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We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which
results in an effective Hamiltonian of anisotropic pseudospin chain. A modified Landau-Lifshitz equation is
derived and exact magnetic soliton solutions are obtained analytically. Our results show that the time oscilla-
tion of the soliton size can be controlled in practical experiment by adjusting of the light-induced dipole-dipole
interaction. Moreover, the elastic collision of two solitons is investigated.
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I. INTRODUCTION

Recently, spinor Bose-Einstein condensatessBEC’sd
trapped in optical potentials have received much attention in
both experimentalf1–3g and theoretical studiesf4g. Spinor
BEC’s have internal degrees of freedom due to the hyperfine
spin of the atoms which liberate a rich variety of phenomena
such as spin domainsf5g and texturesf6g. When the potential
valley is so deep that the individual sites are mutually inde-
pendent, spinor BEC’s at each lattice site behave like spin
magnets and can interact with each other through both the
light-induced and static, magnetic dipole-dipole interactions.
These site-to-site dipolar interactions can cause the ferro-
magnetic phase transitionf7,8g leading to a “macroscopic”
magnetization of the condensate array and spin-wave-like
excitation f7,9g analogous to the spin wave in a ferromag-
netic spin chain. For the real spin chain, the site-to-site in-
teraction is caused mainly by the exchange interaction, while
the dipole-dipole interaction is negligibly small. For the
spinor BEC’s in the optical lattice, the exchange interaction
is absent. The individual spin magnets are coupled by the
magnetic and the light-induced dipole-dipole interactionsf9g
which are no longer negligible due to the large number of
atoms,N, at each lattice site, typically of the order of 1000 or
more. Therefore, the spinor BEC’s in an optical lattice offer
a totally new environment to study spin dynamics in periodic
structures. The magnetic soliton excited by the interaction
between the spin wavesf9g is an important and interesting
phenomenon in spinor BEC’s. In this paper, we demonstrate
that the magnetic soliton and elastic soliton collision are ad-
mitted for spinor BEC’s in a one-dimensional optical lattice
and are controllable by adjusting of the light-induced and the
magnetic dipole-dipole interactions.

The Heisenberg model of spin-spin interactions is consid-
ered as the starting point for understanding many complex
magnetic structures in solids. In particular, it explains the
existence of ferromagnetism and antiferromagnetism at tem-
peratures below the Curie temperature. The magnetic soliton
f10g, which describes localized magnetization, is an impor-
tant excitation in the Heisenberg spin chainf11–14g. The
Haldane gapf15g of antiferromagnets has been reported in
integer Heisenberg spin chain. By means of the neutron in-
elastic scatteringf16g and electron spin resonancef17g, the

magnetic soliton has already been probed experimentally in
quasi-one-dimensional magnetic systems. Solitons can travel
over long distances with neither attenuation nor change of
shape, since the dispersion is compensated by nonlinear ef-
fects. The study of solitons has been conducted in as diverse
fields as particle physics, molecular biology, geology, ocean-
ography, astrophysics, and nonlinear optics. Perhaps the most
prominent application of solitons is in high-rate telecommu-
nications with optical fibers. However, the generation of con-
trollable solitons is an extremely difficult task due to the
complexity of the conventional magnetic materials. The
spinor BEC’s seems an ideal system to serve as a new test
ground for studying the nonlinear excitations of spin waves
both theoretically and experimentally.

The outline of this paper is organized as follows: In Sec.
II the Landau-Lifshitz equation of spinor BEC’s in an optical
lattice is derived in detail. Next, we obtain the one-soliton
solution of spinor BEC’s in an optical lattice. The result
shows that the time oscillation of the amplitude and the size
of soliton can be controlled by adjusting of the light-induced
dipole-dipole interaction. We also present that the magneti-
zation varies with time periodically. In Sec. VI, the general
two-soliton solution for spinor BEC’s in an optical lattice is
investigated. Analysis reveals that elastic soliton collision
occurs and there is a phase exchange during collision. Fi-
nally, our concluding remarks are given in Sec. V.

II. LANDAU-LIFSHITZ EQUATION OF SPINOR BEC’s
IN AN OPTICAL LATTICE

The dynamics of spinor BEC’s trapped in an optical lat-
tice is primarily governed by three types of two-body inter-
actions: spin-dependent collisions characterized by the
s-wave scattering length, magnetic dipole-dipole interaction
sof the order of Bohr magnetonmBd, and light-induced
dipole-dipole interaction adjusted by the laser frequency in
experiment. Our starting point is the Hamiltonian describing
an F=1 spinor condensate at zero temperature trapped in an
optical lattice, which is subject to magnetic and light-induced
dipole-dipole interactions and is coupled to an external mag-
netic field via the magnetic dipole HamiltonianHB f4–7g,
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a
E dr ĉa
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†sr dĉb

†sr 8dfUaybt
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whereĉasrd is the field annihilation operator for an atom in
the hyperfine stateuf =1,mf =al, ULsr d is the lattice poten-
tial, and the indicesa ,b ,y ,t which run through the values
−1,0,1 denote the Zeeman sublevels of the ground state.
The parameterUaybt

coll sr ,r 8d describes the two-body ground-
state collisions, andUaybt

d-d sr ,r 8d includes the magnetic
dipole-dipole interaction and the light-induced dipole-dipole
interaction.

When the optical lattice potential is deep enough there is
no spatial overlap between the condensates at different lattice

sites. We can then expand the atomic field operator asĉsr d
=on oa=0,±1âasndfnsr d, wheren labels the lattice sites,fnsr d
is the condensate wave function for thenth microtrap, and
the operatorsâasnd satisfy the bosonic commutation relations
fâasnd ,âb

†sldg=dabdnl. It is assumed that all Zeeman compo-
nents share the same spatial wave function. If the conden-
sates at each lattice site contain the same number of atomsN,
the ground-state wave functions for different sites have the
same formfnsr d=fnsr −r nd.

In this paper we consider a one-dimensional optical lattice
along thez direction, which we also choose as the quantiza-
tion axis. In the absence of spatial overlap between indi-
vidual condensates and neglecting unimportant constants, we
can construct the effective spin Hamiltonianf7,9g as

H = o
n
Fla8Ŝn

2 − o
lÞn

lnlSn ·Sl + 2o
lÞn

lnl
ldŜn

zŜl
z − gŜn ·BG ,

s2d

wherelnl=2lnl
ld+lnl

md, lnl
md andlnl

ld represent the magnetic and
light-induced dipole-dipole interactions, respectively. The di-
rection of the magnetic fieldB is along the one-dimensional
optical lattice, andg=gFmB is the gyromagnetic ratio. The
spin operators are defined asSn= âa

†sndFayâysnd, whereF is
the vector operator for the hyperfine spin of an atom, with
components represented by 333 matrices in theuf =1,mf
=al subspace. The first term in Eq.s2d results from the spin-
dependent interatomic collisions at a given site, withla8
=s1/2dlaed3r ufnsr du4, where la characterizes the spin-
dependents-wave collisions. The second and third terms de-
scribe the site-to-site spin coupling induced by the static
magnetic field dipolar interaction and the light-induced
dipole-dipole interaction. ForlnlÞ0, the transfer of trans-
verse excitation from site to site is allowed, resulting in a
distortion of the ground-state spin structure. This distortion
can propagate and hence generate spin waves along the
atomic spin chain. For an optical lattice created by blue-
detuned laser beams, the atoms are trapped in the dark-field
nodes of the lattice and the light-induced dipole-dipole inter-
action is very smallf8g. However, this small light-induced

dipole-dipole interaction induces the amplitude and size of
the soliton varying with time periodically as we will show in
the following section.

From Hamiltonians2d we can derive the Heisenberg equa-
tion of motion atkth site for the spin excitations. When the
optical lattice is infinitely long and the spin excitations are in
the long-wavelength limit—i.e., the continuum limitSk
→Ssz,td—we obtain the Landau-Lifshitz equation of a
spinor BEC in an optical lattice as follows:

]Sx

]t
=

2l

"
Fa2SSy ]2

]z2Sz − Sz ]2

]z2SyD − 4
lld

l
SySzG +

gBSy

"
,

]Sy

]t
=

2l

"
Fa2SSz ]2

]z2Sx − Sx ]2

]z2SzD + 4
lld

l
SzSxG −

gBSx

"
,

]Sz

]t
=

2l

"
Fa2SSx ]2

]z2Sy − Sy ]2

]z2SxDG , s3d

where we assume that all nearest-neighbor interactions are
the same—namely,lknll=l, which is a good approximation
in the one-dimensional optical lattice for the large lattice
constantf19g. In a rotating frame around thez axis with
angular frequencygB/" the spin vectorS is related to the
original one by the transformation

Sx = Sx8 cosSgB

"
tD + Sy8 sinSgB

"
tD ,

Sy = Sy8 cosSgB

"
tD − Sx8 sinSgB

"
tD . s4d

Thus the Landau-Lifshitz equations3d in the rotating coordi-
nate system can be written as

]

]t
Sx = Sy ]2

]z2Sz − Sz ]2

]z2Sy − 16r2SySz,

]

]t
Sy = Sz ]2

]z2Sx − Sx ]2

]z2Sz + 16r2SzSx,

]

]t
Sz = Sx ]2

]z2Sy − Sy ]2

]z2Sx, s5d

wherer2=lld / s4ld, and the prime is omitted for the sake of
pithiness. The dimensionless timet and coordinatez in Eq.
s5d are scaled in unit 2l /" anda, respectively, wherea de-
notes the lattice constant. Also, the terms including the ex-
ternal magnetic field in Eq.s3d have been eliminated with the
help of the transformation.

III. ONE-SOLITON SOLUTION OF SPINOR BEC’s
IN AN OPTICAL LATTICE

Equations5d has a form of the Landau-LifshitzsLL d type
which is similar to the LL equation for a spin chain with an
easy plane anisotropyf18g. By introducing a particular pa-
rameter Huanget al. f14g showed that the Jost solutions can
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be generated and the Lax equations are satisfied and, more-
over, constructed Darboux transformation matrices. An ex-
plicit expression of the one-soliton solution in terms of el-
ementary functions ofz and t was reported. Here using the
similar method in Refs.f13,14g we obtain both the one- and
two-soliton solutionssfor detail see the Appendixd denoted
by Ssnd with n=1,2 of Eq.s5d in the following form:

Sn
x = 1 −

1

Ln
sx2,n + 2x3,n sin2 Fnd,

Sn
y =

− 1

Ln
sx1,nhn coshQn sinFn + x2,n sinhQn cosFnd,

Sn
z =

1

Ln
sx1,n coshQn cosFn + x2,nhn sinhQn sinFnd,

s6d

where the parameters in the solution are defined by

Ln = cosh2 Qn + x3,n sin2 Fn,

Qn = 2k4,nsz− Vnt − znd,

Fn = 2k3,nz− Vnt + fn,

Vn = 2Sk1,n +
k3,n

k4,n
k2,nD ,

Vn = 4sk1,nk3,n − k2,nk4,nd, s7d

with k1,n=mns1+r2/ uznu2d, k2,n=nns1−r2/ uznu2d, k3,n=mns1
−r2/ uznu2d, k4,n=nns1+r2/ uznu2d, hn=suznu2+r2d / suznu2−r2d,
x1,n=s2mnnnd / uznu2, x2,n=s2nn

2d / uznu2, and x3,n

=s4r2nn
2d / suznu2−r2d2. The one-soliton solution—namely,

Ss1d—is simply that

Sxs1d = S1
x, Sys1d = S1

y, Szs1d = S1
z. s8d

The parameterV1 denotes the velocity of envelope motion of
the magnetic soliton. The real constantsz1 andf1 represent
the center position and the initial phase, respectively. The
parameterz1=m1+ in1 is the eigenvalue withm1, n1 being the
real and imaginary parts. The one-soliton solutions8d de-
scribes a spin precession characterized by four real param-
eters: velocityV1, phaseF1, the center coordinate of the
solitary wavez1, and initial phasef1. From the one-soliton
solution we obtain the properties of the soliton:sid both the
amplitude and the size of the soliton vary with time periodi-
cally, as shown in Fig. 1, in which we demonstrate graphi-
cally the dynamics of soliton with the parameters chosen as
m1=0.45, n1=0.7, r2=0.375, z1=−14, and f1=0.5. This
property results from the termr in Eq. s5d which is deter-
mined by the light-induced dipole-dipole interaction. This

FIG. 1. The amplitude and size of solitons in Eq.s8d vary periodically with time, wherem1=0.45, n1=0.7, z1=−14, f1=0.5, andr2

=0.375. The unit for timet is 2l /" anda for spacez.
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significant observation from the one-soliton solution shows
that the time oscillation of the amplitude and the size of
soliton can be controlled in practical experiment by adjusting
of the light-induced dipole-dipole interaction.sii d The mag-
netization defined byM3=e−`

` dzs1−S1
xd varies with time pe-

riodically as shown in Fig. 2. These properties are similar to
that of the Heisenberg spin chain with an easy-plane aniso-
tropy where the dipolar coupling is typically several orders
of magnitude weaker than the exchange coupling and thus
would correspond to Curie temperatures much below the ob-
served values. Hence the contribution of the dipolar coupling
to the spin wave can be neglected in practice. However, for
the spinor BEC in the optical lattice the exchange interaction
is absent and the individual spin magnets are coupled by the
magnetic and the light-induced dipole-dipole interactions.
Due to the large number of atomsN at each lattice site, these
site-to-site interactions, despite the large distance between
sites, explain the natural existence of magnetic soliton which
agrees with the results in Refs.f7,9g.

To see closely the physical significance of one-soliton so-
lution, it is helpful to show the parameter dependence of
Euler angles of the magnetization vector which in a spherical
coordinate is

S1
xsz,td = cosu, S1

y + iS1
z = sinu expsiwd. s9d

From Eqs.s6d and s8d we find

cosu = 1 −

2n1
2

uz1u2
+ 2x3,1 sin2 F1

cosh2fF1
−1sz− V1t − z1dg + x3,1 sin2 F1

,

w =
p

2
+ arctansh1 tanF1d + arctanstanhQ1d, s10d

where F1=1/s2k4,1d and the maximal amplitudeAM

=2sn1
2/ uz1u2+ ux3,1ud. When uz1u2@r2, the phasew can be re-

written as

w =
p

2
+ f1 + k1z− V1t + arctanstanhQ1d, s11d

where the wave numberk1=2k3,1 and the frequency of mag-
netization precession,V1, are related by the dispersion law

V1 = k1sk1 + 4r2m1/uz1u2d − 4k2,1k4,1. s12d

We also see that the position of minimum of energy spectrum
V1,min=0 is located at k1 min=fÎs2r2m1d2+4k2,1k4,1uz1u4
−2r2m1g / uz1u2.

If the amplitude AM approaches zero—namely,
n1→0—the parameterF1 diverges and Eq.s10d takes the
asymptotic form

cosu → 1, w → p

2
+ f1 + k1z− V1t, s13d

indicating a small linear solution of magnon. In this case the
dispersion law reduces toV1=k1sk1+4r2m1/ uz1u2d.

IV. ELASTIC SOLITON COLLISIONS FOR SPINOR BEC’s
IN AN OPTICAL LATTICE

The magnetic soliton collision in spinor BEC’s is an in-
teresting phenomenon in spin dynamics. Here in terms of a
Darboux transformation we first of all give the two-soliton
solution sfor detail see the Appendixd of Eq. s5d,

Sxs2d = S1
xS2

x + R3S1
y + R5S1

z,

Sys2d = S1
xS2

y + R4S1
y + R6S1

z,

Szs2d = S1
xS2

z + R1S1
y + R2S1

z, s14d

where Sn
x, Sn

y, and Sn
zsn=1,2d are defined in Eq.s6d and

Rjs j =1,2, . . . ,6d take form as follows:

R1 =
1

L2
sx1,2 coshQ2 sinhQ2 − x2,2h2 cosF2 sinF2d,

R2 = 1 −
x2,2

L2
scosh2 Q2 − sin2 F2d,

R3 =
1

L2
sx1,2h2 coshQ2 sinF2 − x2,2 sinhQ2 cosF2d,

R4 = 1 −
1

L2
fx2,2 sinh2 Q2 + sx2,2+ 2x3,2dsin2 F2g,

R5 =
1

L2
sx2,2h2 sinF2 sinhQ2 − x1,2 coshQ2 cosF2d,

R6 =
− 1

L2
sx2,2h2 sinF2 cosF2 + x1,2 coshQ2 sinhQ2d,

s15d

whereQ2, F2, V2, L2, h2, andxm,2sm=1,2,3d are defined in
Eq. s7d. The solutions14d describes a general elastic scatter-

FIG. 2. The magnetizationM3 fthe integrale−`
` dzs1−S1

xdg varies
with time periodically, wherem1=0.45, n1=0.7, z1=−14, f1=0.5,
andr2=0.375. The unit for timet is 2l /" anda for spacez.
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ing process of two solitary waves with different center ve-
locities V1 and V2 and different phasesF1 and F2. Before
collision, they move towards each other, one with velocityV1
and shape variation frequencyV1 and the other withV2 and
V2. In order to understand the nature of two-soliton interac-
tions, we analyze the asymptotic behavior of the two-soliton
solutions14d. Asymptotically, the two-soliton wavess14d can
be written as a combination of two one-soliton wavess8d
with different amplitudes and phases. The asymptotic form
of two-soliton solution in limitst→−` and t→` is similar
to that of the one-soliton solutions8d. In order to analyze the
asymptotic behavior of two-soliton solutionss14d we show
first of all the asymptotic behavior ofSn

x, Sn
y, Sn

zsn=1,2d, and
Rjs j =1,2, . . . ,6d in the corresponding limitst→ ±` from
Eqs.s6d and s15d:

R1 → ± x1,2, R2 → 1 − x2,2, R3 → 0,

R4 → 1 − x2,2, R5 → 0, R6 → 7 x1,2,

Sn
x → 1, Sn

y → 0, Sn
z → 0, ast → ± `. s16d

Without loss of generality, we assume thatk4,n.0sn=1,2d
andV1.V2 which corresponds to a head-on collision of the
solitons. For the above parametric choice, the variablesQn
sn=1,2d for the two-soliton behave asymptotically assid
Q1,0, Q2, ±`, as t→ ±`, and sii d Q2,0, Q1, 7`, as
t→ ±`. This leads to the following asymptotic forms for the
two-soliton solution.sFor the other choices ofk4,n andVn, a
similar analysis can be performed straightforwardlyd.

sid Before collision—namely, the case of the limit
t→−`.

sad Soliton 1 sQ1,0,Q2→−`d:

1Sxs2d
Sys2d
Szs2d

2 → 1 S1
x

sinu cossw − fDd
sinu sinsw − fDd

2 , s17d

where fD=arctanf2m2n2/ sm2
2−n2

2dg and the parametersu
and w are defined in Eq.s10d.

sbd Soliton 2 sQ2,0,Q1→`d:

1Sxs2d
Sys2d
Szs2d

2 → 1S2
x

S2
y

S2
z2 . s18d

sii d After collision—namely, the case of limitt→`.
sad Soliton 1 sQ1,0,Q2→`d:

1Sxs2d
Sys2d
Szs2d

2 → 1 S1
x

sinu cossw + fDd
sinu sinsw + fDd

2 . s19d

sbd Soliton 2 sQ2,0,Q1→−`d:

1Sxs2d
Sys2d
Szs2d

2 → 1S2
x

S2
y

S2
z2 . s20d

Here for the expressions of solitons before and after colli-
sion, Sn

x, Sn
y, andSn

zsn=1,2d are defined in Eq.s6d. Analysis
reveals that there is no amplitude exchange among three
componentsSx, Sy, andSz for soliton 1 and soliton 2 during
collision. However, from Eqs.s17d ands19d one can see that
there is a phase exchange 2fD between two componentsSy

and Sz for soliton 1 during collision. This elastic collision
between two magnetic solitons in the optical lattice is differ-
ent from that of coupled nonlinear Schrödinger equations
f20g. It shows that the information held in each soliton will
almost not be disturbed by each other in soliton propagation.
These properties may have potential application in future
quantum communication. It should be noted that the inelastic
collision may appear if the influence of higher-order terms in
Eq. s2d is considered.

V. CONCLUSION

The magnetic soliton dynamics of spinor BEC’s in an
optical lattice is studied in terms of a modified Landau-
Lifshitz equation which is derived from the effective Hamil-
tonian of a pseudospin chain. The soliton solutions are ob-
tained analytically and the elastic collision of two solitons is
demonstrated. The significant observation is that time oscil-
lation of the soliton amplitude and size can be controlled by
adjusting of the light-induced dipole-dipole interactions.

It should be interesting to discuss how to create the mag-
netic soliton and how to detect such magnetic soliton in ex-
periment. In the previous workf5g using Landau-Zener rf
sweeps at high fieldss30 Gd a condensate was prepared in
the hyperfine stateuf =1,mf =0l—i.e., the ground state of the
spinor BEC’s. Then the atoms of the ground state can be
excited to the hyperfine stateuf =1,mf = ±1l by laser light
experimentally. Therefore the excited state of the spinor
BEC’s—i.e., the magnetic soliton—can be created. As can be
seen from Fig. 1, the spatial-temporal spin variations in the
soliton state are significant. This makes it possible to take a
direct detection of the magnetic soliton of spinor BEC’s. By
counting the difference numbers of the population between
the spin +1 and −1 Zeeman sublevel, the average of spin
componentkSzl is measured directly, while transverse com-
ponents can be measured by use of a short magnetic pulse to
rotate the transverse spin component to the longitudinal di-
rection. Any optical or magnetic method which can excite
the internal transitions between the atomic Zeeman sublevels
can be used for this purpose. In current experiments in opti-
cal lattices, the lattice number is in the range of 10–100, and
each lattice site can accommodate a few thousand atoms.
This leads to a requirement for the frequency measurement
precision of about 10–100 kHz. This is achievable with cur-
rent techniques. We can also see that the detection of the
magnetic soliton of the spinor BEC’s is different from that of
the Heisenberg spin chain.

The magnetic soliton of spinor BEC’s in an optical lattice
is mainly caused by the magnetic and the light-induced
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dipole-dipole interactions between different lattice sites.
Since these long-range interactions are highly controllable,
the spinor BEC’s in optical lattice which is an exceedingly
clean system can serve as a test ground to study the static and
dynamic aspects of soliton excitations.
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APPENDIX

The corresponding Lax equations for the Eq.s5d are writ-
ten as

]zGsz,td = LGsz,td, ]tGsz,td = MGsz,td, sA1d

where

L = − ieSzs3 − i§sSxs1 + Sys2d,

M = i2§2Szs3 + i2§esSxs1 + Sys2d − i§sSy]zS
z − Sz]zS

yds1

− i§sSz]zS
x − Sx]zS

zds2 − iesS1]zS
y − Sy]zS

xds3. sA2d

Heres js j =1,2,3d is Pauli matrix and the parameterse and§
satisfy the relatione2=§2+4r2. Thus Eq.s5d can be recov-
ered from the compatibility condition]tL−]xM +fL ,Mg=0.
We introduce an auxiliary parameterq such that

e = 2r
q + q−1

q − q−1, § = 2r
2

q − q−1 , sA3d

and the complex parameter is defined byq=sz+rd / sz−rd.
It is easily to see thatS0=s1,0,0d is a simplest solution of

Eq. s5d. Under this condition the corresponding Jost solution
of Eq. sA1d can be written as

G0 = U exph− i§sz− 2etds3j, sA4d

whereU= 1
2hI − iss1+s2+s3dj with I denoting unit matrix. In

the following we construct the Darboux matrixDnsqd by us-
ing the recursion relation

Gnsqd = DnsqdGn−1sqd, n = 1,2,3, . . . , sA5d

whereDnsqd has poles. Since

es− q̄d = esqd, §s− q̄d = − §sqd, Ls− q̄d = s1Lsqds1,

Ms− q̄d = s1Msqds1, sA6d

we then have

G0s− q̄d = − is1G0sqd, Gns− q̄d = − is1Gnsqd,

Dns− q̄d = s1Dnsqds1, sA7d

where the overbar denotes complex conjugate. Suppose that
qn is a simple pole ofDnsqd; then, −q̄n is also a pole of
Dnsqd. If Dnsqd has only these two simple poles, we have

Dnsqd = CnPnsqd, sA8d

Pnsqd = I +
qn − q̄n

q − qn
Pn +

qn − q̄n

q + q̄n

P̃n, sA9d

whereCn, Pn, andP̃n are 232 matrix independent ofq and

the termssqn− q̄ndCnPn and sqn− q̄ndCnP̃n are residues atqn

and q̄n, respectively. From EqsA7d, we have

Cn = s1C̄ns1, P̃n = s1Pns1. sA10d

From Eqs.sA2d and sA4d we see that

Lsqd = − L†sq̄d, Msqd = − M†sq̄d, G0
−1sqd = G0

†sq̄d,

sA11d

and hence we have

Gn
−1sqd = Gn

†sq̄d, Dn
−1sqd = Dn

†sq̄d = Pn
†sq̄dCn

†. sA12d

Since DnsqdDn
−1sqd=DnsqdDn

−1sq̄d= I, it has no poles. Then
we obtain

PnPn
†sq̄nd = 0, PnSI − Pn

† +
q̄n − qn

2qn
P̃n

†D = 0, sA13d

which shows the degeneracy ofPn. One can writePn
=sgnwndTsYnjnd where the superscriptT means transpose.
Substituting this expression into Eq.sA3d we obtain

Pnsqd =
1

Dnsq − qndsq + q̄nd

3Sq̄nuYnu2 + qnujnu2 0

0 qnuYnu2 + q̄nujnu2
D

3Hq2SqnuYnu2 + q̄nujnu2 0

0 q̄nuYnu2 + qnujnu2
D

+ qsqn
2 − q̄n

2dS 0 Ȳnjn

j̄nYn 0
D

− uqnu2Sqnujnu2 + q̄nuYnu2 0

0 qnuYnu2 + q̄nujnu2
DJ ,

sA14d

where

Dn = uqnu2suYnu2 + ujnu2d2 + uq̄n − qnu2uYnu2ujnu2. sA15d

To determinejn andYn, we substitute Eq.sA5d into Eq.sA1d
and take the limitq→qn and then obtain

]zDnsqd = LnsqdDnsqd − DnsqdLn−1sqd,

]tDnsqd = MnsqdDnsqd − DnsqdMn−1sqd. sA16d

Because of the degeneracy ofPn, the second factor of
the right-hand sides of Eq. sA16d—namely,
sYnjndGn−1sqnd—must appear on the left-hand side in its
original form and, hence, it is independent ofz and t. We
simply let
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sYn jnd = sbn 1dGn−1
−1 sqnd. sA17d

Here bn is a constant. Hence, the Darboux matricesDnsqd
have been determined recursively, except forCn. By a simple
algebraic procedure, it is seen thatDn is always nonvanishing
regardless of the valuesz andt. This shows the regularity of
Pn and thenPnsqd. In the limit asq→1, from Eq.sA3d we
have

esqd, §sqd → 2r
1

q − 1
+ Os1d,

and then from Eq.sA16d we obtain

Ssnd · s = Dns1dfSsn − 1d · sgDn
†s1d, n = 1,2,3, . . . .

sA18d

Considering Eqs.sA11d and Eq.sA12d we get

CnCn
† = I , sA19d

which shows that the matrixCn is diagonal with the help of
the Eq.sA10d and

sCnd11 = sCnd22, usCnd11u = 1. sA20d

Then we can writeCn=expsivns3/2d which is real and char-
acterizes the rotation angle of spin in thexy plane. It is
necessary to mention thatvn may be dependent onz and t.
To determinevn one must examine the Lax equations care-

fully. Since expsivns3/2d denotes a rotation around thez
axis, it does not affect the value ofSz. Substituting Eq.sA8d
into Eq. sA16d and taking the limits asq→` and q→0,
respectively, we obtain

]zhCnPns0dj = LnsqdhCnPns0dj − hCnPns0djLn−1sqd,

]zhCnj = − i2rSzsnds3hCnj + hCnji2rSzsn − 1ds3.

Comparing these two equations, we derive

Cn = sDnd−1/2SqnuYnu2 + q̄nujnu2 0

0 q̄nuYnu2 + qnujnu2
D .

sA21d

The Eq.sA17d gives

Yn = fn + i f n
−1, jn = fn − i f n

−1, sA22d

where

fn
2 = exps− Qn + iFnd.

Here the parametersQn and Fn are defined in Eq.s7d. Set-
ting n=1 and substituting the Eqs.sA8d, sA14d, sA21d, and
sA22d into Eq. sA18d we can obtain the one-soliton solution
s8d. Settingn=2 and with the similar procedure the expres-
sion of the two-soliton solutions14d is derived.
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