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We investigate exciton emission of a quantum well embedded in a semiconductor microcavity. The analyti-
cal expressions of the light intensity for the cases of the excitonic number state and the coherent state are
presented by using secular approximation. Our results show that the effective exciton-exciton interaction leads
to the appearance of collapse and revival of the light intensity. The revival time is twice compared the coherent
state case with that of the number state. The dissipation of the exciton-polariton lowers the revival amplitude
but does not alter the revival time. The influences of the detuning and the phase-space filling are studied. We
find that the effect of higher-order exciton-photon interaction can be removed by adjusting the detuning.
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I. INTRODUCTION

With the development of crystal growth techniques,
people now can fabricate multi-dimensional confined nano-
structure materials, such as quantum wells, quantum lines
and quantum dots. Some interesting phenomena not ob-
served in bulk material may take place within these systems.
The optical properties of a microcavity containing semicon-
ductor quantum wells have been studied intensely in the re-
cent years[1] since the first observation of polaritons split-
ting in the strong-coupling regime[2]. The concept of the
exciton-polariton was originally proposed by Hopfield[3]. In
an infinite bulk crystals, the exciton is dressed by a photon
with the same wave vector to form a stable polariton due to
the transitional symmetry of the total system.

It was shown that, for sufficiently small decay ratesgex of
the excitons andgc of the photons, the coherent exciton-
photon interaction gives rise to a periodic exchange of en-
ergy between the exciton and the photon modes. Therefore,
the emission from the microcavity will show Rabi-like oscil-
lating behavior[4–7]. By regarding the excitons as a boson
(i.e, harmonic approximation) and neglecting exciton-exciton
interaction, i.e., within the completely linear regime, theoret-
ical calculation of the light intensity gave a good agreement
with the observed time-domain emission from the microcav-
ity [5,8]. Other effects, such as disorder-induced inhomoge-
neous broaden of the excitons[9] and the influence of
squeeze vacuum of the photons[10] were also shown to have
a strong influence on coherent dynamics of the exciton-
photon coupling in microcavities.

Besides the coherent interaction between the excitons and
the photons, nonlinear interaction between the excitons may
play an indispensable role on the coupled exciton-photon
system. In fact, the harmonic approximation is valid for the
case that the exciton density is much lower than the Mott
density, i.e.,nexaex

3 ø10−2, wherenex is the exciton density
and aex is the two-dimensional Bohr radius. If the exciton
density becomes relatively higher, the ideal bosonic model of
the excitons is no longer adequate. In this case, some re-
sidual Coulomb interactions among excitons and the phase-

space filling effect should be taken into account[11]. It is
well known that these complex nonlinear interactions lead to
parametric amplification of an incident light from the micro-
cavity [12–15].

In Refs. [16–18], the authors studied the effect of the
nonlinear interactions on the fluorescence spectrum of exci-
tons. The deviation of high density excitons from the ideal
boson model was investigated by introducing the concept of
q-deformed excitons[17]. With the achievements of previous
works mentioned above, it is natural to investigate the effects
of the exciton-exciton interaction on the light intensity from
the semiconductor microcavity. Our previous work shows
that the nonlinear interaction will lead to the appearance of
collapses and revivals(CRs) in the light intensity[19]. Com-
paring the initial coherent state case with that of the number
state, the revival time is twice. However, in our obtaining the
simple but interesting relationship, we ignored some impor-
tant effects, such as the effects of the quantum dissipation
processes, the higher-order exciton-photon interaction and
the detuning between the exciton and photon modes.

In this paper, we study further the coherent dynamics of
the coupled exciton-photon system in the semiconductor mi-
crocavities. The effects not considered in our previous paper
will be taken into account. We would like to answer the
following two questions:(1) Does the relationship of double
revival time still hold after the consideration of these effects?
(2) how can we keep the relationship? This paper is arranged
as follows: In Sec. II, we give a general theoretical model of
the interaction between a single-mode cavity field and the
exctions. We present the approximate time-evolution opera-
tors by using the so-calledsecular approximation. In Sec. III,
the time-evolution of light intensity is calculated for the case
that the excitons are initially in a number state(or a coherent
state) and the photons are in a vacuum. Finally, a brief sum-
mary and conclusion are presented in Sec. IV.

II. THEORETICAL MODEL

The system we studied is a microcavity containing a
semiconductor quantum well embedded in a high finesse
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cavity. We assume that the cavity and the quantum well are
ideal, and they are in an extremely low temperature situation.
The quantum well interacts with cavity field via exciton,
which is an electron-hole pair bound by the Coulomb inter-
action. The exciton and the photon modes are quantized
along the direction normal to the microcavity. We will con-
sider the lowest-order mode in this direction. The excitons
with in-plane wave vectorK may only be dressed by the
photons with the same wave vector due to the transitional
invariance in the plane of the microcavity.

To further simplify the model, in this paper we will con-
sider only one mode of photons with wave vectorK =0 and
frequencyvc very close to the lowestn=1s exciton energy
level [11,20]. In fact, at extremely low temperature, the ther-
mal momentum of the excitons is so small that the thermal-
ized excitons can be neglected[17,18]. Combining the above
considerations and neglecting the spin degrees of freedom,
one can write an effective Hamiltonian for the coupled
exciton-photon system as[11,20]

H = H0 + HNL = vca
†a + vexb

†b + gsa†b + b†ad + Ab†b†bb

− Bsb†b†ba+ a†b†bbd, s1d

whereb†sbd are creation(annihilation) operators of the exci-
tons with frequencyvex, anda†sad are the creation(annihi-
lation) operators of the cavity field. We assume that both of
them obey the bosonic commutation relationfb,b†g=fa,a†g
=1. The third term stands for the exciton-photon interaction
with coupling strengthg, which is larger than the nonlinear
interaction coefficientsA and B. The fourth term describes
the effective exciton-exciton interaction due to Coulomb in-
teraction. The higher-order exciton-photon interaction, the
fifth term, represents the phase-space filling effects. For
small in-plane wave vectors of the excitons and the photons,
the nonlinear interaction constants 2A=6Ryexaex

2 /S and B
=g/ snsatSd, whereRyex is the binding energy of the excitons,
S the quantization area, andnsat=7/s16paex

2 d the exciton
saturation density[13,21]. The ratio of the exciton-exciton
interaction constantA and the phase-space filling factorB
may be determined by a degenerate four-wave mixing ex-
periment [22,23]. In this paper, we assume that these two
parameters are real and positive.

The dynamical evolution of the two-mode boson system
described by Eq.(1) cannot be calculated in an exact way
due to the presence of nonlinear interactionHNL. Some ap-
proximations will be involved in the theoretical calculations.
In Refs.[17,18], the eigenvectors and eigenvalues of the to-
tal Hamiltonian(1) were solved by using first-order pertur-
bation calculations. Recently, we restudied the dynamics of
the total system by using un-perturbation calculations[19],
in which, however, the effects of the phase-space filling
terms and the detuning between the cavity mode and the
exciton eigenmode were not included at that time. In this
paper, we take into account both the terms mentioned above
and quantum dissipation processes due to the coupling with a
continuum phonon mode.

Note that the linear part of Hamiltonian(1) may be diago-
nized by introducing two polariton operators:

p1std = − vastd + ubstd,

p2std = uastd + vbstd, s2d

whereu andv are Hopfield coefficients for the exciton and
cavity modes, respectively. We assume that the coefficients
are real and positive. The requirement of canonical transfor-
mations of Eq.(2) yields u2+v2=1, that is

fpi,pj
†g = di,j for i, j = 1,2. s3d

The inverse transformations of Eq.(2) are

bstd = up1std + vp2std,

astd = up2std − vp1std. s4d

Substituting Eq.(4) into the linear parts of Hamiltonian(1),
we get

H0 = o
j=1,2

v jpj
†pj , s5d

where

v j = 1
2fvex + vc + s− 1d jDg for j = 1,2, s6d

are the lower-branchs j =1d and upper-branchs j =2d polariton
energies, respectively, andD=v2−v1=Îd2+4g2 is the split-
ting energy of the two polaritons. The detuning between the
cavity mode and the exciton mode isd=vc−vex. In Eq. (5),
we have let

duv = gsu2 − v2d, s7d

to cancel the nondiagonal terms inH0. This condition plus
the requirement of the canonical transformations ofpj inspire
us to define

u = sinu, v = cosu, s8d

and tan2u=−2g/d. Substituting Eq.(4) into the nonlinear
parts of Hamiltonian (1), one can obtain the effective
polariton-polariton interaction term. Therefore, we may write
the total Hamiltonian(1) in terms of the polariton operators
as

Hef f = o
j=1,2

v jpj
†pj + A11p1

†p1
†p1p1 + A22p2

†p2
†p2p2

+ 2A12p1
†p2

†p2p1, s9d

where

A11 = u3sAu+ 2Bvd, A22 = v3sAv − 2Bud,

A12 = A21 = 2uvfAuv − Bsu2 − v2dg. s10d

In Hamiltonian (9), we have neglected some terms propor-
tional to p1

†p1
†p2p2, p1

†p1
†p1p2 and their Hermitian conjugate

terms, which describe scattering processes between the two
polariton branches and destroy particle-number conservation
within each polariton branch. For the case of strong-coupling
with the relatively largerg, the energy gapD between the
two polariton branches becomes larger, so one may safely
adopt the so-calledsecular approximation[20,24] to ignore
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the particle-number-nonconservation scattering channels. In
some Refs.[25,26], the authors calculated dynamics of a
two-component Bose-Einstein condensate system by using
the so-called rotating-wave approximation(RWA). Physi-
cally, the essence of RWA is the same with the secular ap-
proximation, which is valid in the regime of weakly nonlin-
earity [24,19], i.e., A,B!g.

From Hamiltonian(9), one may find that the polariton
number operatorspj

†stdpjstd of each branch are the constant
of motion, i.e.,pj

†stdpjstd=pj
†s0dpjs0d=const. Thus, the total

particle number operatorN=o j pj
†pj =a†a+b†b is also time-

independent. The formal solutions of the Heisenberg equa-
tions for the polariton operatorspjstd are

pjstd = expH− iFv j − ig j/2 + 2o
k=1

2

Ajkpk
†pkGtJpj , s11d

whereg1 sg2d is the natural linewidth of the lower-(upper-)
branch of the polariton[13]. These two parameters can be
measured in the reflectivity spectrum of the microcavity[27].
In Eq. (11), the initial time operators(say,pjs0d) have been
written in the compact formspjd. From now on, unless we
specify otherwise, all the compact form operators stand for
the operators att=0. Althoughpjstd and its Hermitian con-
jugate contain time-independent productspk

†pk, the solutions
of some measurable quantities are not trivial. In the follow-
ing of this paper we will devote ourselves to calculating the
light intensity. Some novel physical results will be presented.

III. COLLAPSE AND REVIVAL OF THE
EXCITON-POLARITON EMISSION

The oscillating emission from the microcavity was previ-
ous demonstrated[5,6]. By using the harmonic approxima-
tion, the theoretical calculation of the light intensity gave
results that are in good agreement with the observed time-
domain emission from the microcavity[5]. In our previous
paper [19], we showed that the influence of the nonlinear
exciton-exciton interaction can result in collapse and revival
of the light intensity. In this section we will continue our
calculations to study the effects of detuning, phase-space fill-
ing and quantum dissipation processing on the light intensity.

For a given initial stateucs0dl of the system, the intensity
of the light field Icstd=kcs0dua†stdastducs0dl can be obtained
as

Icstd = u2kp2
†p2l + v2kp1

†p1l − uvfkp1
†stdp2stdl + c. cg, s12d

wherek. . .l=kcs0du . . .ucs0dl. The initial state of the exciton-
photon system is assumed asucs0dl= ufs0dlex^ u0lc, i.e., the
photons are initially in vacuum state. From Eq.(12), we find
that only the last term is time-dependent so we need to cal-
culatekp1

†stdp2stdl. With help of Eq.(11), we obtain

kp1
†stdp2stdl = e−2isA11−A22dteisv1−v2dte−sg1+g2dt/2

3 ke2isA11−A12dp1
†p1tp1

†p2e
2isA12−A22dp2

†p2tl

=− e2isA11−A22dskNl/2−1dteisv1−v2dte−sg1+g2dt/2

3 ke−2iuJye2isA12−A11dJztJ−e2isA12−A22dJzte2iuJyl,

s13d

wherekNl is the initial excitation number in the microcavity
andu is defined in Eq.(8). In Eq. (13), we have introduced
the Schwinger’s angular momentums:Jz=

1
2sb†b−a†ad and

the ladder operatorJ+=sJ_d†=b†a, so

pj
†pj = N/2 + s− 1d je−2iuJyJze

2iuJy,

p1
†p2 = − e−2iuJyJ−e2iuJy, s14d

where the total particle number operatorN commutes with
the introduced angular momentum operatorsJnsn=x,y,zd. In
the derivation of the final form of Eq.(13), we have also
used a relation

e2iuJy expfle−2iuJyJze
2iuJyge−2iuJy = expflJzg.

After the introduction of the angular momentum operators,
any quantum states of the coupled exciton-photon system
can be written in terms of the angular momentum states
u j ,ml=sb†d j+msa†d j−m/Îs j +md ! s j −md! u0l, which is a direct
product of two number states withj +m excitons in the quan-
tum well andj −m photons in the cavity, respectively.

A. Number state case

If the excitons are initially in a number stateufs0dlex

= uNlex and the photons are initially in vacuum state, then the
initial state of the total system can be written in terms of the
angular momentum states asucs0dl= u j , jl with j =N/2. Sub-
stituting this initial state into Eqs.(13) and (12) we get

Icstd =
N

2
sin2s2ud −

N

2
Hsin2s2ud

2
eiDte−sg1+g2dt/2e2isA11−A12dsN−1dt

3fsin2 u + cos2 ue2is2A12−A11−A22dtgN−1 + c . c.J , s15d

where we have used the matrix elementsdm,m8
j sfd

=k j ,muexps−ifJydu j ,m8l and the relations

dj ,m
j sfd = s− 1d j−mS 2j

j + m
D1/2Scos

f

2
D j+mSsin

f

2
D j−m

,

dj ,m
j sfd = −

sinsf/2d
cossf/2dS j + m+ 1

j − m
D1/2

dj ,m+1
j sfd.

If we consider the resonant cased=0 (i.e., u=p /4), Eq. (15)
may be reduced as

Icstd =
N

2
H1 − coshf2g + BsN − 1dgtj

3 FcosSAt

2
DGN−1

e−sg1+g2dt/2J . s16d

From Eq. (16), we find that, besides the coherent exciton-
photon oscillating term, there are two additional terms, i.e., a
slow-varying partfcossAt/2dgN−1 and an exponential decay
term. The appearance of the envelope function in Eq.(16)
will lead to the CRs of the light intensity. To see more
clearly, we plot Eq.(16) in Fig. 1 for N=2 andN=11. In the
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figure, purely from the viewpoint of theoretical consider-
ations, we takeAsBd,0.01g to satisfy the requirement of the
weak-nonlinearity andg1=g2=g,0.001g. We find that the
phenomena of CRs become more pronounced with the in-
crease of exciton number. More specially, the collapse time
depends strongly on the initial excitation number and be-
comes smaller with the increase ofN. The temporal decay of
the polaritons will result in the reduction in the revival am-
plitude but does not alter to the revival time, which may be
determined only by the exciton-exciton interaction constant
A (see Ref.[19]). For the resonant case, the phase-space
filling factor B may only change the energy oscillation fre-
quency[see Eq.(16)]. However, what we considered here is
the weak-nonlinearity, that isNB!g, so the effect ofB is
very small.

It should be pointed out that at present experimental con-
dition the linewidth-to-Rabi frequency ratiog /g is about 0.1
[27]. Under such conditions one cannot observe the revival
of the light intensity within the lifetime of the polaritons. In
order to lower the ratio one may improve the Rabi frequency.
As we known, the Rabi frequency measured in a III-V
(GaAs) based microcavity structure can be 9.4 meV[28].

The influences of the detuning and the phase-space filling
are investigated in Fig. 2. For the resonant case, the light
intensity will oscillate up-and-down around the center point
N/2. However, the nonresonant coupling between the exci-
tons and the photons will lead to the whole curve becoming
lower, i.e., the center line becomes more closer to the hori-
zontal axis. Besides, the revival time becomes longer with
the increase of the detunning. Comparing Figs. 2(b) with
2(a), we find that for the casedÞ0, the factorB will further
increase the revival time. However, it is worth mentioning
that if d=0, the factorB does not give any feasible change to
the revival time[see Eq.(16)]. Our conclusion is thatthe
revival time may be tuned by adjusting the field detuning and
the phase-space filling factor.

B. Coherent state case

An excitonic coherent state as the initial state was used in
Ref. [5] to stimulate the linear model solutions with their
experimental results and exhibited good agreement. So we
continue our calculations for the coherent state case. The
coherent state is characterized byb=ÎkNlexpsifd with the
average exciton numberkNl= ubu2 and the initial phasef. It
should be pointed out that the definition of excitonic coher-
ent state as the eigenstate of the annihilation operator of the
excitons may work well only in the low exciton density re-
gime [29]. This is because the expansion of a coherent state
in the number state space will involveuNlex with large exci-
tons number, which may destroy the weakly nonlinearity
conditionNA,NB!g for the fixedg andA. However, in the
following discussions, we restrict ourselves to the weak-
excitation case with smaller average exciton numberskNl so
one can still approximately describe the quantum coherence
natures of the exciton systems.

The initial state of the total systemucs0dl= ublexu0lc can
be written as

ucs0dl = e−ubu2/2o
j=0

`
b2j

Îs2jd!
u j , jl. s17d

Substituting Eq.(17) into Eqs.(13) and(12), we get the final
result for the light intensity at timet in the coherent state
representation

FIG. 1. Light intensity for the number state case as a function of
time t. Time is in units of 1/g and light intensity is in arbitrary
units. The parameters areg=1000g, A=0.01g, B=0, and d=0.
Starting from the top:(a) N=2, without dissipation;(b) N=2, g
=1; (c) N=11, without dissipation;(d) N=11, g=1.

FIG. 2. Light intensity for the number state case as a function of
time t, obtained from Eq.(15). Time is in units of 1/g and light
intensity is in arbitrary units. Other parameters areg=1000g, A
=0.01g, andN=10. Starting from the top:(a) d=0.2g, B=0; (b) d
=0.2g, B=0.3A; (c) d=0.4g, B=0.3; (d) d=0.6g, B=0.3A.
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Icstd =
kNl
2

sin2s2ud

−
kNl
2
Hsin2s2ud

2
eiDte−sg1+g2dt/2eisA11−A22dskNl−1dte−kNl

3 expfkNle−is2A12−A11−A22dt

3ssin2 u + cos2 ue2is2A12−A11−A22dtdg + c . c.J , s18d

For the cased=0 (i.e., u=p /4), Eq. (18) may be reduced as

Icstd =
kNl
2

h1 − cosfs2g + BskNl − 1ddtg

3 e−2kNlsin2sAt/4de−sg1+g2dt/2j, s19d

where the initial(absolute) phase of the coherent statef
does not appear in the light intensity. We find that the enve-
lope function for the coherent state ise−2kNlsin2sAt/4d, which
may also lead to the CRs of the light intensity. However,
unlike the number state case, the revival time ist=4p /A,
which is twice that of the number state case[comparing Figs.
3(a) and 3(c) with Figs. 1(a) and 1(c)]. Moreover, the phe-
nomena of CRs with a small average exciton number are
more pronounced for the coherent state case than for the
number state case. In fact, the CRs can be visible even for
kNl,1 due to the quantum superposition properties of the
excitonic coherent state. It is the same with the number state
case, i.e., the results of Figs. 3(b) and 3(d) show that the
decay term lowers the revival amplitude but does not modify
the revival time.

The influences of the detuning and the phase-space filling
for the coherent state case are also studied. Our results also
confirm that the detuning will change the revival time and
the revival amplitude. At the same time, the phase-space fill-

ing factorB can enhance the modification of time. However,
our results show that one may remove the influence ofB by
adjusting the detuning. In fact, for the resonant case, the
conclusion that the revival time for the coherent state being
double that of the number state is also valid.

To our knowledge, the CRs of Rabi oscillation in the
atom-cavity system has been studied intensely, and it can be
described by the Jaynes-Cummings model[30,31]. When the
single-mode cavity field is initially in a special state(say,
coherent state), the population of the atom will exhibit CRs
due to the Rabi oscillations being modulated by different
mode frequencies. The CRs of the emission from the micro-
cavity in the linear regime was studied in Ref.[32]. In their
experiment, the origin of the CRs is due to quantum beat
aroused from the strong coupling of the heavy-hole exciton
and light-hole exciton state to the cavity photon state. Within
these two systems mentioned above, linear interaction be-
tween the matter field and the light field plays a prominent
role in the appearance of the CRs. The creations of CRs in
nonlinear systems, such as the nonlinear directional coupler
[33], the relative phase between two superfluids or supercon-
ductors[34], and the population imbalance of a two-mode
Bose-Einstein condensate[25,26,35–38] have been also
studied. Here in our paper, the emission of the high-density
excitons in a quantum well embedded in a single-mode cav-
ity is also found to exhibit CRs due to nonlinear interaction
between the excitons.

IV. CONCLUSION AND SOME REMARKS

In summary, we have studied the emission of a semicon-
ductor microcavity. By treating the excitons as a single-mode
boson, i.e., the harmonic approximation, the analytical ex-
pressions for the light intensity are derived both for excitonic
number state and coherent state. The effects of the detuning
of the light field from the exciton mode, the high-order
exciton-photon interaction and the dissipation are taken into
account with the help of the secular approximation. The time
evolution of the light emission is shown to be quite different
between the number state and the coherent state cases. For
the former one, the revival periods of the oscillations are
2p /A. Whereas, for the excitons in a coherent state the re-
vival periods are 4p /A. The temporal decay of the exciton-
polariton lowers the revival amplitude but does not modify
the revival time. However, the influences of the detuning and
the phase-space filling may change both the time and the
amplitude. How can we exclude these complex modifications
and investigate only the quantum effect of excitonic states?
Our results show that, for the resonant case, the revival time
is very insensitive to the changes of the factorB and the time
is determined only by the effective exciton-exciton interac-
tion. We expect that our theoretical study of the phenomena
of collapses and revivals would be helpful in practical ex-
periments to measure quantum states of excitons.

Finally, we would like to emphasize that, in our theoreti-
cal treatment, the critical requirement of the CRs is the non-
linear exciton-exciton interaction but not the single-mode

FIG. 3. Light intensity for the coherent state case as a function
of time t. Time is in units of 1/g and light intensity is in arbitrary
units. Other parameters areg=1000g, A=0.01g, B=0, andd=0.
From top to bottom:(a) kNl=2, without dissipation;(b) kNl=2, g
=1; (c) kNl=11, without dissipation;(d) kNl=11, g=1.
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approximation. In fact, treating the excitons as a single-mode
harmonic oscillators is just an idealized theoretical model.
For the case of a very strong couplingsg,Ryexd, the effects
of other exciton modes(such asK Þ0) may play an impor-
tant role compared with the nonlinear interactions[39,40].
These effects will be taken into account elsewhere.
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