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Nonlinear dynamics of a dipolar Bose-Einstein condensate in an optical lattice
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The dynamics of Bose-Einstein condensates in optical lattices with the long-range dipole-dipole interactions,
the short-range on-site interactions, and hopping terms is reduced to the generalized discrete nonlinear
Schrédinger equation. We present the different types of solitary excitations which appear in different parameter
regions. We anticipate that these excitations will be observable and discuss how the model parameters can be
tuned in experiments.
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The dynamics of an ultracold dilute gas of Bosonic atoms 42
in an optical lattice can be described by the Bose-Hubbard H :de‘I’T(r) _%VZ"'Vopt W(r)
model[1]. The model predicts a phase transition from a su-
perfluid phase to a Mott insulator observed for ultracold at-
oms in the optical latticg2]. On the other hand, the dynam-
ics of Bose-Einstein condensatdBEC9 trapped in a
spatially pe_riodic potgntial can bg mapped,__in_ tight—bindir)g +f dr (VoW (r), (1)
approximation, to a discrete nonlinear Schrodinger equation
[3]. It gives a link between the condensate dynamics and the .
physics of discrete nonlinear medid,5]. Though various Wwhere \II.T(_r) and W(r) are the bpson field operators
aspects of the BEC dynamics in the optical lattice have apt-hat anmhﬂate and_ create a partlcle at the positign
peared separately in the literatueeg., the intrinsic localized Vopi=Vosir’(2mz/\) is the optical lattice potential \
modes as well as the envelope solif@, the discrete soli- IS the light wave lengthVe, is an external potential such
ton, the breathers and the dynamical phase diag@inthe @S the gravity in the Yale experimeri#] or magnetic
dynamical superfluid-insulator transitiofv], etc), in all  raPS[S], Viy includes on-site and nearest-neighbor interac-
these references the nonlinear Schrédinger equation includdgns: In the case of polarized dlp/O|3€S the 2|nteract|on poten-
only nonlinearities caused by short-range on-site interact® 1S Vin=d (1—3co§0)/(r_—r )*+(4mhZalm)ér—r’)
tions. However, the nonlinearity caused by the long-range Vaa+Uodr —r"), where the first termiyq is the dipole-
dipole-dipole interaction has an important influence on thedipole interaction characterized by the dipdland the angle
properties of BEQsee, e.g., some recent publications on thef between the dipole direction and the veater’, and the
nonlinearity caused by the long-range interaction in BECs$€cond term is the short-range interaction given by the
[10-12). The immediate motivations of the present paperS'wave scattering length [10].
are twofold: from one side, we develop a procedure for han- The boson field operators df (r) and W*(r) can be ex-
dling, all together, the long-range dipole-dipole interaction,Panded over Wannier functiongr —r,,) of the lowest energy
the short-range on-site interaction, and the hopping term an@and, localized on this site. This implies that the energies
want to show that the dynamics of dipolar bosons in thenvolved in the system are small compared to the excitation
optical lattices can be described by the general discrete nognergies of the second ban®,(r)=X,Cw(r -ry,), ¥(r)
linear Schrédinger equation. This will allow us to get a better=2,C/w* (r—r.,). The Wannier functionsv(r —r,,) are as-
understanding, both at the classical and at the quantum levedumed to be strongly localized around the sitdt is nor-
of the interplay between on-site—intersite interactions as welinalized in thenth well and orthonormal with different site
as integrability-nonintegrability and discrete-continuumbands. For the weakly overlapped condensates, each BEC
properties of BEC in optical lattidel3]. From the other side, wave function, centered at the minima of the potential, can
we show that the system of dipolar BECs in the optical lat-be expanded by the Wannier functions and using this ap-
tice give us a different tool to study the different solitary proach, the general discrete nonlinear Schrédinger equation
excitations as the physical parameters of the system of dipaan be obtained for dipolar BEC in the optical lattice such as
lar BECs in optical lattice varied. Such a highly controllable follows. If we only consider nearest-neighbor sites rof
system may be crucial in answering some unresolved quegwhich is a good approximation for the BEC in one-

+fdrdr"PT(r)\Iﬁ(r’)Vimllf(r’)\lf(r)

tions in the theory of quantum nonlinear dynamics. dimensional optical lattice as the large lattice constant and a
We consider a dilute gas of bosons in the optical latticesimilar approximation has been adopted in R8Y), Eq. (1)
with the following Hamiltonian1]: can be expressed as
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H= En: [£0CICh+ £exClCh + Jnms1CICrre + Inn1ClCrt ﬁrr::ag:tgdc?{révdeincgaenr Z?qﬁ’i;\?i (’E[rlﬁ]f:ollowing general discrete non-
+UCICICrCh + U1(ChiClCriaC + Cl 1 CICH 1C) sor
+U,CICH(Cruq + Crot)Cal, 2 = * (@ma+ @n1~ 200) ~ el@ni + en-1)| el
where C, is the annihilation operator of a particle +2(e = D] nl®n + 2p%0, = 0, (4)

at the lattice siten, which is considered as being

in a state described by the Wannier functioiz-z,)  wheree=2Uyy/ (Ug+2Uq4g), p?=(N2—ggu/J) /2, t— Jt.

of the lowest energy band, localized on this site; where Whene=1, Eq.(4) is reduced to the integrable Ablowitz-
eo=JW* (r =1 )[=(A%/2m)V?+V,o, JW(r =1 )dz, ge=/W* (r  Ladik model which can be solved by the inverse scattering
I )VeaW(r=r)dz,  Jpper=JW* (r —rn)[—(f'zz/Zm)V2+VOpt technique, and it leads to the so-called dark soliton solution
+Ve,lW(r -1 ,e1)dz hereee,; describes an energy offset of with Bloch oscillations in a constant electric fidlti4]. When
each lattice siteJ,1 is the hopping term which describes 0<e<1, Eq.(4) is nonintegrable and only the approximate
the nearest-neighbor tunneling, we choose-J,,,; Solution can be obtained by the multiple scale expansion
=-Jyn1, Uo=(4mh%a)/m is the short-range on-site interac- method[13]. As it was shown in Ref.13], there are singular
tion given by thes-wave scattering lengta. Whena>0 (or ~ points in Eq.(4) when (Ug+2Uyq)/2Uqq=(A>—gey/ J)/2. At
<0), Uy>0 (or <0) corresponds to the repulsiver attrac-  the singular points, the dispersive term becomes zero and the
tive) given site is decoupled from its neighbors. Near these singu-
potential. U, =2(n+1n|Vynn+1)=2(n-1n|Vynn-1)  lar points or far from them, the dynamic behaviorsefare

and U,=4(nnVygnn+1)=4(nnVygdnn-1)=4(nnVyn+1n)  quite different.

=4(nn[VgJn-1n) are the nearest-neighbor dipole-dipole When the excitatjons are _in the yicinity of the sir)gular
interactions,  where (nj[Vqglm)=fdrdr'w* (r =r Jw* (r’ points, there are soliton solutions which can be described by
] n

—r )VggW(r'=r )W(r —r ). This is a many-centers integral the Toda lattice model and the solution of Eq4) in the

which represents the diagonal or nondiagonal term of dipole§malI_amp“tUde limit is

dipole interactiorf9]. The three and four centers integrals are N 1/2 i ]
small and can be neglected. For the two centers integral, the o= K€ VAL - Y uamexp—iyxn +iwg), (5)
largest terms are(n+1n|Vynn+1), (n—1n|Vy44nn-1),
(nn[Vggnn+1), and (nnVynn-1), etc. The effects of the Where e<1, and y<1 is a small parametera,=ay()
terms(n+1n[Vggnn+1), (n—1n|V4nn-1) provide only the and x,=xn(7) are two real functions of the time
energy shift and are similar to that of the on-site interaction”=2YV2(€ '=1+k),  wo=2A(\N*-ee/ D/2-€1],  u
term. So, the term@+1n|Vggnn+1), (n—1n|Vydnn-1) can =« sgr(e—1+«). Substituting Eq(5) in Eq. (4) and gather-
be combined with the on-site interaction tetdg when we  ing all the terms of orders up @, we arrive at the following
consider the dynamics of the BEC in the optical lattice. ButTodasystem:da,/dr=an(Cy~Cy-1), dGy/d7=an,1~ay, Where
for the terms(nnVygnn+ 1) and(nnVynn-1), they lead to  ¢n=12/€ *=1-«|(xo~xns1). We can find that small-
off-diagonal mixing terms which have different and impor- amplitude dark pulses near the singular points can be viewed
tant influence on the dynamics of BECs in the optical lattice2S exact solitons of the Toda lattice. Wher1, u=1, the
as we can see from the following. Thus, in the following, weSystem has a stable in-phase dark soliton near the singular
consider only the off-diagonal mixing terms for the two- Points. Whenk=-1, (Ug+2U4qg)/2Uq4<1/2, u=1, the sys-
centers integral. tem has an out-of-phase dark soliton. When-1, k=-1,

We now consider a coherent stgigt)) of the atomic  (Uo+2Uqgg)/2Ugq>1/2, the system has an out-of-phase
matter field in a potential wel[2]. Evaluating the atomic bright soliton. In addition, wheUy+2Uyy)/2Ug4=1/2, the
field operatorC,, for such a state, we find then the macro- system will have strong dispersive character.

scopic matter wave fieldj,=(a(t)|C,|a(t)). Using the time- When the excitations are far from the singular points, the
dependent variation principle, we can get the equation oflynamics of BEC in the optical lattice can be described by
motion for BEC in the optical lattice, the small-amplitude limit. The solution can be sought using
the multiscale expansion techniques,15. The general con-

A ) cept of multiscales have wide applicability to various prob-

T It + -1~ enthn = Uol |t lems that involve phenomena that occur in relation to differ-
ent scales. As the action of the nonlinear terms, there often

= Ugg(thne + -0 /> =0, 3 exists various oscillations with different time scales in dis-

crete nonlinear media. In the method of multiscale expansion

where e =gg+&ey IS the total energy of each lattice site, applied in general discrete nonlinear Schrodinger equation

Ug4q=U, is the coefficient which denotes the dipole-dipole[13,14), these oscillations are classified as the fast and slow

interaction. processes and the corresponding variables with different time

Dynamics of BEC with repulsive on-site interaction scales are introduced in an obvious way. The first step of the

(Up>0): Using the  substitution ¢,—[2J/(U,  method of multiscale expansion is to introduce new variables
+2U g0 1Y20nexd—i(gg—2J+IN?)]t, A2 is the background a,(t) and®,(t) related to the amplitude and phasegft) as
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10 T T T y low Toda lattice equationsThe curveP,=8p?/3-2 makes
ol ] the nonlinear term become zero, and this implies that any
sl 1 ] localized pulse will spread out in the background radiation
(no solitary excitations On the other hand, the curnve,
7t Dark Soliton . =(8p?—6)/(3-p? represents the dispersionless excitations,
3 o | and this case will give shock wave soliton solutions when the
> ] nonlinearity is not zero.

Bright Soliton ) Up to now, we found that for the repulsive interaction, the
ar equation of motion of dipolar BECs has the singular points
al ] when the hopping term, the short-range on-site interaction,
) Dark Soliton the long-range dipole-dipole interaction, and the external

[ Bright Sollton | field satisfy the corresponding relations. By modifying these
1 n n

3 2 15 experimental parameters, the different types of solitons ap-

2 pear near or far away from these singular points.
Dynamics of BEC with attractive on-site interaction

FIG. 1. The different parameter regiotB;,p? showing the (Ug<<0): Without any external potential and for the small
different solitary excitations of BECs in the optical lattice, where kinetic energy, Eq(3) is reduced to
curve 1 isP;=(8p?-6)/(3-p?), curve 2 isP;=8p?/3, and curve 3 » U U
is P;=2p?-2; “dark soliton” and “bright soliton” represent regions : ?%n _ >0 ¢t _ Ydd t
whelre tﬁe dark and bright solitons gxist, respecti\[jely. ’ "ot * (Wia* vn-) J Ynthntn J (Wnes + Y1)Vt

_ =0. (8)
t) =[p+an(t)]e" v, 6
en(V =lp+an ()] © Equation(8) is nonintegrable, and a first-order adiabatic ap-
where  a,(t)=y2a%(T,X;D+ya(T,X;D+---, P (1)  proximation solution can be obtained by perturbation

=y®O(T,X; 1) +12DdI(T,X;7)+--- . The small parameter method. Treating the termu,| |2 as a perturbation, where
v(y<1), just introduced, is related to the smallness of theUy<0, »=-Uy/J>0, and using the adiabatic approxima-
deviation a,(t). Besides this, the above approach assumetion, a soliton retains its functional form in the presence of
that the terms in the expansion are related to three differerierturbation/16-18, the solution to the first order of can
scales, i.e., the fast variablé& yn of space andr=+t of  be written as

time. A slow variabler= %t of time. Analyzing Eq(4) in all 1

orders overy up to y° terms, and using the compatibility = —=sinh B sechi 8(n - x) ] *¥*i7, (9)

[

condition, we can find that the leading teaf? satisfies1 the Vi
following KDV equation [13]: —4p\1-ep?(da®/a7)-5(1 , :

—6p2)[39(36+ 1)p§](a3a<°>/[a32])+8pg(\3—4£)2()a<0>(aa<g>/a3£) wheredx/dt=(2 sinhB sina)/ 8, dB/dt=0,
=0, and it can be written as[15] a9(zt) Ja 9 < An’ssintB
=—(122G,/ G;)sech[v(z-V7)], wherew is an arbitrary pa- P V&E WCOS(%TSX),
rameter, G,=-3(1-ep?)[3-(3e+1)p?], V=-212G,/C, G, =1P P
=-8p?(3-4ep?), C=—4p\1-€p?. We can find the soliton so-

lution of Eq. (4) in the small amplitude approximation, do

2
E:Z COSa COSf3 + Easinasinhﬁ, (10

= (p— (12°G,IGy)sech{{z~ V(D) ])e' V. (7)
whereUyq<0, u=-Uy4/J>0. This solution is a bright soli-

We get the following three curves with thUy, andUgq:  ton but the role of the dipole-dipole interaction may follow
P1=(8p°-6)/(3-p?, curve 1;P;=8p*/3-2, curve 2;P;  from a refinement of the general consideration described
=2p?=2, curve 3; wheré®; =U,/Uyq represents the ratio of apove. We conclude that for the attractive interaction, the
the nearest-neighbor interaction and on-site interaction. Thequation of motion of dipolar BECs can be treated by per-
above three curves divide the parameter sf#Gep?) into  turbation methods and the bright soliton solution can be
four regions in which the dark and bright soliton solutionsfound.
exist, as it is shown in Fig. 1. In this figure, in the region  For observation of the above excitations, one of the pos-
betweenP; > (8p%-6)/(3-p?), the G; <0, G,<0, the BEC  sible physical realizations of a gas of dipolar BECs can be
in the optical lattice has dark soliton solution. Whep?8  provided by electrically polarized gases of polar molecules
-2<P;<(8p?-6)/(3-p?), the G;>0, G,<0, the BEC in or by applying a high dc electric field to atonig9]. In
the optical lattice has bright soliton. Wherp”22<P;  order to induce the dipole moment of the order 0.1 D
<8p?/3-2, theG,>0, G,>0, the BEC in the optical lattice (1 D=3.336<x103°Cm in Sl unit3 and the corresponding
has dark soliton solution. WheR;<2p?-2, the G,<0, scattering lengtla;~10-100 A, one needs an electric field
G,>0, the BEC in the optical lattice has bright soliton so- of the order of 10 V/cm and the correspondmgave scat-
lution. In addition to the above cases, the cuRe=2p?>~2  tering length~10-1000 A. Nevertheless, the influence of
itself determines the amplitude of the singular points. Closalipole forces on excitation of a dipolar BEC might be in this
to this line the dynamics of small-amplitude excitations fol- case also observable using not as high electric fields. Another
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possibility is using magnetic atomic dipolg20-23. For ex-  term for realizing various kinds of solitary excitations such
ample, the chromium atoms have a magnetic momenas bright and dark solitons.

u=6ug, which is equivalent to an electric dipole moment of  |n summary, we found that, due to the long-range dipole-
d=0.06 D, and an effective scattering lengifF—5 A. This  ginole interaction, the dynamics of dipolar bosons in optical

could be enough to observe the influence of dipole-dipolg,ices can be described by the general discrete nonlinear
interaction on the elementary excitations of chromium BEC’Schrt')dinger equation. As the long-range dipole-dipole inter-

provided thes-wave scattering length is not anomalously action, the system of dipolar bosons in optical lattices with

large, and it takes a value in the range of a few tens of A. ! g . ; .
In fact, the dipole-dipole interation leads to interestingrepL'IS'Ve on-site interaction possesses singular points. In the

properties and significantly modifies the ground-state andicinity of the singular points, the dynamics of dipolar
collective excitations including nonlinear solitary excitationsbosons in optical lattices are described by the Toda lattice
of trapped condensates. The dipole-dipole interactions arequation while away from the singular points they are de-
also responsible for spontaneous polarization and spin wavesribed by the KDV equation. In addition we find different

in spinor condensates in optical lattices and may lead to selfegions in which stable bright or dark soliton excitations will
bound structures in the field of a traveling wave. Sources oéxist and on the boundaries of these regions the system be-
cold dipolar bosons include atoms or molecules with permacomes effectively dispersionless and the formation of shock
nent magnetic or electric dipole moments. Other candidatewaves becomes possible. These different excitations are ob-
could be atoms with electric dipoles, induced either by largeservable when we modify the wavelength and intensity of the
dc electric fields or by optical admixing the permanent dipolejattice and change the magnitude of the external fields in the
moment of a low-lying Rydberg state to the atomic groundexperiment.

state in the presence of a moderate dc electric field. Since the

interactions in a gas of dipolar bosons are easily tunable by This work was supported by the NSF of China under
modifying the wavelength and intensity of the lattice and byGrant Nos. 60490280, 90403034, and 90406017. E.K. is in-
changing the magnitude of the external fields in the experidebted to INTAS(Grant No. 01-010pand Z.W.X. is in-
ment. We can easily manifest the effect of the dipole-dipoledebted to Sichuan Education Fuf@D04A003.
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