is the trapping potential, respectively.
The constants 	 and kr represent the coupling strength and
photon recoil momentum of the two-photon Raman coupling,
respectively. After applying a local gauge transformation to the
above model [68,69], the single-particle Hamiltonian becomes

HS =
∑

j

�
†
j (x)H0�j (x) + J

∑
σ

(�†
1,σ (x)�2,σ (x) + H.c.),

(4)

where the single wire term is H0 = εk − μ + V (x) + αkxσy −
hzσz, with the redefined chemical potential μ → μ − Er/4
and σy , σz are the Pauli matrices acting on the spin space.

The effective SO coupling constant α ≡ Er/kr and effec-
tive Zeeman field hz ≡ 	 are introduced. For convenience,
the recoil momentum kr and recoil energy Er ≡ k2

r /2m

are taken as natural momentum and energy units. Notice that
the interaction Hamiltonian Hint is invariant under this gauge
transformation [70]. By introducing the interwire tunneling
J , the four-band structure of the double-wire system is
illustrated in Fig. 2. The spin polarization at the lowest two
branches may have different a different sign or the same sign
depending strongly on the magnitude of Zeeman field. The
same as that in a single-wire system, a perpendicular Zeeman
field hz is required to open an energy gap near the Kramers
degenerate point at kx = 0, which is necessary to change
the topology of the Fermi surface. As the Zeeman field hz

increases, when |hz| > |J |, an energy gap between the second
and third branches is opened, as shown by the red curves
in Fig. 2. The dispersion is then built by three energy gaps.
Consequently, there would be a topological phase transition
when the chemical potential moves from one energy gap to
another one.
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(a) (b) (c)

FIG. 2. The evolution of single-particle energy spectra with the increasing of Zeeman field hz. The band structure is symmetric around
kx = 0 in all cases, supporting the superfluids pairing between atoms with opposite momentum. In (a) without Zeeman field, the points at
kx = 0 are exactly twofold degenerate due to Kramers’s theorem. The energy difference between these two degenerate points are controlled by
the interwire tunneling J . In the presence of Zeeman field, this degeneracy is broken, and energy gaps between spin-up and spin-down states
[denoted by arrows in (b) and (c)] can be realized. The two lowest bands at kx = 0 may have different spin polarization in moderate Zeeman
field (b) or the same spin polarization in the strong Zeeman field limit (c). In all figures, J = 0.4Er is used.

III. TOPOLOGICAL PHASE DIAGRAMS

To explore in detail the phase transition in the double-wire
system, we first consider an infinite homogeneous case with
the superfluid pairing formed between atoms in the same wire
with opposite momentum (−kx , kx). Here we safely neglect
the interwire pairings by assuming they are suppressed by
the barrier between two wires. Under the Numbu spinor basis
[c1↑,kx

, c1↓,kx
, c

†
1↑,−kx

, c
†
1,↓,−kx

, c2↑,kx
, c2↓,kx

, c
†
2↑,−kx

, c
†
2↓,−kx

]T ,
the Bogoliubov–de Gennes (BdG) operator in momentum
space can be written as

HBdG(kx) =
(

H1(kx) J
J † H2(kx)

)
, (5)

whereJ = diag(J,J, − J, − J ) is the interwire tunneling and
Hj (kx) is the Hamiltonian of the j th wire, �j is the pairing
order parameter of j th wire, and

Hj =

⎛
⎜⎜⎜⎝

ξk − hz −iαkx 0 �j

iαkx ξk + hz −�j 0

0 −�∗
j −ξk + hz iαkx

�∗
j 0 −iαkx −ξk − hz

⎞
⎟⎟⎟⎠. (6)

Here we just consider the symmetric case � = �1 = �2. We
first clarify the topological class of the BdG Hamiltonian
HBdG(kx) [71]. The representations of the time reversal (�),
the particle-hole reversal (�), and the chiral (S) symmetry are
defined as � = UT K , � = UP K , and S = �� = US , where

UT = ρ0 ⊗ τ0 ⊗ σ0, (7)

TP = ρ0 ⊗ τx ⊗ σ0, (8)

US = UT U ∗
P = UP , (9)

with ρ, τ , and σ the Pauli matrices acting on double wire
space, particle-hole space, and spin space, respectively, K

represents the complex conjugate operator and UT , UP , and US

are unitary matrices. It is easy to see that �2 = �2 = S2 = 1,
thus the double-wire system belongs to the topological BDI
class, which is characterized by the Z index in one spatial
dimension. In order to determine the topological invariant, we
then proceed to calculate the winding number W . In general

the BdG Hamiltonian can be transformed into an off-diagonal
block form:

U †HBdG(kx)U = i

(
0 υ(kx)

−υT (kx) 0

)
, (10)

with U the eigenfunctions of US [72]. The winding number is
then calculated by

W ≡
∫

dkx

2πi
∂kx

ln det υ(kx) = tr
∫

dkx

2πi
∂kx

ln υ(kx)

=
∑

n

∫
dkx

2πi
∂kx

ln zn(kx) ∈ Z, (11)

with zn(kx) being the eigenvalues of υ(kx), which are complex
values due to the non-Hermiticity of υ(kx).

The phase diagrams are presented in Fig. 3 with the phase
boundaries determined by det υ(kx) = 0. Furthermore, we
calculate the energy gap Eg at zero momentum and obtain
the gap close condition:

hz =
√

�2 + (J ± μ)2. (12)

If there is no tunneling between the two wires, the critical
Zeeman field reduces to the well-known boundary in Eq. (2).
It is clearly indicated that the interwire tunneling J directly
split the critical point into two critical Zeeman fields: hc1 =√

�2 + (J + μ)2, hc2 =
√

�2 + (J − μ)2. The excitation gap
vanishes at these two critical values, which represents a
topological phase transition. As shown in Fig. 3(a), there
is a phase transition from normal to topological state with
W = 1 when the Zeeman field equals hc2. Furthermore, such
topological state (W = 1) would undergo a transition to the
topological state with W = 2 as the Zeeman field is increased
to hc1. The colors ranging from dark to red give the value of the
energy gap Eg. The phase boundaries using these two criteria
are consistent as shown in Fig. 3. In Fig. 3(b), as anticipated
in single-particle spectrum, the double-wire system can be in
different topological states if the chemical potential is situated
within different energy gaps. One can see that the topological
phase with W = 1 emerges when the chemical potential enters
the first and third energy gap, indicating the same topology
for two energy gaps. On the other hand, the W = 2 state
has also been observed as the chemical potential shift to
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(a) (b)

(c) (d)

FIG. 3. Topological phase diagrams with the energy gap Eg

are shown in (a) (�-hz) plane with μ/Er = 0.5, J/Er = 0.3 and
(b) (�-μ) plane with hz/Er = 1.0, J/Er = 0.4. The colors ranging
from dark to red describe the values of Eg and the white dotted
lines represent phase boundaries where the energy gap equals zero.
(c) The energy gap Eg is plotted with respect to the Zeeman field
hz. There is a jump in the winding number, occurring precisely
at Eg = 0. Here, the other parameters are chosen as �/Er = 0.5,
J/Er = 0.3, and μ/Er = 0.5. (d) Plot of the energy gap Eg as a
function of the chemical potential μ with �/Er = 0.5, hz/Er = 1.0,
and J/Er = 0.4.

the second energy gap. It is noteworthy that by increasing
the pairing order parameter �, the area of W = 2 along the
chemical potential gets smaller and finally disappears above
the threshold,

√
h2

z − J 2, and the trivial phase W = 0 will
occur for the whole chemical potential space if we move on
and reach the limit h2

z − �2 = 0. Thus with the introduced
interwire tunneling the required minimal Zeeman field may be
relaxed from

√
μ2 + �2 to �.

These phase transitions can be understood from the view-
point of gap closing and reopening [see Figs. 3(c) and 3(d)],
which is characterized by the energy gap Eg at zero momen-
tum. We find that during the topological phase transitions the
gap will be closed and reopened. These transitions can be more
precisely understood from the viewpoint of winding number
as shown in Fig. 4. We find that in the trivial phase regime,
the winding number around the origin is zero when hz = 0,
and will enclose the origin by one time when W = 1 and two
times when W = 2. The topological phase transitions in the
winding number is determined by υ(kx) = 0, in which the gap
is closed and reopened since det (HBdG(kx = 0)) = 0. We will
also show in the following section the realization of MZMs in
these topological phases from the bulk-edge correspondence
point of view.

IV. MULTIPLE MAJORANA ZERO MODES IN THE
HARMONIC TRAP

We now turn to discuss the double-wire system within a
harmonic trapping potential V (x) = mω2x2/2. According to
the local-density approximation, the chemical potential can
be thought of as a position dependent function, μ(x) =
μ − V (x), that continuously decreases away from the center
of the trap. Therefore, the critical Zeeman field can be
accordingly redefined as hc(x) =

√
�(x)2 + [J ± μ(x)]2. We

start from the case when μ(0) >
√

J 2 + h2
z and |hz| > |J |,

thus in the single-particle picture all four bands are occupied
[see Fig. 5(a)], in which case the center of the trap is trivial.
From the center of the trap to the two wings the topological
indexes in the LDA sense are W = 0, 1, 2, 1, 0, respectively.
With the decreasing of total number of particles, which
controls the chemical potential μ(0), the center of the tap will
enter the topological phase regime with W = 1 when three
bands [Fig. 5(b)], and W = 2 when two bands [Fig. 5(c)],
are occupied. The corresponding topological number patterns
will also be changed accordingly. Due to the smooth profile
of chemical potential and order parameters, we find that at the
interface between two topological superfluids the change of
topological number is at most equal to 1 [the jump by 2 is
possible only when μ(x) = 0 is encountered, as can be seen

FIG. 4. The curves of det υ(kx) in the complex space for different Zeeman fields: (a) hz = 0, (b) hz/Er = 0.5, and (c) hz/Er = 1.2. In
(a) the winding number W = 0 since the curve travels counterclockwise first and then clockwise around the origin. Panels (b) and (c) represent
the case of W = 1 and W = 2, respectively. Notice that the two limits kx → ±∞ will correspond to the same point from the winding number
formula (11). Other parameters are μ/Er = 0.5, J/Er = 0.3, �/Er = 0.5.
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(a) (b) (c)

(d)

(e)

FIG. 5. Topological phases in a trap. Panels (a)–(c) give a rough configuration of the double-wire system in a weak harmonic trap for
different total atomic numbers within the local-density approximation. The dot lines give the local chemical potential μ(x) = μ − V (x). We
start at the point where the total atomic number is set to be large enough that all four bands are occupied. From the center of the trap to the
two wings the topological indexes in the LDA sense are W = 0, 1, 2, 1, 0, respectively. If we decrease Natom, fewer bands are occupied and
fewer topological phases can be distinguished. (d) Quasiparticle excitation spectrum Eη (in units of EF ), calculated within the self-consistent
BdG approach, at three total atomic numbers, Natom = 200, 150, and 120, respectively. Here γ = π , hz/EF = 0.7, and J/EF = 0.2 (where
EF = Natom/4h̄ω is the Fermi energy). The number of Majorana zero modes changes as the total number of atoms varies, therefore we detect 8,
6, and 4 MZMs, corresponding to the spatial Zeeman fields [hc1(x) − hz], [hc2(x) − hz], and the order parameter �(x) shown in (e). The phases
distinguished by the winding number are highlighted with different colors. The dots in each subgraphs label MZMs associated with interfaces
between different phases, where the Zeeman field crosses the lines. It is convenient to use the Thomas-Fermi radius x0 = √

Natom/4mω as the
unit of length.

from Fig. 3(b)]. It should be emphasized that the topological
number pattern is relatively stable and is almost independent
of the external potential.

We further use the exact numerical method to verify the
above picture by self-consistently solving the BdG equation
in real space, following the method in Ref. [70]. ϕη(x) ≡
[u1↑η(x), u1↓η(x), u2↑η(x), u2↓η(x), v2↑η(x), v2↓η(x), v1↑η(x),
v1↓η(x)]T are the Nambu spinor wave functions corresponding
to the quasiparticle excitation energy Eη. The BdG Hamilto-
nian HBdG(x) can be transformed from the momentum space
Hamiltonian in Eq. (6) via ξk replaced by −(1/2m)∂2/∂x2 +
V (x) − μ for the kinetic energy, αkx by −iα∂/∂x for the SO

coupling, and �j by �j (x) for the pairing order parameter.
Furthermore, the order parameter �j (x), the chemical poten-
tial μ can be determined by the self-consistent equations

�j (x) = −g1D

2

∑
η

[uj↑ηv
∗
j↓ηf (Eη) + uj↓ηv

∗
j↑ηf (−Eη)],

N =
∫

dx
∑
j,σ

njσ (x), (13)

njσ (x) = 1

2

∑
η

[|ujση(x)|2f (Eη) + |vση(x)|2f (−Eη)].
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(a) (b)

(c) (d)

FIG. 6. Wave functions of four paired Majorana zero modes. Due
to the intrinsic symmetry u+

jση(x) = v−∗
jση(x) with Eη → −Eη, where

± refer to quasiparticle and hole excitations, we just show the wave
functions of quasiparticle zero modes. All modes satisfy the symmetry
requirement for Majorana wave function uσ (x) = v∗

σ (x) or uσ (x) =
−v∗

σ (x) [here uσ (x) = u1σ (x) = u2σ (x), vσ (x) = v1σ (x) = v2σ (x)].
The parameters are the same as the case in Fig. 5 with Natom = 200.

Here njσ is the local density of fermions in j -th wire
with spin σ , and f (x) = 1/(1 + ex/kBT ) is the quasiparticle
Fermi-Dirac distribution at the temperature T . The harmonic
basis up to 400 harmonic oscillators are used to construct
the eigenfunctions, which is found to be large enough to
ensure the numerical accuracy. Moreover, the dimensionless
interaction parameter γ ≡ −mg1D/n0 is used to characterize
the interaction strength, where n0 is the zero-temperature
center density of ideal fermionic gases.

Figure 5(d) show the mean-field energy spectrum with
different total particle numbers. The emergence of MZMs can
be clearly revealed by the behavior of the energy spectrum. At
a large total particle number Natom = 200, eight quasiparticle
modes with nearly zero energy are clearly spectrally separated
from all other states. Furthermore, we observe six Majorana
zero energy modes with Natom = 150 and four MZMs with
Natom = 120, corresponding to what we have discussed in
Figs. 5(a)–5(c). As predicted within the LDA, the number
of MZMs changes as the total number of atoms decreases.
The corresponding calculation of [hc,1,2(x) − hz] for a local
uniform cell at position x with the local chemical potential
μ(x) and order parameter �(x) [in this case, �(x) = �1(x) =
�2(x)] are given in Fig. 5(e). The symmetry around the x̂ axis
originates from the harmonic trapping geometry. Zero-energy
modes, labeled with white dots, just locate around the place
hz =

√
�(x)2 + [J ± μ(x)]2, corresponding to the steep slope

of the order parameter. For example, at a total particle number
Natom = 200, the trivial phase takes over the central region of
the system and six nontrivial topological districts are detected
in the trap. This suggests that there are eight phase transition

(a1) (b1) (c1)

(c2)(b2)(a2)

FIG. 7. Linear contour plot for the local density of states of spin-up atoms ρ↑(x,E) and of spin-down atoms ρ↓(x,E) with different total
atom number: (a) Natom = 200, (b) Natom = 150, and (c) Natom = 120. The signals of MZMs are well isolated in the energy domain and real
space, and highlighted by white circles. (a) Eight MZMs are well localized at x � ±1.2x0, x � ±1.0x0, x � ±0.5x0, and x � ±0.4x0. (b) Six
Majorana zero modes are well localized at x � ±1.2x0, x � ±1.0x0, and x � ±0.3x0. (c) Four Majorana zero modes are well localized at
x � ±0.8x0 and x � ±0.5x0.
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points over the whole system, therefore we detect eight MZMs
associated with interfaces between different phases, where the
spatial Zeeman field hz(x) =

√
�(x)2 + [J ± μ(x)]2 equals

zero. It is obvious that fewer MZMs remain if we further
decrease the total number of particle Natom. The trivial area
at the trap center gets shrunk and eventually disappears at
about Natom ∼ 170, and only six MZMs are preserved. The
agreement between BdG and LDA result is excellent and both
theories predict the same multiple-shell structures.

Because of the intrinsic symmetry in the BdG formulism,
HBdG is invariant under the particle-hole transformation:
Eη → −Eη, γE = γ

†
−E . One can immediately find that the

zero-energy quasiparticle states satisfy the self-Hermitian
condition in Eq. (1), thus these modes can be regarded
as Majorana fermions. The corresponding wave functions
for these zero-energy states should satisfy either ujσ (x) =
v∗

jσ (x) or ujσ (x) = −v∗
jσ (x). The wave functions of the

MZMs in Fig. 5(d) are shown in Fig. 6. In a finite size
system, the overlap between the wave functions at the two
ends lead to finite but exponentially small energy splitting:
EZES ≈ ±9 × 10−10EF . We can see that the wave functions
readily satisfy either uj,σ (x) = v∗

j,σ (x) or uj,σ (x) = −v∗
j,σ (x),

meeting the requirement of symmetry or antisymmetry. In
practice, a direct and convenient way to detect multiple MZMs
is using spatially resolved radio-frequency (rf) spectroscopy.
It measures spatially localized zero-energy peaks yielded by
MZMs in local density of states (LDOS), which are separated
from other quasiparticle states. The local density of states for
spin-up and spin-down atoms is defined as

ρσ (x,E) = 1

4

∑
j=1,2,η

[|uj,σ,η|2δ(E − Eη)

+ |vj,σ,η|2δ(E + Eη)]. (14)

In Fig. 6, we show that the local density of states ρσ (x,E)
and the contribution from MZMs are clearly visible near
zero energy and well separated from other quasiparticle
contributions by an energy gap � ∼ 0.1EF . There are eight
Majorana induced zero-energy peaks localized pairwise at
the trap outer wing x = ±1.2EF , x = ±1.0EF and at the
inner wing x = ±0.5EF , x = ±0.4EF in Fig. 6(a). The two
peaks at the inner wing are not distinguishable because of the
superposition of the wave functions. In addition, we can clearly

see six (four) Majorana induced signals in Fig. 7(b) [Fig. 7(c)].
It is interesting to note that the Majorana zero-energy modes
at the outer wing and inner wing mainly contribute to ρ↑(x,E)
and ρ↓(x,E), respectively.

V. CONCLUDING REMARKS

We propose a scheme to realize and manipulate multiple
MZMs by using atomic Fermi double wires with spin-orbit
interaction and investigate the possibly novel topological
properties. The tunneling between two wires triggers the
separation of previous topological phase region and generates
two diverse topological phases, characterized by the winding
number, representing a topological property. We give the
gap-closing condition to determine the topological phase
boundaries and map out the phase diagram for interpreting
the emergence of multiple MZMs. In addition, we give the
reliable results by solving the self-consistent BdG equation
within a harmonic trap and predict that numerous MZMs
associated with interfaces between diverse phases depend on
not only the combined effect of SO coupling and the Zeeman
field, but also the interlayer tunneling, thus offering more
knobs in experiments. Experimentally, multiple MZMs can
be detected by applying the spatially resolved radio-frequency
spectroscopy, which would show a well-isolated signal at zero
energy. The atomic Fermi double wires with SO coupling
described here not only provide fertile grounds for further
experiments to investigate the exotic topological superfluid
and associated multiple MZMs, but also constitutes a critical
step towards universal quantum computation.
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