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The superfluid–Mott-insulator phase transition of dipolar bosons in optical lattice is analyzed. By using the
Bogoliubov approach and decoupling approximation, the energy spectrum and zero-temperature phase diagram
of dipolar bosonic atoms in an optical lattice are obtained analytically. The results show that in these systems
the superfluid–Mott-insulator phase transition can be induced by tuning the dipole-dipole interaction and the
position of the phase boundary can be moved when the on-site interaction is varied. Corresponding to a large
on-site interaction, the dipole-dipole interaction is attractive near the critical point of the superfluid–Mott-
insulator phase transition.
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Introduction. The superfluid–Mott-insulator transition of
ultracold bosons in optical lattices has been recently theoreti-
cally analyzed and experimentally demonstrated[1]. Based
on the Bose-Hubbard model, understanding and determining
the phase transition conditions for spinless and spinor bosons
in an optical lattice have been obtained using the mean-field
decoupling approximation, Green function method, etc.
[2–8]. In the above systems, only on-site interactions are
considered and the site-to-site interactions are neglected as
they are typically two orders of magnitude smaller. But for
systems of ultracold dipolar bosons confined in an optical
lattice, the atomic dipole moments can be sufficiently large
that the site-to-site interactions cannot be neglected. The
dipole-dipole forces have long-range and anisotropy charac-
teristics and may have great influence on the properties of
ultracold bosons in optical lattices[9–16]. The sources of
dipolar bosons include atoms or molecules with permanent
magnetic or electric dipole moments or atoms with electric
dipoles induced either by large dc electric fields or by opti-
cally admixing the permanent dipole moment of a low-lying
Rydberg state with the atomic ground state in the presence of
a moderate dc electric field. In Ref.[12], the superfluid–
Mott-insulator transition has been studied in a two-
dimensional optical lattice numerically. The results indicated
that the dipole-dipole interaction has important influence on
the quantum phase transition of dipolar bosons and addi-
tional quantum phases such as the supersolid, checkerboard
phases, etc., can be induced. As the dipole-dipole interaction
can be easily tuned by an external magnetic or electric field
[17], systems of dipolar bosons will become an important
area to investigate the properties of atomic quantum gases
and are considered to be promising candidates for the imple-
mentation of fast and robust quantum-computing schemes
[15].

In this paper, the properties of the superfluid–Mott-
insulator transition of dipolar bosons in an optical lattice are
analyzed by the Bogoliubov transformation and mean-field
decoupling approximation scheme of Ref.[3]. Mean-field
theory in a phase transition problem is an approximation
based on treating the order parameter as a constant. It is a
useful description if fluctuations are not important. It be-
comes an exact theory only when the range of interactions
becomes infinite. It nevertheless makes quantitatively correct

predictions(e.g., the phase diagram) about some aspects of
phase transitions in high spatial dimensions and makes quali-
tatively correct predictions in physical dimensions. In low
dimensions(e.g., one dimension), the application of a mean-
field calculation could be questionable because of the possi-
bly important role of fluctuations. If the fluctuations were
incorporated, mean-field theory would also give some useful
predictions but a definite proof of this requires further study
[3]. Mean-field theory has the enormous advantage of being
mathematically simple and it is almost invariably the first
approach taken to predict phase diagrams and properties of
new experimental systems. There are many formulations of
mean-field theory and in this paper we will use the theory
presented in Refs.[3,4] to discuss the Mott-insultor–
superfluid phase transition of a dipolar Bose-Einstein con-
densate(BEC) in an optical lattice when the fluctuations are
small. This theory has been adopted generally in problems of
quantum phase transitions of spinorless and spinor BECs in
an optical lattice[3,5–8]. The paper is organized as follows.
In Sec. II, we introduce the Bose-Hubbard model for dipolar
bosons in an optical lattice. Based on this model and using
the above mean-field approximations, the relations of the
phase transition condition, the energy spectrum, and the
phase diagram with the dipole-dipole interaction are ana-
lyzed in Secs. III, IV, and V. Section VI is the summary.

The Bose-Hubbard model for dipolar bosons in optical
lattices. We consider a dilute gas of bosons in an optical
lattice with the following Hamiltonian:

H =E dr C†sr dS−
"2

2m
¹2 + VoptDCsr d

+E dr dr 8C†sr dC†sr 8dVintCsr 8dCsr d, s1d

where C†sr d and Csr d are the boson field operators that
annihilate and create a particle at the positionr ,Vopt
=V0sin2s2pz/ld is the optical lattice potential,l is the light
wavelength, andVint includes on-site and dipole-dipole inter-
actions. In the case of polarized dipoles the interaction po-
tential is

PHYSICAL REVIEW A 70, 045602(2004)

1050-2947/2004/70(4)/045602(4)/$22.50 ©2004 The American Physical Society70 045602-1



Vint =
d2s1 − 3 cos2ud

sr − r 8d3 +
4p"2a

m
dsr − r 8d = Vdd + U0dsr − r 8d,

s2d

where the first term is the dipole-dipole interaction charac-
terized by the dipoled and the angleu between the dipole
direction and the vectorr −r 8, and the second term is the
short-range interaction given by thes-wave scattering length
a [12].

If we assume that the atoms are cooled to within the low-
est Bloch band of the periodic potential, the boson field op-
erator of Csr d and C†sr d can be expanded over Wannier
functions wsr −r nd of the lowest-energy band localized on
the ith site:

Csr d = o
n

Cnwsr − r nd, C†sr d = o
n

Cn
†w*sr − r nd. s3d

If we consider only nearest-neighbor sites ofn, Eq. (1) can
be expressed as

H = − Jo
i,j

sCi
†Cj + H.c.d +

1

2
Uo

i

Ci
†Ci

†CiCi

+
1

2
Vo

i,j
Ci

†Cj
†CiCj , s4d

whereCi
† andCi are the creation and annihilation operators

of an atom at sitei, respectively. The parameterJ=−ew*sr
−r idf−s"2/2md¹2+Voptgwsr −r jddr is the hopping term and
U=s4p"2ad /me uwsr −r idu4dr is the short-range on-site inter-
action given by thes-wave scattering lengtha (here we as-
sume thata.0). V=euwsr −r idu2Vdduwsr 8−r jdu2dr dr 8 is the
dipole-dipole interaction.

Bogoliubov transformation. The energy spectrum of bo-
son atoms in the optical lattice can be obtained by the Bo-
goliubov method. We first transform the Hamiltonian to the
momentum space by introducing creation and annihilation
operatorsak

† andak, respectively, such that

Ci =
1

ÎNs
o
k

akexps− ik · r id,

Ci
† =

1
ÎNs

o
k

ak
†expsik · r id, s5d

whereNs is the number of lattices site andr i is the coordi-
nate of sitei. The wave vectork runs only over the first
Brillouin zone. The prefactor 1/ÎNs ensures that the total
number of particles obeysN=oiCi

†Ci =okak
†ak which can be

readily obtained by the relationoiexpf−isk −k8d ·r ig
=Nsdk,k8. Using Eq. (5), the Hamiltonian,(4) can be con-
verted into

H = − Jo
k

o
d

ak
†akexpsik · dd

+ o
kk8k9k-

S U0

2Ns
ak

†ak8
† ak9ak-dk+k8,k9+k-

+
V

2Ns
o

d

ak
†ak8

† ak9ak-dk+k8,k9+k-expfisk8 − k9d · dgD .

s6d

For approximation, we consider only the nearest-neighbor
interactions(which are denoted byd) for the hopping and
dipole-dipole interaction terms. Since the number of atoms
condensed in the zero-momentum state is much larger than 1,
we havea0a0

†<a0
†a0+1<N0@1, whereN0 is the total num-

ber of condensed atoms. Thus, we can replace the operators
a0 anda0

† with a “c” numberÎN0. The Hamiltonian(6) can
be rewritten as(in the order ofN0)

H = − 2zJN0 +
1

2
U0n0N0 +

1

2
zVn0N0 + o

k
8FS1

2
U0n0

+
1

2
Vn0z cosskadDaka−k + fU0n0 + «k

+ Vn0z cosskadgak
†ak + S1

2
U0n0 +

1

2
Vn0z cosskadDak

†ak
†G

= A + o
k

8sBaka−k + Cak
†ak + Dak

†ak
†d , s7d

where n0=N0/Ns,ek=−zt cosskad , z is the number of
nearest-neighbor sites for the optical lattice, andok8 denotes
the sum with exclusion of the term ofk=0,

A = − zJN0 +
1

2
U0n0N0 +

1

2
zVn0N0,

B =
1

2
U0n0 +

1

2
Vn0z cosskad,

C = U0n0 + ek + zVn0 cosskad,

D =
1

2
U0n0 +

1

2
Vn0z cosskad. s8d

The effective Hamiltonian(7) can be diagonalized by the
following Bogoliubov transformation:

bk = ukak + vka−k
† , b−k = uka−k + vkak

†,

b−k
† = uka−k

† + vkak, bk
† = ukak

† + vka−k. s9d

We substitute Eq.(9) into the effective Hamiltonian(7) and
when the nondiagonal elements equal zero, we can get

Heff = A + o
k

8Ekbk
†bk, s10d

whereEk=ÎC2−4B2 is the energy spectrum of the quasipar-
ticle. The energy gap of the excitation spectrum isDg
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=A/N0=−zJ+U0n0/2+zVn0/2. We can see that when
Dg.0, a gap exists, implying the Mott-insulator phase, and
when Dg=0, the gap disappears, implying the superfluid
phase. Comparing with the nondipolar systems of BECs in
an optical lattice, the condition for the superfluid–Mott-
insulator phase transition in systems of dipolar bosons in an
optical lattice is determined by three parameters, the hopping
termJ, the on-site interaction termU0, and the dipole-dipole
interaction termV. The dispersion relation ask→0 is

Ek , sJzU0n0a
2 + JVz2n0a

2d1/2k. s11d

From Eq.(11), we can see that the relation of the excitation
spectrumEk with k is linear. This explicitly indicates super-
fluidity, in agreement with the Bogoliubov superfluid theory
for weakly interacting bosons in the absence of a periodic
potential. The persistent velocity of the superfluid or quasi-
particle can be found as

vs = S ] Ek

] k
D

k→0
= sJzU0n0a

2 + JVz2n0a
2d1/2. s12d

From Eq.(12), we can also see that the velocity of the su-
perfluid in a system of dipolar bosons in an optical lattice can
be controlled byV in addition toJ andU0.

The decoupling approximation with dipole-dipole interac-
tion. To find more information about the phase transition of
dipolar bosons in an optical lattice, we now determine the
analytic relation of the phase diagram with dipole-dipole in-
teractions using the decoupling approximation method in
Ref. [3]. We introduce the superfluid order parameterc
=Îni =kCi

†l=kCil, where ni is the expectation value of the
number of particles on sitei. This value we often take to be
real. In the mean-field approximation and assuming that the
average occupation number of Bose atoms condensed in the
ground state in each site of the optical lattice is the same, we
can get the effective Hamiltonian on the sitei,

Heff =
1

2
Ū0n̂sn̂ − 1d +

1

2
zV̄n̂n̂ − m̄n̂ − csC† + Cd + c2, s13d

where m is the chemical potentialŪ0=U0/zJ,m̄=m /zJ,V̄
=V/zJ, and n̂i =Ci

†Ci is the number operator. In the above
equation, we consider only the nearest-neighbor interactions
for the dipole-dipole interaction and the subscripti is ne-
glected for convenience. The effective Hamiltonian(13) can
be diagonal with respect to the sitei. The phase diagram can
be analytically determined using second-order perturbation
theory.Heff can be divided into two parts as

H0 =
1

2
Ū0n̂sn̂ − 1d − m̄n̂ +

1

2
zV̄n̂2 + c2,

H1 = − sC† + Cd. s14d

In an occupation number basis the odd powers of the expan-
sion of the energy inc will always be zero. If we denote the
unperturbed energy of the state with exactlyn particles by
En

s0d, we find that the unperturbed ground-state energy is
given by Eg

s0d. ComparingEn
s0d and En+1

s0d , we find thatEg
s0d

=0 if m̄,0 and Eg
s0d= 1

2Ūgsg−1d−m̄g+ 1
2zV̄g2 if Ū0sg−1d

+ 1
2V̄zs1−gd,m̄, Ū0g+ 1

2V̄zs1+gd. The second-order correc-
tion to the energy is calculated by the following expression:

Eg
s2d = c2o

nÞg

zkguH1unlz2

Eg
s0d − En

s0d = c2o
nÞg

kguH1unlknuH1ugl
Eg

s0d − En
s0d , s15d

wheren=g particles are in the ground state. Since the inter-
action V couples only to states with one more or one less
atom than in the ground state, we find

kguH1unl = − kgusC† + Cdunl =HÎg + 1, n = g + 1,

Îg, n = g − 1.
J s16d

Combining Eqs.(14)–(16), we get

Eg
s2d = S sg + 1d

m̄ − Ū0g − 1
2V̄z− V̄gz

+
g

Ū0g − m̄ − Ū0 − 1
2V̄z+ V̄gz

D .

s17d

So,Egscd=a0sg,Ū0,V̄,m̄d+a2sg,Ū0,V̄,m̄dc2+¯, where

a0sg,U0,V,md =
1

2
Ū0gsg − 1d − m̄g +

1

2
zV̄g2,

a2sg,U0,V,md = 1 +S sg + 1d

m̄ − Ū0g − 1
2V̄z− V̄gz

+
g

Ū0g − m̄ − Ū0 − 1
2V̄z+ V̄gz

D . s18d

The phase diagram with dipole-dipole interaction. Ac-
cording to the Landau procedure for second-order phase tran-
sitions, the boundary between the superfluid and the insulator
phases can be determined bya2sg,U0,V,md=0. The result is

m̄± =
1

2
F ±

1

2
ÎF2 + 4G, s19d

where the subscripts ± denote the upper and lower halves of
the Mott-insulating regions of phase space and

F = B + D − 1, G = gsD − Bd + D − BD,

B = Ū0g +
1

2
V̄z+ V̄gz, D = Ū0g − Ū0 −

1

2
V̄z+ V̄gz.

s20d

The phase boundaries can be obtained from Eq.(9). In con-
trast to the phase diagram of a one-species BEC which is

drawn inŪ0-m space(see, e.g., Fig. 2 in Ref.[3]), we draw
the phase diagram of dipolar bosons in the optical lattice in

V̄-m space. Figure 1(a) shows a plot of Eq.(19) for g=1, 2,

3 with Ū0=9, where “SF” indicates the superfluid phase and
“MI” indicates the Mott-insulator phase. The critical value of

V̄c is determined by equatingm+ andm−,
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V̄c =
1

z
s1 + 2g − Ū0 + 2Îg + g2d . s21d

Figure 1(b) shows a plot of Eq.(19) for g=1 with Ū0=9, 7,

5. We can see that the critical valueV̄c varies from positive to
negative with increasing on-site interaction. This phenom-
enon shows that the dipole-dipole interaction is attractive for
a large on-site interaction(corresponding to a larges-wave
scattering length) near the superfluid–Mott-insulator phase
transition critical point.

The beauty of the dipolar interaction lies in the fact that it
is a directional interaction in contrast to the usuals-wave
interaction between atoms. We use the tunability of the mag-
netic dipolar interaction for an example[17]. In a time-

dependent external magnetic fieldBstd=Bhcoswẑ
+sinwfcossVtdx̂+sinsVtdŷgj, which is a combination of a
static magnetic fieldBz directed along thez direction and a
fast rotating fieldBr in the radial plane, the frequency is
chosen such that the atoms are not significantly moving dur-
ing the timeV−1, while the magnetic moments will adiabati-
cally follow the external fieldBstd. In this limit, the average
of the magnetic dipole-dipole interaction in a cylindrically
symmetric interatomic potential and in the period 2p /V is

kUddsr,u,fdl = −
m0m

2

4p
S3 cos2u − 1

r3 DS3 cos2w − 1

2
D . s22d

From Eq.(22), we can see that the anglew between the
dipole orientation and thez axis determines the strength of
the sign of the dipole-dipole interaction. Forw=0, the mag-
netic dipoles are polarized along thez direction and the
dipole-dipole interaction is positive. Forw=p /2, the sign of
the dipole-dipole interaction is inverted and the absolute
value is only one-half of that in the polarized case. Forw
=54.7°, the dipolar interaction averages to zero. Around the
magic angle, there exists a stable phase diagram area in
which we can observe the phase transition we suggest in our
paper.

Conclusion. Based on the Bose-Hubbard model, the
superfluid–Mott-insulator phase transition for systems of di-
polar bosons in an optical lattice has been studied. Using the
Bogoliubov transformation and decoupling approximation
scheme, the condition for the phase transition between the
superfluid phase and Mott insulator, the energy and the ve-
locity of the quasiparticles in the superfluid phase, and the
phase diagram relation to the dipole-dipole interaction have
been obtained analytically. The results show that the
superfluid–Mott-insulator phase transition of dipolar bosons
in an optical lattice can be tuned by the dipole-dipole inter-
action as well as the interatomic repulsion and the hopping
term. So dipolar boson systems in an optical lattice give us
an additional tool to study the quantum phase transition.
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FIG. 1. Phase diagram of dipolar Bose-Hubbard model in an
optical lattice with(a) U0=9 and(b) different on-site energiesU0.
The vertical axis shows the dimensionless chemical potential
m /zJ=m̄ and the horizontal axis shows the dimensionless dipole-

dipole interaction V/zJ=V̄. “SF” and “MF” mean “superfluid
phase” and “Mott-insulator phase”, respectively.
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