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The dynamics of Bose-Einstein condensates in optical lattices with the long-range dipole-dipole interactions,
the short-range on-site interactions, and hopping terms is reduced to the generalized discrete nonlinear
Schrödinger equation. We present the different types of solitary excitations which appear in different parameter
regions. We anticipate that these excitations will be observable and discuss how the model parameters can be
tuned in experiments.
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The dynamics of an ultracold dilute gas of Bosonic atoms
in an optical lattice can be described by the Bose-Hubbard
model f1g. The model predicts a phase transition from a su-
perfluid phase to a Mott insulator observed for ultracold at-
oms in the optical latticef2g. On the other hand, the dynam-
ics of Bose-Einstein condensatessBECsd trapped in a
spatially periodic potential can be mapped, in tight-binding
approximation, to a discrete nonlinear Schrödinger equation
f3g. It gives a link between the condensate dynamics and the
physics of discrete nonlinear mediaf4,5g. Though various
aspects of the BEC dynamics in the optical lattice have ap-
peared separately in the literaturese.g., the intrinsic localized
modes as well as the envelope solitonf6g, the discrete soli-
ton, the breathers and the dynamical phase diagramf3g, the
dynamical superfluid-insulator transitionf7g, etc.d, in all
these references the nonlinear Schrödinger equation included
only nonlinearities caused by short-range on-site interac-
tions. However, the nonlinearity caused by the long-range
dipole-dipole interaction has an important influence on the
properties of BECssee, e.g., some recent publications on the
nonlinearity caused by the long-range interaction in BECs
f10–12gd. The immediate motivations of the present paper
are twofold; from one side, we develop a procedure for han-
dling, all together, the long-range dipole-dipole interaction,
the short-range on-site interaction, and the hopping term and
want to show that the dynamics of dipolar bosons in the
optical lattices can be described by the general discrete non-
linear Schrödinger equation. This will allow us to get a better
understanding, both at the classical and at the quantum level,
of the interplay between on-site–intersite interactions as well
as integrability-nonintegrability and discrete-continuum
properties of BEC in optical latticef13g. From the other side,
we show that the system of dipolar BECs in the optical lat-
tice give us a different tool to study the different solitary
excitations as the physical parameters of the system of dipo-
lar BECs in optical lattice varied. Such a highly controllable
system may be crucial in answering some unresolved ques-
tions in the theory of quantum nonlinear dynamics.

We consider a dilute gas of bosons in the optical lattice
with the following Hamiltonianf1g:

H =E drC†sr dF−
"2

2m
=2 + VoptGCsr d

+E drdr 8C†sr dC†sr 8dVintCsr 8dCsr d

+E drC†sr dVextCsr d, s1d

where C†sr d and Csr d are the boson field operators
that annihilate and create a particle at the positionr ,
Vopt=V0sin2s2pz/ld is the optical lattice potential,l
is the light wave length,Vext is an external potential such
as the gravity in the Yale experimentf4g or magnetic
trapsf5g, Vint includes on-site and nearest-neighbor interac-
tions. In the case of polarized dipoles the interaction poten-
tial is Vint=d2s1−3 cos2ud / sr −r 8d3+s4p"2a/mddsr −r 8d
=Vdd+U0dsr −r 8d, where the first termVdd is the dipole-
dipole interaction characterized by the dipoled and the angle
u between the dipole direction and the vectorr −r 8, and the
second term is the short-range interaction given by the
s-wave scattering lengtha f10g.

The boson field operators ofCsr d and C+sr d can be ex-
panded over Wannier functionswsr −r nd of the lowest energy
band, localized on this site. This implies that the energies
involved in the system are small compared to the excitation
energies of the second band,Csr d=onCnwsr −r nd, C†sr d
=onCn

†w* sr −r nd. The Wannier functionswsr −r nd are as-
sumed to be strongly localized around the siten. It is nor-
malized in thenth well and orthonormal with different site
bands. For the weakly overlapped condensates, each BEC
wave function, centered at the minima of the potential, can
be expanded by the Wannier functions and using this ap-
proach, the general discrete nonlinear Schrödinger equation
can be obtained for dipolar BEC in the optical lattice such as
follows. If we only consider nearest-neighbor sites ofn
swhich is a good approximation for the BEC in one-
dimensional optical lattice as the large lattice constant and a
similar approximation has been adopted in Ref.f8gd, Eq. s1d
can be expressed as
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H = o
n

f«0Cn
†Cn + «extCn

†Cn + Jnn+1Cn
†Cn+1 + Jnn−1Cn

†Cn−1

+ U0Cn
†Cn

†CnCn + U1sCn+1
† Cn

†Cn+1Cn + Cn−1
† Cn

†Cn−1Cnd

+ U2Cn
†Cn

†sCn+1 + Cn−1dCng, s2d

where Cn is the annihilation operator of a particle
at the lattice site n, which is considered as being
in a state described by the Wannier functionwsz−znd
of the lowest energy band, localized on this site; where
«0=ew* sr −r ndf−s"2/2md=2+Voptgwsr −r nddz, «ext=ew* sr
−r ndVextwsr −r nddz, Jnn±1=ew* sr −r ndf−s"2/2md=2+Vopt

+Vextgwsr −r nn±1ddz, here«ext describes an energy offset of
each lattice site,Jnn±1 is the hopping term which describes
the nearest-neighbor tunneling, we chooseJ=−Jnn+1
=−Jnn−1, U0=s4p"2ad /m is the short-range on-site interac-
tion given by thes-wave scattering lengtha. Whena.0 sor
,0d, U0.0 sor ,0d corresponds to the repulsivesor attrac-
tived
potential. U1=2kn+1nuVddunn+1l=2kn−1nuVddunn−1l
and U2=4knnuVddunn+1l=4knnuVddunn−1l=4knnuVddun+1nl
=4knnuVddun−1nl are the nearest-neighbor dipole-dipole
interactions, where knjuVddulml=edrdr 8w* sr −r ndw* sr 8
−r jdVddwsr 8−r ldwsr −r md. This is a many-centers integral
which represents the diagonal or nondiagonal term of dipole-
dipole interactionf9g. The three and four centers integrals are
small and can be neglected. For the two centers integral, the
largest terms arekn+1nuVddunn+1l, kn−1nuVddunn−1l,
knnuVddunn+1l, and knnuVddunn−1l, etc. The effects of the
termskn+1nuVddunn+1l, kn−1nuVddunn−1l provide only the
energy shift and are similar to that of the on-site interaction
term. So, the termskn+1nuVddunn+1l, kn−1nuVddunn−1l can
be combined with the on-site interaction termU0 when we
consider the dynamics of the BEC in the optical lattice. But
for the termsknnuVddunn+1l andknnuVddunn−1l, they lead to
off-diagonal mixing terms which have different and impor-
tant influence on the dynamics of BECs in the optical lattice
as we can see from the following. Thus, in the following, we
consider only the off-diagonal mixing terms for the two-
centers integral.

We now consider a coherent stateuastdl of the atomic
matter field in a potential wellf2g. Evaluating the atomic
field operatorCn for such a state, we find then the macro-
scopic matter wave field,cn=kastduCnuastdl. Using the time-
dependent variation principle, we can get the equation of
motion for BEC in the optical lattice,

i
]cn

]t
+ Jcn+1 + Jcn−1 − «ncn − U0ucnu2cn

− Uddscn+1 + cn−1ducnu2 = 0, s3d

where «n=«0+«ext is the total energy of each lattice site,
Udd=U2 is the coefficient which denotes the dipole-dipole
interaction.

Dynamics of BEC with repulsive on-site interaction
sU0.0d: Using the substitution cn→ f2J/ sU0

+2Udddg1/2wnexpf−is«0−2J+Jl2dgt, l2 is the background

amplitude, we can obtain the following general discrete non-
linear Schrödinger equationf13g:

i
]wn

]t
+ swn+1 + wn−1 − 2wnd − eswn+1 + wn−1duwnu2

+ 2se − 1duwnu2wn + 2r2wn = 0, s4d

wheree=2Udd/ sU0+2Uddd, r2=sl2−«ext/Jd /2, t→Jt.
Whene=1, Eq.s4d is reduced to the integrable Ablowitz-

Ladik model which can be solved by the inverse scattering
technique, and it leads to the so-called dark soliton solution
with Bloch oscillations in a constant electric fieldf14g. When
0,e,1, Eq. s4d is nonintegrable and only the approximate
solution can be obtained by the multiple scale expansion
methodf13g. As it was shown in Ref.f13g, there are singular
points in Eq.s4d when sU0+2Uddd /2Udd=sl2−«ext/Jd /2. At
the singular points, the dispersive term becomes zero and the
given site is decoupled from its neighbors. Near these singu-
lar points or far from them, the dynamic behaviors ofwn are
quite different.

When the excitations are in the vicinity of the singular
points, there are soliton solutions which can be described by
the Toda latticemodel and the solution of Eq.s4d in the
small-amplitude limit is

wn = kne−1/2s1 − g2mandexps− igxn + iv0td, s5d

where eø1, and g!1 is a small parameter,an=anstd
and xn=xnstd are two real functions of the time
t=2gtÎ2se−1−1+kd, v0=2fsl2−«ext/Jd /2−e−1g, m
=k sgnse−1+kd. Substituting Eq.s5d in Eq. s4d and gather-
ing all the terms of orders up tog3, we arrive at the following
Todasystem:dan/dt=anscn−cn−1d, dcn/dt=an+1−an, where
cn=Î2ue−1−1−kusxn−xn+1d. We can find that small-
amplitude dark pulses near the singular points can be viewed
as exact solitons of the Toda lattice. Whenk=1, m=1, the
system has a stable in-phase dark soliton near the singular
points. Whenk=−1, sU0+2Uddd /2Udd,1/2, m=1, the sys-
tem has an out-of-phase dark soliton. Whenm=−1, k=−1,
sU0+2Uddd /2Udd.1/2, the system has an out-of-phase
bright soliton. In addition, whensU0+2Uddd /2Udd=1/2, the
system will have strong dispersive character.

When the excitations are far from the singular points, the
dynamics of BEC in the optical lattice can be described by
the small-amplitude limit. The solution can be sought using
the multiscale expansion techniquef13,15g. The general con-
cept of multiscales have wide applicability to various prob-
lems that involve phenomena that occur in relation to differ-
ent scales. As the action of the nonlinear terms, there often
exists various oscillations with different time scales in dis-
crete nonlinear media. In the method of multiscale expansion
applied in general discrete nonlinear Schrödinger equation
f13,14g, these oscillations are classified as the fast and slow
processes and the corresponding variables with different time
scales are introduced in an obvious way. The first step of the
method of multiscale expansion is to introduce new variables
anstd andFnstd related to the amplitude and phase ofwnstd as
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wnstd = fr + anstdge−iFnstd, s6d

where anstd=g2as0dsT,X;td+g4as1dsT,X;td+¯, Fnstd
=gFs0dsT,X;td+g3Fs1dsT,X;td+¯ . The small parameter
gsg!1d, just introduced, is related to the smallness of the
deviation anstd. Besides this, the above approach assumes
that the terms in the expansion are related to three different
scales, i.e., the fast variablesX=gn of space andT=gt of
time. A slow variablet=g3t of time. Analyzing Eq.s4d in all
orders overg up to g5 terms, and using the compatibility
condition, we can find that the leading termas0d satisfies the
following KDV equation f13g: −4rÎ1−er2s]as0d /]td− 1

3s1
−er2df3−s3e+1dr2gs]3as0d /]3Zd+8r2s3−4er2das0ds]as0d /]Zd
=0, and it can be written as f15g as0dsz,td
=−s12n2G2/G1dsech2fnsz−Vtdg, wheren is an arbitrary pa-
rameter, G1=−1

3s1−er2df3−s3e+1dr2g, V=−2n2G2/C, G2

=−8r2s3−4er2d, C=−4rÎ1−er2. We can find the soliton so-
lution of Eq. s4d in the small amplitude approximation,

cn = „r − s12n2G2/G1dsech2hnfz− Vstdgj…e−iFnstd. s7d

We get the following three curves with theJ,U0, andUdd:
P1=s8r2−6d / s3−r2d, curve 1; P1=8r2/3−2, curve 2; P1

=2r2−2, curve 3; whereP1=U0/Udd represents the ratio of
the nearest-neighbor interaction and on-site interaction. The
above three curves divide the parameter spacesP1,r2d into
four regions in which the dark and bright soliton solutions
exist, as it is shown in Fig. 1. In this figure, in the region
betweenP1. s8r2−6d / s3−r2d, the G1,0, G2,0, the BEC
in the optical lattice has dark soliton solution. When 8r2/3
−2, P1, s8r2−6d / s3−r2d, the G1.0, G2,0, the BEC in
the optical lattice has bright soliton. When 2r2−2, P1
,8r2/3−2, theG1.0, G2.0, the BEC in the optical lattice
has dark soliton solution. WhenP1,2r2−2, the G1,0,
G2.0, the BEC in the optical lattice has bright soliton so-
lution. In addition to the above cases, the curveP1=2r2−2
itself determines the amplitude of the singular points. Close
to this line the dynamics of small-amplitude excitations fol-

low Toda lattice equations. The curveP1=8r2/3−2 makes
the nonlinear term become zero, and this implies that any
localized pulse will spread out in the background radiation
sno solitary excitationsd. On the other hand, the curveP1
=s8r2−6d / s3−r2d represents the dispersionless excitations,
and this case will give shock wave soliton solutions when the
nonlinearity is not zero.

Up to now, we found that for the repulsive interaction, the
equation of motion of dipolar BECs has the singular points
when the hopping term, the short-range on-site interaction,
the long-range dipole-dipole interaction, and the external
field satisfy the corresponding relations. By modifying these
experimental parameters, the different types of solitons ap-
pear near or far away from these singular points.

Dynamics of BEC with attractive on-site interaction
sU0,0d: Without any external potential and for the small
kinetic energy, Eq.s3d is reduced to

i
]cn

]t
+ scn+1 + cn−1d −

U0

J
cn

†cncn −
Udd

J
scn+1 + cn−1dcn

†cn

= 0. s8d

Equations8d is nonintegrable, and a first-order adiabatic ap-
proximation solution can be obtained by perturbation
method. Treating the termncnucnu2 as a perturbation, where
U0,0, n=−U0/J.0, and using the adiabatic approxima-
tion, a soliton retains its functional form in the presence of
perturbationf16–18g, the solution to the first order ofn can
be written as

cn =
1

Îm
sinhb sechfbsn − xdgeiasn−xd+is, s9d

wheredx/dt=s2 sinhb sinad /b, db /dt=0,

]a

]t
= n

]

]xo
s=1

`
4p2ssinh2b

b3sinhsp2s/bd
coss2psxd,

ds

dt
= 2 cosa cosb +

2a

b
sina sinhb, s10d

whereUdd,0, m=−Udd/J.0. This solution is a bright soli-
ton but the role of the dipole-dipole interaction may follow
from a refinement of the general consideration described
above. We conclude that for the attractive interaction, the
equation of motion of dipolar BECs can be treated by per-
turbation methods and the bright soliton solution can be
found.

For observation of the above excitations, one of the pos-
sible physical realizations of a gas of dipolar BECs can be
provided by electrically polarized gases of polar molecules
or by applying a high dc electric field to atomsf19g. In
order to induce the dipole moment of the order 0.1 D
s1 D=3.336310−30 Cm in SI unitsd and the corresponding
scattering lengthad,10–100 Å, one needs an electric field
of the order of 10 V/cm and the correspondings-wave scat-
tering length,10–1000 Å. Nevertheless, the influence of
dipole forces on excitation of a dipolar BEC might be in this
case also observable using not as high electric fields. Another

FIG. 1. The different parameter regionssP1,r2d showing the
different solitary excitations of BECs in the optical lattice, where
curve 1 isP1=s8r2−6d / s3−r2d, curve 2 isP1=8r2/3, and curve 3
is P1=2r2−2; “dark soliton” and “bright soliton” represent regions
where the dark and bright solitons exist, respectively.
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possibility is using magnetic atomic dipolesf20–22g. For ex-
ample, the chromium atoms have a magnetic moment
m=6mB, which is equivalent to an electric dipole moment of
d=0.06 D, and an effective scattering lengthad=−5 Å. This
could be enough to observe the influence of dipole-dipole
interaction on the elementary excitations of chromium BEC,
provided thes-wave scattering length is not anomalously
large, and it takes a value in the range of a few tens of Å.

In fact, the dipole-dipole interation leads to interesting
properties and significantly modifies the ground-state and
collective excitations including nonlinear solitary excitations
of trapped condensates. The dipole-dipole interactions are
also responsible for spontaneous polarization and spin waves
in spinor condensates in optical lattices and may lead to self-
bound structures in the field of a traveling wave. Sources of
cold dipolar bosons include atoms or molecules with perma-
nent magnetic or electric dipole moments. Other candidates
could be atoms with electric dipoles, induced either by large
dc electric fields or by optical admixing the permanent dipole
moment of a low-lying Rydberg state to the atomic ground
state in the presence of a moderate dc electric field. Since the
interactions in a gas of dipolar bosons are easily tunable by
modifying the wavelength and intensity of the lattice and by
changing the magnitude of the external fields in the experi-
ment. We can easily manifest the effect of the dipole-dipole

term for realizing various kinds of solitary excitations such
as bright and dark solitons.

In summary, we found that, due to the long-range dipole-
dipole interaction, the dynamics of dipolar bosons in optical
lattices can be described by the general discrete nonlinear
Schrödinger equation. As the long-range dipole-dipole inter-
action, the system of dipolar bosons in optical lattices with
repulsive on-site interaction possesses singular points. In the
vicinity of the singular points, the dynamics of dipolar
bosons in optical lattices are described by the Toda lattice
equation while away from the singular points they are de-
scribed by the KDV equation. In addition we find different
regions in which stable bright or dark soliton excitations will
exist and on the boundaries of these regions the system be-
comes effectively dispersionless and the formation of shock
waves becomes possible. These different excitations are ob-
servable when we modify the wavelength and intensity of the
lattice and change the magnitude of the external fields in the
experiment.
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