PHYSICAL REVIEW A 71, 053611(2005

Magnetic soliton and soliton collisions of spinor Bose-Einstein condensates in an optical lattice
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We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which
results in an effective Hamiltonian of anisotropic pseudospin chain. A modified Landau-Lifshitz equation is
derived and exact magnetic soliton solutions are obtained analytically. Our results show that the time oscilla-
tion of the soliton size can be controlled in practical experiment by adjusting of the light-induced dipole-dipole
interaction. Moreover, the elastic collision of two solitons is investigated.
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I. INTRODUCTION magnetic soliton has already been probed experimentally in

Recently, spinor Bose-Einstein condensatéBEC's) quasi-one-dimensional magnetic systems. Solitons can travel
trapped in optical potentials have received much attention i?Ver long distances with neither attenuation nor change of
both experimental1-3] and theoretical studiet]. Spinor shape, since the dispersion is compensated by nonlinear ef-
BEC's have internal degrees of freedom due to the hyperfinéects. The study of solitons has been conducted in as diverse
spin of the atoms which liberate a rich variety of phenomendields as particle physics, molecular biology, geology, ocean-
such as spin domairi§] and texture$6]. When the potential ography, astrophysics, and nonlinear optics. Perhaps the most
valley is so deep that the individual sites are mutually indeprominent application of solitons is in high-rate telecommu-
pendent, spinor BEC's at each lattice site behave like spimications with optical fibers. However, the generation of con-
magnets and can interact with each other through both thtsollable solitons is an extremely difficult task due to the
light-induced and static, magnetic dipole-dipole interactionscomplexity of the conventional magnetic materials. The
These site-to-site dipolar interactions can cause the ferrespinor BEC's seems an ideal system to serve as a new test
magnetic phase transitidi7,8] leading to a “macroscopic” ground for studying the nonlinear excitations of spin waves
magnetization of the condensate array and spin-wave-likboth theoretically and experimentally.
excitation[7,9] analogous to the spin wave in a ferromag- The outline of this paper is organized as follows: In Sec.
netic spin chain. For the real spin chain, the site-to-site indl the Landau-Lifshitz equation of spinor BEC's in an optical
teraction is caused mainly by the exchange interaction, whiléattice is derived in detail. Next, we obtain the one-soliton
the dipole-dipole interaction is negligibly small. For the solution of spinor BEC'’s in an optical lattice. The result
spinor BEC’s in the optical lattice, the exchange interactionshows that the time oscillation of the amplitude and the size
is absent. The individual spin magnets are coupled by thef soliton can be controlled by adjusting of the light-induced
magnetic and the light-induced dipole-dipole interactif@ls dipole-dipole interaction. We also present that the magneti-
which are no longer negligible due to the large number ofzation varies with time periodically. In Sec. VI, the general
atoms N, at each lattice site, typically of the order of 1000 or two-soliton solution for spinor BEC’s in an optical lattice is
more. Therefore, the spinor BEC’s in an optical lattice offerinvestigated. Analysis reveals that elastic soliton collision
a totally new environment to study spin dynamics in periodicoccurs and there is a phase exchange during collision. Fi-
structures. The magnetic soliton excited by the interactiomally, our concluding remarks are given in Sec. V.
between the spin wavd®] is an important and interesting
phenomenon in spinor BEC's. In this paper, we demonstrate
that the magnetic soliton and elastic soliton collision are ad- |I. LANDAU-LIFSHITZ EQUATION OF SPINOR BEC's

mitted for spinor BEC's in a one-dimensional optical lattice IN AN OPTICAL LATTICE
and are controllable by adjusting of the light-induced and the
magnetic dipole-dipole interactions. The dynamics of spinor BEC's trapped in an optical lat-

The Heisenberg model of spin-spin interactions is considtice is primarily governed by three types of two-body inter-
ered as the starting point for understanding many compleactions: spin-dependent collisions characterized by the
magnetic structures in solids. In particular, it explains thes-wave scattering length, magnetic dipole-dipole interaction
existence of ferromagnetism and antiferromagnetism at temof the order of Bohr magnetomg), and light-induced
peratures below the Curie temperature. The magnetic solitodipole-dipole interaction adjusted by the laser frequency in
[10], which describes localized magnetization, is an impor-experiment. Our starting point is the Hamiltonian describing
tant excitation in the Heisenberg spin chditl—14. The anF=1 spinor condensate at zero temperature trapped in an
Haldane gagd15] of antiferromagnets has been reported inoptical lattice, which is subject to magnetic and light-induced
integer Heisenberg spin chain. By means of the neutron indipole-dipole interactions and is coupled to an external mag-
elastic scatteringi16] and electron spin resonanf&7], the netic field via the magnetic dipole Hamiltonidty [4-7],

1050-2947/2005/75)/0536117)/$23.00 053611-1 ©2005 The American Physical Society



LI et al. PHYSICAL REVIEW A 71, 053611(2005

V2 - dipole-dipole interaction induces the amplitude and size of
— UL(r) | #a(r) the soliton varying with time periodically as we will show in
the following section.

A h2
H=2 fdr«/zi(r)[— 5

From Hamiltonian2) we can derive the Heisenberg equa-

+ 2| drdr/ gl ghr)USs(rr) tion of motion atkth site for the spin excitations. When the
apur optical lattice is infinitely long and the spin excitations are in
+Ui;%f(r,r’)]¢7(r’)¢v(r)+HB, (1) the long-wavelength limit—i.e., the continuum limi§,

— 3(z,t)—we obtain the Landau-Lifshitz equation of a

where ,(r) is the field annihilation operator for an atom in SPinor BEC in an optical lattice as follows:

the hyperfine statéf=1,m;=a), U, (r) is the lattice poten- 9 2\ P P \d BY
V!

tial, and the indicesy, 8, v, 7 which run through the values ==~ az<9'gsz—szgg> —4TS"SZ e

-1,0,1 denote the Zeeman sublevels of the ground state.

oll

The parametet)S0; (r,r’) describes the two-body ground-
state collisions, gndugfﬁf(r t') includes the magnetic 95 _ Zl[a2<§ﬁsx_ Sxﬁsz) + 4)\_|dszsx:| _BS
. . . . . . . . 2 !
dipole-dipole interaction and the light-induced dipole-dipole & % oz 4 A h
interaction.
When the optical lattice potential is deep enough there is 9 2N L[ & P «
no spatial overlap between the condensates at different lattice iy S (9_229 - Sya_zzs : (3)

sites. We can then expand the atomic field operatog(ag

=3, 2 420, +18,(N) &, (r), wheren labels the lattice sitesj,(r)

is the condensate wave function for thth microtrap, and

the operatorg,(n) satisfy the bosonic commutation relations ) 9%

[éa(n),éz(l)]:aaﬁﬁm. It is assumed that all Zeeman compo- constlantf[lg]. In a éc/);iattlrr]lg fra_lme a;oursn_d thf ?x(ljsthﬁ

nents share the same spatial wave function. If the condeng-::gili]glr Ornegléentt;])g transfgr:gtri]o\r/nec 0> IS refated 1o the

sates at each lattice site contain the same number of &pms 9 y

the ground-state wave functions for different sites have the , vB . (B

same forme,(r)=dn(r —ry). S=S"coq - t|+9 sin ik
In this paper we consider a one-dimensional optical lattice

along thez direction, which we also choose as the quantiza-

tion axis. In the absence of spatial overlap between indi- 9=9 Cog<7_Bt) - sin(y—Bt). (4)

vidual condensates and neglecting unimportant constants, we h h

can construct the effective spin Hamiltonigh9] as

where we assume that all nearest-neighbor interactions are
the same—namelw,,y=\, which is a good approximation

in the one-dimensional optical lattice for the large lattice

Thus the Landau-Lifshitz equatidB) in the rotating coordi-
nate system can be written as

H=X [ M- 2 S-S+ 22 9SS - 95, B,

I#n I#n J . i i 5
@ atS —SY&ZZSZ SZaZZS“ 16p°9F,
whereh, =29+ M9 \™@ and\!4 represent the magnetic and 5 2 2
light-induced dipole-dipole interactions, respectively. The di- —9=F =5~ SF—=F+16p°FS,
rection of the magnetic fiel& is along the one-dimensional a 24 4
optical lattice, andy=grug is the gyromagnetic ratio. The
spin operators are defined 8s=a'(n)F,,A,(n), whereF is g SXﬁSY— SY(9—2$X .
the vector operator for the hyperfine spin of an atom, with a> T o o2 (5)

components represented by<x3 matrices in thef=1,my > ld o _

= a) subspace. The first term in E@) results from the spin-  Wherep®=\*/(4\), and the prime is omitted for the sake of
dependent interatomic collisions at a given site, with pithiness. The dimensionless tinn@nd coordinate in Eq.
=(1/2)\,S &3 | py(r)|*, where N, characterizes the spin- (5) are scaled in unit 2/ anda, respectively, where de-
dependens-wave collisions. The second and third terms de-hotes the Iattlpe.con_stant. Also, the term_s |_nclud|ng_ the ex-
scribe the site-to-site spin coupling induced by the statid€rnal magnetic field in _EqS) have been eliminated with the
magnetic field dipolar interaction and the light-inducedN€lP of the transformation.

dipole-dipole interaction. Fok,,# 0, the transfer of trans-

verse .excitation from site to sitg is allowed, re_sulti_ng in_ a Ill. ONE-SOLITON SOLUTION OF SPINOR BEC's
distortion of the ground-state spin structure. This distortion IN AN OPTICAL LATTICE

can propagate and hence generate spin waves along the

atomic spin chain. For an optical lattice created by blue- Equation(5) has a form of the Landau-Lifshitd L) type
detuned laser beams, the atoms are trapped in the dark-fielehich is similar to the LL equation for a spin chain with an
nodes of the lattice and the light-induced dipole-dipole intereasy plane anisotropyl8]. By introducing a particular pa-
action is very small[8]. However, this small light-induced rameter Huangt al.[14] showed that the Jost solutions can
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FIG. 1. The amplitude and size of solitons in E§) vary periodically with time, wherg.;=0.45, »;=0.7, z;=—-14, ¢,=0.5, andp?
=0.375. The unit for time is 2\/A anda for spacez.

be generated and the Lax equations are satisfied and, more- Ka3n
over, constructed Darboux transformation matrices. An ex- Vn=2( kint sz,n '
plicit expression of the one-soliton solution in terms of el- an
ementary functions ot andt was reported. Here using the
similar method in Refd.13,14] we obtain both the one- and
two-soliton solutions(for detail see the Appendixdenoted — with 1 ,=pn(1+p?/|20[%), Kkon=v(1=p?/|L]?), K3n=pma(l

Q= 4(K1,nK3,n - KZ,nK4,n)- (7)

by S(n) with n=1,2 of Eq.(5) in the following form: =p?12?), Kkan=vn(1+p?1] L7, 277n:(|§n|2+p2)/(|gn|2—p2),
1 Xl,n:Z(ZzﬂnV|n)/|L§n22! 5 X2,n:(2Vn)/|§n|2: and X3n
—1-— + 2y SIP D). =(4p“v)(|{n"—p°)°. The one-soliton solution—namely,
S An(XZ‘“ A3n o S(1)—is simply that
~ S(1)=s, D=9, SO-=S. (8)
Sh= T(Xl,nnn cosh®, sin®, + x,, sinh®, cos®,,), The parameteY; denotes the velocity of envelope motion of
n

the magnetic soliton. The real constamisand ¢, represent
the center position and the initial phase, respectively. The
parametet;=u,+iv, is the eigenvalue witlu,, v, being the
real and imaginary parts. The one-soliton soluti@ de-

6) scribes a spin precession characterized by four real param-
eters: velocityV,, phase®,, the center coordinate of the

1
S = X(Xl,n cosh®, cosd,, + x2 177, SinhO, sin®,),

n

where the parameters in the solution are defined by solitary wavez;, and initial phasep;. From the one-soliton
solution we obtain the properties of the solitdi): both the
Ap=costt O, + x3, it @, amplitude and the size of the soliton vary with time periodi-

cally, as shown in Fig. 1, in which we demonstrate graphi-
cally the dynamics of soliton with the parameters chosen as
u1=0.45, 1,=0.7, p?>=0.375, z=-14, and ¢;=0.5. This
property results from the term in Eq. (5) which is deter-
D= 263,2— Qpt + ¢y, mined by the light-induced dipole-dipole interaction. This

0,= 2K4,n(z = Vit-2,),
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6 o= g + ¢y + kiz— Qt + arctarftanh®,),  (11)
5
where the wave numbdég; = 2«3 ; and the frequency of mag-
4 netization precessionf),, are related by the dispersion law
<
3 Oy =ky(ky + 4p°ual|14]%) = Arp kg 1 (12)
5 We also see that the position of minimum of energy spectrum
Oy in=0 is located atky min=[\/(2p?u1)?+4K 1k4 1|C1*
1 =2p%u ]l |54
If the amplitude Ay, approaches zero—namely,
00 3 3 3 s 15 v;— 0—the parametefF; diverges and Eq(10) takes the
t asymptotic form

FIG. 2. The magnetizatioNl; [the integralf”,dz1-S})] varies T
with time periodically, whergu,=0.45, v;=0.7,z,=-14, ¢,=0.5, costd—1, ¢— 2 + ¢+ kaz— Ot (13
and p?=0.375. The unit for time is 2\/# anda for spacez.
indicating a small linear solution of magnon. In this case the

significant observation from the one-soliton solution showsgliSPersion law reduces Q=ky(ky+ 4/ [4f?).
that the time oscillation of the amplitude and the size of
soliton can be controlled in practical experiment by adjusting
of the light-induced dipole-dipole interactiofii) The mag-
netization defined by;=/”,dz(1-S)) varies with time pe- The magnetic soliton collision in spinor BEC's is an in-
riodically as shown in Fig. 2. These properties are similar tateresting phenomenon in spin dynamics. Here in terms of a
that of the Heisenberg spin chain with an easy-plane anisarboux transformation we first of all give the two-soliton
tropy where the dipolar coupling is typically several orderssolution (for detail see the Appendiof Eq. (5),

of magnitude weaker than the exchange coupling and thus

IV. ELASTIC SOLITON COLLISIONS FOR SPINOR BEC's
IN AN OPTICAL LATTICE

would correspond to Curie temperatures much below the ob- S1(2) =S|S;+ RsS{ + RS,

served values. Hence the contribution of the dipolar coupling

to the spin wave can be neglected in practice. However, for 9(2) =SS+ RS + RS,

the spinor BEC in the optical lattice the exchange interaction

is absent and the individual spin magnets are coupled by the F(2) =SS +R Y+ RS, (14)

magnetic and the light-induced dipole-dipole interactions.
Due to the large number of atorhkat each lattice site, these Where S, S, and §\(n=1,2) are defined in Eq(6) and
site-to-site interactions, despite the large distance betwedr(j=1,2,...,6 take form as follows:
sites, explain the natural existence of magnetic soliton which
agrees with the results in Refg,9]. _ Ry = ——(x1,2€08h0; SINh O, = x7 »7, COsP; SIND,),
To see closely the physical significance of one-soliton so- Ay
lution, it is helpful to show the parameter dependence of

Euler angles of the magnetization vector which in a spherical X2.2 _
coordinate is Ro=1 —A—Z(COSH 0, - sirf @),

Si(zt)=cosh, S +iS;=sindexplie). 9 1
R;= A_(Xl'znz cosh®, sin®; — x, ,sinh®, cosd,),
From Egs.(6) and(8) we find 2

1 . .
21;% . Ry=1 _A_[)(z,zs"'””F O+ (x22+ 2)(3,2)5'”2 d,],
W+2X3yls|nz (I)l 2

1

COSI’?[F]__]-(Z_ Vlt - Zl)] + X3,l Sln2 (Dl '

cosf=1- 1
R5 = A_(X2]27]2 sin (I)z Siﬂhz ~X1,2 COSh@z COSq)z),
2

T
=— -1 . .
@ > + arctarin, tan®,) + arctaritanh®,),  (10) Ry = . (X227 SIN®, COS®, + 1 »COShO, SINNG,),
2

where F;=1/(2k,;) and the maximal amplitudeAy, (15)
=2(121|{4*+|xz.1). When|{y[?> p?, the phasep can be re-  where®,, ®,, Q,, A,, 75, andym(M=1,2,3 are defined in
written as Eq. (7). The solution(14) describes a general elastic scatter-
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ing process of two solitary waves with different center ve- (2) S5

locities V; and V, and different phase$, and ®,. Before 92 |-y (20)
collision, they move towards each other, one with velowity '
and shape variation frequen€y, and the other with/, and $(2) S
Q,. In order to understand the nature of two-soliton interac-H

tions, we analyze the asymptotic behavior of the two-solitons. _ ; : ;
; . . ion, S, §, andS;(n=1,2) are defined in Eq(6). Analysis
solution(14). Asymptotically, the two-soliton waved4) can revea?z ﬁat thesrﬁe( is no) amplitude excha%(g)e amo}r/1g three

be written as a combination of two one-soliton wav8s componentss’, &, and$ for soliton 1 and soliton 2 during

with different amplitudes and phases. The asymptotic form . "
of two-soliton solution in limitst—s — andt— o is similar collision. However, from Eqg.17) and(19) one can see that

to that of the one-soliton solutio8). In order to analyze the there is a phase exchange,2between two componentf

asymptotic behavior of two-soliton solutior$4) we show and & for soliton 1 during collision. This elastic collision

. ) . z between two magnetic solitons in the optical lattice is differ-
fwsF_of all the asymptotlc behavior (ﬁ; S}Q S:ﬁ(n—l,Z), and ent from that of coupled nonlinear Schrédinger equations
Ri(j=1,2,...,0 in the corresponding limit¢— +o from

_ [20]. It shows that the information held in each soliton will
Egs.(6) and (15): almost not be disturbed by each other in soliton propagation.
These properties may have potential application in future
Ri— tx12 Ro—1-x5 R3—0, quantum communication. It should be noted that the inelastic
collision may appear if the influence of higher-order terms in
Eq. (2) is considered.

ere for the expressions of solitons before and after colli-

Ri—1-x200 Rs—0, Rg— + x12
V. CONCLUSION

Ss—1, §—0, §—0, ast— tw. (16 The magnetic soliton dynamics of spinor BEC's in an
optical lattice is studied in terms of a modified Landau-
Without loss of generality, we assume that,>0(n=1,2) Lifshitz equation which is derived from the effective Hamil-

andV; >V, which corresponds to a head-on collision of the ©oNian of a pseudospin chain. The soliton solutions are ob-
solitons. For the above parametric choice, the variablgs tained analytically and the elastic collision of two solitons is
(n=1,2) for the two-soliton behave asym,ptotically & demonstrated. The significant observation is that time oscil-

@,~0, O,~ +», ast— +o, and (i) @,~0, O,~ T, as lation of the soliton amplitude and size can be controlled by
t— +o. This leads to the fdllowing asympt(,)tic forms for the adiusting of the light-induced dipole-dipole interactions.

two-soliton solution(For the other choices of, , andV,, a It should be interesting to discuss how to create the mag-
similar analysis can be performed straightfor\}r\}a}dly . netic soliton and how to detect such magnetic soliton in ex-
(i) Before collision—namely, the case of the limit periment. In the previous works] using Landau-Zener rf
t——oo ' sweeps at high field630 G) a condensate was prepared in
(é) Soliton 1(©,~0,0,——x): the hyperfine statd =1,m;=0)—i.e., the ground state of the
e spinor BEC's. Then the atoms of the ground state can be
excited to the hyperfine staté=1,m;=+1) by laser light

S Si experimentally. Therefore the excited state of the spinor
9?2) | —|sinfcode—y) |, (17)  BEC's—i.e., the magnetic soliton—can be created. As can be
F(2) sin 0sin(e - &) seen from Fig. 1, the spatial-temporal spin variations in the

soliton state are significant. This makes it possible to take a
direct detection of the magnetic soliton of spinor BEC's. By

— 2 2
where ¢y =arctah2u,v,/ (uz=15)] and the parameters .o nting the difference numbers of the population between

and ¢ are defined in Eq(10). the spin +1 and -1 Zeeman sublevel, the average of spin
(b) Soliton 2(0,~0,0,—): component{S) is measured directly, while transverse com-
ponents can be measured by use of a short magnetic pulse to
S(2) S rotate the transverse spin component to the longitudinal di-
g2 |- (19) rection. Any optical or magnetic method which can excite
the internal transitions between the atomic Zeeman sublevels
$(2) S can be used for this purpose. In current experiments in opti-
(i) After collision—namely, the case of limtt— . cal lattices, the lattice number is in the range of 10-100, and

(a) Soliton 1(©;~0,0,— ): each lattice site can accommodate a few thousand atoms.
' This leads to a requirement for the frequency measurement
precision of about 10—100 kHz. This is achievable with cur-

S(2) Si rent techniques. We can also see that the detection of the
S2) | —|sinfcode+ ¢y) |. (19 magnetic soliton of the spinor BEC's is different from that of
K2 ; o+ the Heisenberg spin chain.
@ singsin(e + ) The magnetic soliton of spinor BEC's in an optical lattice
(b) Soliton 2(®,~0,0;— —x): is mainly caused by the magnetic and the light-induced
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dipole-dipole interactions between different lattice sites. D,(9) = C,P(0), (A8)

Since these long-range interactions are highly controllable,

the spinor BEC's in optical lattice which is an exceedingly O - O 0= O

clean system can serve as a test ground to study the static and Pu@ =1+ Pot —— Py, (A9)
; : o= 4= 0n q+dn

dynamic aspects of soliton excitations.

whereC,, P, andl~3’n are 2x 2 matrix independent off and
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From Egs.(A2) and (A4) we see that

L@ =-L'@, M@=-M'@), GyXq) =G,

APPENDIX
(Al11)
The corresponding Lax equations for the E%). are writ-
ten as and hence we have
0,G(z) =LG(z 1), aG(zt)=MG(zt), (Al) G, i@ =Gl@), D;Ya)=D}@=Pi@cC/. (A12)
where Since D,(q)D;%(@)=D,(q)D; (@) =I, it has no poles. Then
we obtain

L=—ieSos—is(Soy + Fory), B
P.P!(a,) =0, Pn(l -Pl+ qr‘z—qq”ﬁﬁ) =0, (A13)

n

M = i2§2820'3 + i2§€(SXO'1+ 9/0'2) - iG(S’ﬂZSZ— 82829/)0'1
-i5(S9,8 - S0, 0, — 1 (50,9 - 99,8V 05.  (A2) which shows the degeneracy &¢f,. One can writeP,
=(gw,)"(Y,&,) where the superscript means transpose.

Hereo;(j=1,2,3 is Pauli matrix and the parametersnds g pstituting this expression into EA3) we obtain

satisfy the relatione®=s2+4p?. Thus Eq.(5) can be recov-
ered from the compatibility conditiog,L—d,M+[L,M]=0. 1

We introduce an auxiliary parametgrsuch that Po(@) = A(Q-g)(g+qpy)
+qt 2 ol Yo+ 2 0
SN L S (A3) ><(qnl o2+ 0ol &l o 2)
q-q q-q 0 Ol Yol “ + 0ol
and Fhe cqmplex parameter is def.inequy(§+p)/(§—p). , Gl Y o2+ G &2 0
It is easily to see tha®,=(1,0,0 is a simplest solution of X 0 Ty )
Eq. (5). Under this condition the corresponding Jost solution Onl Y ol + ol |
of Eqg. (A1) can be written as 0 v
+ ( 2 _—2) Yngn
GO = U eXp{— ig(Z— 2€t)0'3}, (A4) q qn qn - 0
n+-n
whereuzé{l —i(oq+0y+03)} with | denoting unit matrix. In 2 Iy 0
the following we construct the Darboux matiix,(q) by us- _ |qn|2(Qn|§n| + 0l Yol B ) ’
ing the recursion relation 0 Ol Y ol* + Gl &7
Gn(Q) = Dn(q)Gn—l(q)y n = 11 2: 31 ey (A5) (A14)
whereD,(q) has poles. Since where
(-P=e@, s-TP=-5@, LT =L Qoy, An = 1002 (Y of? + 1622 + O = 4l Yol? &0l (A15)
To determinet, andY ,, we substitute EqA5) into Eq.(Al)
M(-q) = o:M(q)o, (A6)  and take the limig— q, and then obtain
we then have 3Dn(Q) = Ln(q)Dn(q) = Dp(a)Ly-a(a),
Gol= @ =~171Go(@.  Gnl= P =~i71Ge(), 4D4(Q) =My(@)Dy() ~ Do @Mos(c). (A1)
D~ = Ulmo'l- (A7) Because of the degeneracy &%, the second factor of

the right-hand sides of Eqg. (Al6)—namely,
where the overbar denotes complex conjugate. Suppose that,&,)G,_;(q,)—must appear on the left-hand side in its
gn is a simple pole ofD,(q); then, g, is also a pole of original form and, hence, it is independent ofindt. We
Dn(q). If Dy(g) has only these two simple poles, we have simply let
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(Y, &) = (b, 1)9531(%)- (A17) fully. Since expiw,o3/2) denotes a rotation around tte

) i axis, it does not affect the value 8f. Substituting Eq(A8)
Here b, is a constant. Hence, the Darboux matriéggq) into Eq. (A16) and taking the limits ag]—« and q—0,
have been determined recursively, except@grBy a simple respectively, we obtain

algebraic procedure, it is seen thgtis always nonvanishing

regardless of the valuesandt. This shows the regularity of IACP(0)} = L (q){C,P,(0)} = {C,,P,(0)}L,,_1(q),
P, and thenP,(qg). In the limit asq— 1, from Eq.(A3) we
have 4Cr} = = 12pS(Ma5{Co} +{Ci2pS(n = Dors.
@), s(g) — zpi +0(1), Comparing these two equations, we derive
q-1
Y|+ 0l &2 0
and then from Eq(A16) we obtain C,= (An)‘1’2<qn| o 0 ol TIY2+ e |2).
q +q
S - o=Dy(1)[Sn-1)-o]D(1), n=1,2,3, ... . memo e (A21)
(A18)
o The Eq.(A17) gives
Considering Eqs(A11) and Eq.(A12) we get ) )
C:Ch=1, (A19) Y= htilnh &=t m il (h22)
which shows that the matrig, is diagonal with the help of where
the Eqg.(A10) and - fﬁ =exp-0,+id,).
(Ch11=(Cr)ozs  [(Cp)ag = 1. (A20)

Here the parametei®,, and®, are defined in Eq(7). Set-
Then we can writeC,,=exp(i w,o3/ 2) which is real and char- ting n=1 and substituting the Eq§A8), (Al14), (A21), and
acterizes the rotation angle of spin in thg plane. It is  (A22) into Eq.(A18) we can obtain the one-soliton solution
necessary to mention that, may be dependent anandt. (8). Settingn=2 and with the similar procedure the expres-
To determinew, one must examine the Lax equations care-sion of the two-soliton solutioi14) is derived.
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