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Superfluid—Mott-insulator transition of dipolar bosons in an optical lattice
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The superfluid—Mott-insulator phase transition of dipolar bosons in optical lattice is analyzed. By using the
Bogoliubov approach and decoupling approximation, the energy spectrum and zero-temperature phase diagram
of dipolar bosonic atoms in an optical lattice are obtained analytically. The results show that in these systems
the superfluid—Mott-insulator phase transition can be induced by tuning the dipole-dipole interaction and the
position of the phase boundary can be moved when the on-site interaction is varied. Corresponding to a large
on-site interaction, the dipole-dipole interaction is attractive near the critical point of the superfluid—Mott-
insulator phase transition.
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Introduction The superfluid—Mott-insulator transition of predictions(e.g., the phase diagramabout some aspects of
ultracold bosons in optical lattices has been recently theoretphase transitions in high spatial dimensions and makes quali-
cally analyzed and experimentally demonstraféd Based tatively correct predictions in physical dimensions. In low
on the Bose-Hubbard model, understanding and determiningimensionge_g_, one dimensignthe application of a mean-
the phase transition conditions for spinless and spinor bosorfgeld calculation could be questionable because of the possi-
in an optical lattice have been obtained using the mean-fielgly important role of fluctuations. If the fluctuations were
decoupling approximation, Green function method, etcincorporated, mean-field theory would also give some useful
[2-8]. In the above systems, only on-site interactions ar%§r]edictions but a definite proof of this requires further study

considered and the site-to-site interactions are neglected . Mean-field theory has the enormous advantage of being
they are typically two orders of magnitude smaller. But for athematically simple and it is almost invariably the first

systems of ultracold dipolar bosons confined in an optical : : :
lattice, the atomic dipole moments can be sufficiently large pproach taken to predict phase diagrams and properties of

that the site-to-site interactions cannot be neglected. ThaeW expenmental systgms..There are mary formulations of
ean-field theory and in this paper we will use the theory

dipole-dipole forces have long-range and anisotropy charad!’

teristics and may have great influence on the properties resentgd n Refs.[3,f1]_ to d|scqss the Mott:msu!tor—
ultracold bosons in optical lattice®—-16. The sources of superfluid phase transition of a dipolar Bose-Einstein con-

dipolar bosons include atoms or molecules with permanerf€NSat&BEC) in an optical lattice when the fluctuations are
magnetic or electric dipole moments or atoms with electricSmall. This theory has been adopted generally in problems of
dipoles induced either by large dc electric fields or by opti-quantum phase transitions of spinorless and spinor BECs in
cally admixing the permanent dipole moment of a low-lying an optical lattice[3,5-8. The paper is organized as follows.
Rydberg state with the atomic ground state in the presence & Sec. Il, we introduce the Bose-Hubbard model for dipolar
a moderate dc electric field. In Ref12], the superfluid— bosons in an optical lattice. Based on this model and using
Mott-insulator transition has been studied in a two-the above mean-field approximations, the relations of the
dimensional optical lattice numerically. The results indicatedphase transition condition, the energy spectrum, and the
that the dipole-dipole interaction has important influence orphase diagram with the dipole-dipole interaction are ana-
the quantum phase transition of dipolar bosons and addiyzed in Secs. llI, IV, and V. Section VI is the summary.
tional quantum phases such as the supersolid, checkerboard The Bose-Hubbard model for dipolar bosons in optical
phases, etc., can be induced. As the dipole-dipole interactiolttices We consider a dilute gas of bosons in an optical
can be easily tuned by an external magnetic or electric fieldattice with the following Hamiltonian:

[17], systems of dipolar bosons will become an important

area to investigate the properties of atomic quantum gases 72
and are considered to be promising candidates for the imple- H :f dr \PT(r)<— —V?%+ Vopt>\lf(r)
mentation of fast and robust quantum-computing schemes 2m
[15].
In this paper, the properties of the superfluid—Mott- +de dr ' W)W (r Vi (r)W(r), 1)

insulator transition of dipolar bosons in an optical lattice are

analyzed by the Bogoliubov transformation and mean-field

decoupling approximation scheme of R¢8]. Mean-field Wwhere ¥'(r) and ¥(r) are the boson field operators that
theory in a phase transition problem is an approximatiorannihilate and create a particle at the positionV,y
based on treating the order parameter as a constant. It is=VSin?(2mz/\) is the optical lattice potential is the light
useful description if fluctuations are not important. It be-wavelength, an®,, includes on-site and dipole-dipole inter-
comes an exact theory only when the range of interactionactions. In the case of polarized dipoles the interaction po-
becomes infinite. It nevertheless makes quantitatively corredential is

1050-2947/2004/1@)/0456024)/$22.50 70 045602-1 ©2004 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A70, 045602(2004)

Arfi’a

_ d¥(1-3cosf) .\

- H=-32 > alaexpik - 6)
int (r_r,)g K s

Or—r')=Vgq+Updr —r’),

(2 S

Uo 1.t
_akak, a.kna.km 6k+k ! ,k”+k”’
KK K"K

2N
where the first term is the dipole-dipole interaction charac-
terized by the dipolal and the angled between the dipole
direction and the vector-r’, and the second term is the
short-range interaction given by tlsevave scattering length 6)
a[l2.

If we assume that the atoms are cooled to within the low+or approximation, we consider only the nearest-neighbor
est Bloch band of the periodic potential, the boson field op-interactions(which are denoted by) for the hopping and
erator of ¥(r) and ¥'(r) can be expanded over Wannier dipole-dipole interaction terms. Since the number of atoms
functionsw(r -r,) of the lowest-energy band localized on condensed in the zero-momentum state is much larger than 1,
theith site: we haveaga) ~ aja,+1~Ny>1, whereNj is the total num-

ber of condensed atoms. Thus, we can replace the operators

V .
+ mz alal,ak//ak///5k+k/’k//+k///exd|(k, - k”) ' 5]) .
s &

W(r) =2 Caw(r =ry), W= Clw(r-r). (3)

If we consider only nearest-neighbor sitesmfEq. (1) can
be expressed as

1
H=-3> (CC;+H.c)+ EUE clclcc
L i

1
+ EVE clclcc, (4)
i

ag anda), with a “c” number yN,. The Hamiltonian(6) can
be rewritten agin the order ofNy)

H

1 1 1
22IN)+ ZUgnoNg + =zVpNg + X, /| | ZUgng
2 2 = 1 \2
1
+ EVnoz cos(ka))akaLk +[Ugng + &

+Vngz cogka)Jaja, + (%UOnO + %Vnoz cos(ka))alal]

=A+2> '(Baa+Cala +Daja)), (7)
k

whereC' andC; are the creation and annihilation operatorsWnere Mo=No/Ns, =2t cogka), z is the number of

of an atom at site, respectively. The parametér—[w’(r
—r)[=(72/2m)V2+V,pw(r =r))dr is the hopping term and
U=(4mh?a)/mJ|w(r —r;)|*dr is the short-range on-site inter-
action given by thes-wave scattering length (here we as-
sume thata>0). V=[|w(r —r)[?Vgqw(r’'~r;)|?dr dr’ is the
dipole-dipole interaction.

Bogoliubov transformationThe energy spectrum of bo-

nearest-neighbor sites for the optical lattice, &jddenotes
the sum with exclusion of the term &=0,

A

1 1
- ZJN) + EUOnoNO + EZVrbNo,

1 1
B=—-Ugny+ EVnOz cogka),

son atoms in the optical lattice can be obtained by the Bo- 2

goliubov method. We first transform the Hamiltonian to the
momentum space by introducing creation and annihilation

operatorsal anda,, respectively, such that

1 .
Ci=—=2 aexp(—ik ),
VNS k

cl

L3 alexplik 1)), (5)
\“’Ns k

whereNs is the number of lattices site andis the coordi-
nate of sitei. The wave vectok runs only over the first
Brillouin zone. The prefactor 1N ensures that the total
number of particles obeyN=3,C/C,=3,ala, which can be
readily obtained by the relationXexd-i(k—k’)-r;]
=Nsbk k- Using Eq.(5), the Hamiltonian,(4) can be con-
verted into

C=Ugng + €+ zVn, cogka),

1 1
D =—-Ugny + EVnoz cogka).

, ®)

The effective Hamiltoniari7) can be diagonalized by the
following Bogoliubov transformation:

be=uatva@l,  by=uatual,

9)

We substitute Eq(9) into the effective Hamiltoniari7) and
when the nondiagonal elements equal zero, we can get

t oyt t_ At
bl =ual +v@d, b =uady+uv@y.

Hef=A+ > 'E/blby, (10)
k

whereE,=\C?-4B? is the energy spectrum of the quasipar-
ticle. The energy gap of the excitation spectrum Ag
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=AINg=-2J+Ugno/2+zVip/2. We can see that when +21vz(1-g)<<U.g+2Vz(1+g). The second-order correc-

A4>0, a gap exists, implying the Mott-insulator phase, andjon to the energy is calculated by the following expression:
when A,=0, the gap disappears, implying the superfluid

phase. Comparing with the nondipolar systems of BECs in @ [<g|H4|n)|? (g|Hqn){(n[H4|g)
an optical lattice, the condition for the superfluid-Mott- Ey = %2 EO_go - > T EO_g0 (15
insulator phase transition in systems of dipolar bosons in an n*9 —g n n#g 9 n

optical lattice is determined by three parameters, the hoppin
termJ, the on-site interaction tertd,, and the dipole-dipole
interaction termV. The dispersion relation ds— 0 is

&/herenzg particles are in the ground state. Since the inter-
action V couples only to states with one more or one less
atom than in the ground state, we find
Eq ~ (JzWynga? + IVZng,a?) Y. (11) N
Vg+1, n=g+1,
= (16)

From Eq.(11), we can see that the relation of the excitation{g|H,|n) = -(g|(CT+ C)|n) = n=g-1

spectrumi, with k is linear. This explicitly indicates super-
fluidity, in agreement with the Bogoliubov superfluid theory -
for weakly interacting bosons in the absence of a periodicg'\’ombmmg Eqs(14)-16), we get

potential. The persistent velocity of the superfluid or quasi- (g+1) g
particle can be found as EY = (_ — = ——— )
SE m—=Ugg-3Vz-Vgz Ugg—-u—-Uy—35Vz+Vgz
vs= (a_kk>k . (JzUynga® + IVZngad)*?.  (12) (17)

From Eqg.(12), we can also see that the velocity of the su-So, Eg(w):ao(g,UO,V,m+a2(g,U0,V,m¢2+---, where
perfluid in a system of dipolar bosons in an optical lattice can
be controlled byV in addition toJ andU,. 11— — 1=
The decoupling approximation with dipole-dipole interac- 20(9,.UoV,) = ZUog(g— 1) — g + EZVQZ'
tion. To find more information about the phase transition of
dipolar bosons in an optical lattice, we now determine the
analytic relation of the phase diagram with dipole-dipole in- a(g,Ug V, ) = 1 + _ (g+ 1_) _
teractions using the decoupling approximation method in w- Uog—%Vz—ng
Ref. [3]. We introduce the superfluid order parameter
:\s’ni:<CiT>:(Ci>, wheren; is the expectation value of the g ) (18)

+ = —
number of particles on site This value we often take to be Uog - 2 — Uy — 3Vz+ Vgz

real. In the mean-field approximation and assuming that the _ o _ _ _
average occupation number of Bose atoms condensed in the The phase diagram with dipole-dipole interactiofc-

ground state in each site of the optical lattice is the same, weording to the Landau procedure for second-order phase tran-
can get the effective Hamiltonian on the sife sitions, the boundary between the superfluid and the insulator

phases can be determined dyg,U,,V, 1) =0. The result is

Heff = 1uoﬁ(ﬁ -1)+ 1zvﬁﬁ —uh-y(CT+O)+ ¢y, (13
2 2 — 1 1 =

. . /.LJ_,—EFiE\JF + 4G, (19

where u is the chemical potentialy=Uy/zJ, u=pu/z3,V

=V/zJ, and i =C[C; is the number operator. In the above where the subscripts + denote the upper and lower halves of

equation, we consider only the nearest-neighbor interactionge Mott-insulating regions of phase space and

for the dipole-dipole interaction and the subscrip ne-

glected for convenience. The effective Hamilton{@3) can F=B+D-1, G=g(D-B)+D-BD,

be diagonal with respect to the siteThe phase diagram can

be analytically determined using second-order perturbation

o . — 1— — - - 11— —
theory. Heff can be divided into two parts as B=Uyg+ EVz+ Vgz, D=Uyg-Ug- §V2+ Vgz.
1—. . . 1—
Ho= 5 U0 = 1) = ah + 2V + 7, 20

The phase boundaries can be obtained from(Bg.In con-
H,=-(C"+C). (14)  trast to the phase diagram of a one-species BEC which is

In an occupation number basis the odd powers of the expaflrawn inUp-x space(see, e.g., Fig. 2 in Ref3]), we draw
sion of the energy iny will always be zero. If we denote the the phase diagram of dipolar bosons in the optical lattice in
unperturbed energy of the state with exaatlyparticles by ~ V-u space. Figure (&) shows a plot of Eq(19) for g=1, 2,
Ef]O), we find that the unperturbed ground-state energy i8 with U,=9, where “SF” indicates the superfluid phase and
given by E(go). ComparingE!”’ and E\;, we find thatEgo) “MI” indicates the Mott-insulator phase. The critical value of

n+1’

=0 if ©<0 and Ego):%ag(g—l)—ﬁg+%ngz if Uo(g—l) V. is determined by equating, and u_,
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W dependent external magnetic fieldB(t)=B{cos¢z
+sin g[cog Q)X +sin(Qt)y]}, which is a combination of a
100} SF -y static magnetic field, directed along the direction and a
. M fast rotating fieldB, in the radial plane, the frequency is
1 g=2 chosen such that the atoms are not significantly moving dur-
sor M ing the timeQ)™%, while the magnetic moments will adiabati-

cally follow the external field(t). In this limit, the average
of the magnetic dipole-dipole interaction in a cylindrically
symmetric interatomic potential and in the period/2) is

2 — —
_ gm (3 co§30 1) ( 3 coge 1) @
4 r 2

From Eq.(22), we can see that the anglebetween the
dipole orientation and the axis determines the strength of
the sign of the dipole-dipole interaction. Fer0, the mag-
netic dipoles are polarized along tledirection and the
dipole-dipole interaction is positive. Fer=7/2, the sign of

FIG. 1. Phase diagram of dipolar Bose-Hubbard model in arfhe dipole-dipole interaction is inverted and the absolute
optical lattice with(a) U,=9 and(b) different on-site energied,. ~ value is only one-half of that in the polarized case. kor
The vertical axis shows the dimensionless chemical potentiaF54.7°, the dipolar interaction averages to zero. Around the
wlzJ=w and the horizontal axis shows the dimensionless dipoleimagic angle, there exists a stable phase diagram area in
dipole interactionV/zJ=V. “SE” and “MF’ mean “superfluid ~ which we can observe the phase transition we suggest in our

phase” and “Mott-insulator phase”, respectively. paper.
Conclusion Based on the Bose-Hubbard model, the

. superfluid—Mott-insulator phase transition for systems of di-
(1 +29-Ug+2Vg+ 92)_ (21) polar bosons in an optical lattice has been studied. Using the
Bogoliubov transformation and decoupling approximation
o scheme, the condition for the phase transition between the
Figure Ib) shows a plot of Eq(19) for g=1 with Uy=9, 7,  superfluid phase and Mott insulator, the energy and the ve-
5. We can see that the critical val\gvaries from positive to  10City of the quasiparticles in the superfluid phase, and the
negative with increasing on-site interaction. This phenomPhase diagram refation to the dipole-dipole interaction have
enon shows that the dipole-dipole interaction is attractive foP€€n obtained analytically. The results show that the
a large on-site interactiofcorresponding to a larggwave  Superfluid—Mott-insulator phase transition of dipolar bosons

scattering lengthnear the superfluid—Mott-insulator phase in @n optical lattice can be tuned by the dipole-dipole inter-
transition critical point. action as well as the interatomic repulsion and the hopping

The beauty of the dipolar interaction lies in the fact that itterm- So dipolar boson systems in an optical lattice give us
is a directional interaction in contrast to the ussakave an additional tool to study the quantum phase transition.
interaction between atoms. We use the tunability of the mag- This work is supported by the NSF of China under Grants
netic dipolar interaction for an exampld7]. In a time- No. 10174095 and No. 90103024.
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