
Entanglement control in an anisotropic two-qubit Heisenberg XYZ model
with external magnetic fields

Ahmad Abliz,1,2 H. J. Gao,1 X. C. Xie,1,3 Y. S. Wu,4 and W. M. Liu1

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
2School of Mathematics, Physics and Informatics, Xinjiang Normal University, Urumchi 830054, China

3Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
4Department of Physics, University of Utah, Salt Lake City, Utah 84112

�Received 5 July 2006; published 8 November 2006�

We study the bipartite entanglement dynamics in an anisotropic two-qubit Heisenberg XYZ model under the
influence of population relaxation and in the presence of various types of magnetic fields. We find that the
maximal value of the concurrence has an intrinsic rigidity for the different external magnetic fields. Moreover,
our results demonstrate that it is possible to produce entangled states and to control or to modulate the
concurrence within the intrinsic maximal value with the help of external time-varying fields despite the
existence of dissipation.
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I. INTRODUCTION

Entanglement, as a nonlocal quantum correlation without
any classical analog, has aroused great interest since the
early days of quantum mechanics, and become a central issue
in the recently emerged field of quantum information due to
its potential applications in the quantum cryptography, tele-
portation, and quantum computing, etc. �1�. However, when
it comes to generate, observe or manipulate entanglement in
practice, the fragility of quantum entanglement to the envi-
ronment induced decoherence often constitutes a major ob-
stacle. Therefore, how to generate, maintain, and control the
entanglement in the presence of dissipative coupling of the
system to the environment is of utmost importance in the
implementation of quantum information processing.

Numerous works have been devoted to entanglement
characterization, entanglement control, and entanglement
production in solid-state systems, which show promising fea-
tures as far as the crucial scalability property is concerned
�2,3�. In recent literature there has been much interest in
entanglement in Heisenberg spin chain �4–9�. This is because
the Heisenberg spin systems are, on the one hand, natural
candidates for realizing entanglement and for simulating the
interactions between qubits; on the other hand, they also
serve as the models for various solid-state quantum compu-
tation schemes. For instance, the Heisenberg chain has been
used to construct a quantum computer based on, respectively,
quantum dots �10�, nuclear spins �3�, electronic spins �11�,
and optical lattices �12�. Dissipative effects on entanglement
in Heisenberg chains and other systems have recently been
analyzed in several contexts both in the absence and in the
presence of an external homogeneous static magnetic field
�4,9,13–16�.

In the present paper, we will focus on the interplay be-
tween dissipation and various external magnetic fields for
bipartite entanglement in an anisotropic two-qubit Heisen-
berg XYZ model. The measure for bipartite entanglement we
use is the concurrence, while the dissipation we consider is
the population relaxation of the higher level in the qubit due
to the environment. The cases of external magnetic fields

include: an inhomogeneous static field, an exponentially
varying field, and two periodically varying fields. The case
of two-qubit Heisenberg XY model in a homogeneous mag-
netic field is studied in Ref. �9�. However, there not only
exists the possibility of unwanted inhomogeneous Zeeman
coupling in reality �17�, but there are also some schemes that
employ inhomogeneous Zeeman coupling for faster gate op-
erations �18�. Besides these, in NMR quantum computing, a
series of magnetic pulses are applied to a selected nucleus of
a molecule to implement quantum gates. In these cases, it
will be necessary to obtain the information about the en-
tanglement characteristics of the open system under mag-
netic field pulses. The present study of entanglement in
simple examples will help us to understand the dissipative
behavior of the bipartite entanglement subject to various ex-
ternal magnetic fields. More importantly, we will demon-
strate that one can control or manipulate the entanglement
within the intrinsic maximal value in spin system with the
help of external magnetic fields.

II. THE MODEL AND DISSIPATIVE DYNAMICS

The Hamiltonian for an anisotropic N-qubit Heisenberg
chain with nearest-neighbor interactions can be written as

H = �
n=0

N

�JxSn
xSn+1

x + JySn
ySn+1

y + JzSn
zSn+1

z � , �1�

where Sn
�= 1

2�n
���=x ,y ,z� and �n

� are the local spin-1
2 opera-

tors and Pauli operators, respectively, at site n ,�=1, and the
periodic boundary condition SN+1=S1 applies. J�’s are real
coupling constants for the spin interaction.

We consider an anisotropic two-qubit Heisenberg XYZ
model subject to an external magnetic field. Two-qubit sys-
tem is not only essential to the construction of the universal
gate, but also the most fundamental case on which further
extensions can be developed. We first study the case of in-
homogeneous static magnetic field. When the external field B
is parallel to the z axis, the Hamiltonian H can be written in
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terms of the spin raising and lowering operators S±=Sx± iSy,
as

H = J�S1
+S2

− + S1
−S2

+� + ��S1
+S2

+ + S1
−S2

−� + JzS1
zSz

2 + B1S1
z + B2S2

z ,

�2�

where B1 and B2 are the local external magnetic
fields at each qubit site, J= �Jx+Jy� /2, and �= �Jx−Jy� /2 is
the anisotropy parameter. The eigenvalues and
eigenstates are found as H��±�= �1/2��Jz±u���±�
and H��±�= �1/2��Jz±v���±�, with the eigen-

states ��±�= (±��u±�� /2u ,0 ,0 ,�2� /�u�u±��)T and

��±�= (0, ±��v±�� /2v ,�2� /�v�v±�� ,0)T, where

u=�4�2+�2 and v=�4J2+�2, and �=B1+B2, �=B1−B2.
For a bipartite system described by the density matrix 	,

the concurrence between the two qubits, which can be
proven to be an entanglement monotone, is �19�

C = max	�
1 − �
2 − �
3 − �
4,0
 , �3�

where 
1�
2�
3�
4 are the eigenvalues of the matrix R
=		̃, in which 	̃ is the spin flipped matrix given by 	̃= ��y

� �y�	*��y � �y�, where �y is the usual Pauli matrix, and 	*

denotes the complex conjugation of the matrix 	 in the stan-
dard basis 	�11�, �10�, �01�, �00�
.

The description of the time evolution of an open system is
provided by the master equation, which can be written most
generally in the Lindblad form with the assumption of weak
system-reservoir coupling and Born-Markov approximation
�20,21�. For the case under consideration, the Lindblad op-
erator describes the population relaxation of the upper state
of each qubit due to their environment, and thus can be writ-
ten in the form as ���−, where � is the relaxation rate which
is supposed to be the same for the two qubits and �−
= �1��0� is the spin lowering operator. The Lindblad equation
for our case thus reads

d	

dt
= − i�H,	� + � �

j=1,2
�Sj

−	Sj
−† − 1

2 	Sj
−†Sj

−,	
� , �4�

where 	 
 means anticommutator. In the solution of Eq. �4�,
we discuss three typical cases with initial states: a separable
�unentangled� state, ��= �00�; the maximally entangled state,
���= 1

�2
��00�− �11��; and the equal mixture of the separable

state and the Bell state, ��= 1
�2

��01�+ �10��.

III. EFFECTS OF VARIOUS EXTERNAL MAGNETIC
FIELDS

First, according to the time evolution of the reduced den-
sity matrix described by �4�, we apply an inhomogeneous
static magnetic field �Eq. �2�� to the two-qubit system and
examine the concurrence evolution. For this case, we get the
following analytical results in the standard basis when the
system is initially prepared in the separable state,

	11�t� =
2�2e−�t

u2 + �2 �cosh��t� − cos�ut�� ,

	14�t� =
�

u�u2 + �2�
�u�� + i���e−�t cos�ut� − 1�

+ �e−�t��� − iu2�sin�ut�� ,

	22�t� =
�2

u�u2 + �2�
�u�1 − e−2�t� − 2�e−�t sin�ut�� ,

	44�t� = 1 − 	11�t� − 2	22�t� . �5�

And 	41�t�=	14
* �t�, 	33�t�=	22�t�, all the other matrix ele-

ments are zero. It can be seen that all of the nonzero matrix
elements include terms that oscillate with the frequency u
and the terms decay at the rate �. In addition, if the aniso-
tropy parameter � is zero, then the system will just stay
unentangled.

Figure 1 shows two concurrence ridges consist of the
steady state �maximal concurrence� points which are ob-
tained after the evolution time t=20. The parameter values
for the plot are �=0.3, �=0.3. �Same parameter values are
used throughout the paper.� The J is set to 1.0 and all units
are scaled by J. Note that we are working in units so that the
parameters are dimensionless.

According to Eq. �3�, we find the analytic expression for
the concurrence ridges as

Cridge =
2�

u2 + �2 ���2 + �2 − �� . �6�

Very desirable result can be found from Eq. �6� that bipartite
entanglement can be produced from the initially separable
state despite the presence of decoherence effects as long as
the anisotropy parameter is nonzero and ����2+�2 in the
Heisenberg spin chain. Moreover, Cridge→ 0, when �i� �→ 0
or B1�−B2; �ii� �→� or �B1� , �B2�→�, for the fixed � and
�. If we set d=� /� and b1,2=B1,2 /�, the above equation

FIG. 1. �Color online� Concurrence vs inhomogeneous static
magnetic fields B1 and B2 after the evolution time of t=20, starting
from the separable state. The parameter values for the plot are J
=1.0, �=0.3, �=0.3.
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becomes Cridge= 2d
1+4d2+�b1+b2�2 ��1+ �b1+b2�2�. The two ridges,

which are symmetric because the system-environment
couplings are the same for the two qubits, give us the
corresponding magnetic field values Bi

ridge=−Bj

+�−�2+ �6+2�5��2 �i, j=1, 2 and i� j�. Setting this into �6�
gives us Cridge=0.309. Another important feature we ob-
served is that, for the other two types of initial entanglement,
the plots for final concurrence vs external magnetic fields are
almost identical with that in Fig. 1 �omitted�. The combina-
tory effects of the external field and decoherence forces the
various initial states to evolve into the final identical one. We
also note that, when our case for the external field reduces to
the case of the homogeneous one, our results cover those in
Ref. �9�, which explains that the Jz coupling does not involve
the entanglement manipulation by the interplay between the
external fields and decoherence in this case.

To describe the concurrence behavior under the fluctua-
tions of external magnetic fields, we also investigate the

cases with different homogenous time-dependent, step-
function magnetic fields: an exponential and two types of
periodic magnetic fields as

h1�t� = a , t � 0,

b + �a − b�e−�t, t � 0,
� �7�

h2�t� = a , t � 0,

a�1 − sin��t�� , t � 0,
� �8�

h3�t� = 0, t � 0,

a�1 − cos��t�� , t � 0,
� �9�

where a ,b, and � are varying parameters. The fields suffer a
sudden change at t=0+.

In Fig. 2, the concurrence evolution subject to a homoge-
neous exponential magnetic field h1�t� is shown with differ-
ent values of �, which plays the role of a knob adjusting the
speed of the passage. We have found out that the concurrence
finally reaches a small but steady state value of 0.058 for the
parameters chosen regardless of the value of �. The insets in
Fig. 2 show the evolution of the different initial states in a
very short period of time. From these insets, one can see that
the combined effect of the external magnetic field and the
decoherence forces the various initial entanglement states to
oscillate into an identical state, which is eventually lead to
the steady state. Especially, for the case of slow passage, e.g.,
�=0.1, the inset shows that the identical state entanglement
reaches to the maximal value of 0.309 in a very short period
of evolution time, which is the same case with that in Ref.
�9�. This is straightforward since the �t is very small in this
case, so the external field is almost constant thus giving the
same result as the case with the external homogeneous mag-
netic field. As � is increased �faster passage�, the external
magnetic field suffers a sharper increase resulting in the
more oscillations of the various initial concurrence and faster
evolution of the identical state into the steady state. We also
studied the case when the external magnetic field decays ex-
ponentially. In this case, the system reaches to the final
steady state with the maximal value 0.309 regardless of the

FIG. 2. �Color online� Concurrence evolution of the initially
separable states �black�, maximum entangled state �red�, and
equally mixed state �blue� in the presence of the external magnetic
field h1�t�=b+ �a−b�exp�−�t� with different �’s. The parameter
values for the plot are J=1.0, �=0.3, �=0.3, a=0.5, b=5.0.
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FIG. 3. �Color online� Concur-
rence evolution of the initially
separable states �black�, maximum
entangled state �red�, and equally
mixed state �blue� in the presence
of the external magnetic field
h2�t�=a�1−sin��t�� �left-hand
column� and h3�t�=a�1−cos��t��
�right-hand column� with different
initial values a of the external
magnetic field. The parameter val-
ues for the plot are J=1.0, �
=0.1, �=0.3, �=0.3.
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initial states, which manifests again the intrinsic maximal
rigidity of concurrence to the external field parameters, but
with different speeds according to the knob � �plots omit-
ted�.

As the next step, we examine the dissipative evolution of
concurrence in homogeneous periodic magnetic fields h2�t�
and h3�t�, respectively. The periodic external magnetic fields
varying with time are shown in the top panels in Fig. 3 with
different initial values a in order for comparison with the
concurrence evolution. The parameter values are b=5.0 and
�=0.1. Figure 3 depicts a phenomena that, for all a, three
different initial states under the combined effects of the ex-
ternal magnetic fields and the decoherence, instantaneously
evolve into the identical state �after some oscillations which
cannot be visible in this figure due to its rapidness�, which is
the same case to the former ones. Interestingly, the evolution
patterns of the identical state show the same periodic struc-
ture with the external field. The concurrence decreases to the
minimal value �zero� due to the decoherence when the exter-
nal magnetic field reaches its minimum �zero�. However, it is
not the maximal external field which leads the concurrence
to the maximal value. Maximal concurrence 0.309 occurs
just around the minimum of the external field, whenever the
field is reaching or leaving its minimum. The larger the ini-
tial field is, the sooner the concurrence reaches its maximal
value. Again, the entanglement-suppressing tendency of the
external magnetic field for this system can easily be seen by
comparing the plots with different initial magnetic fields. As
the initial field is decreased, the curves between the concur-
rence peaks begin to flatten out. All of the above are the
common characteristics of concurrence evolution for both of
the periodic fields. The only difference between the two
cases is that, when there is no background external field as
the case of h3�t�, the identical state entanglement in the very
beginning of the evolution is zero since, just at the moment
when the external field is turned on, the external field is too
small in the competition with the decoherence to produce a
nonzero entanglement. However, the concurrence exhibits a
revival soon after the external field reaches a competent
value.

IV. CONCLUSIONS

We have presented a detailed investigation on the dissipa-
tive features of entanglement in an anisotropic two-qubit

Heisenberg XYZ model subject to various types of external
magnetic fields: an inhomogeneous static field; homoge-
neous exponentially varying and periodically varying mag-
netic fields, respectively. As shown in the Introduction, the
first case is not only pertinent to more realistic models, but
also useful in some quantum computing schemes, while the
latter two maybe employed in maintaining and manipulating
the entanglement in some desired ways. More specifically,
when the system is initially prepared in the separable state,
controlled generation of bipartite entanglement is possible
for all of the different external fields. For the initially sepa-
rable state, we have given the analytic solutions for the mas-
ter equation in the standard basis; and also presented a de-
tailed numerical analysis for the other two types of initial
states. Furthermore, our results reveal that, by applying an
exponentially varying magnetic field, the final entanglement
in this system can be maintained at the value within the
intrinsic maximal concurrence; one can also modulate the
entanglement periodically with the help of periodic magnetic
fields, which might be useful in NMR quantum computing.
All of the above results not only provide us with useful in-
formation about the dissipative dynamics of entanglement in
Heisenberg models subject to various magnetic fields, but
also might be helpful in the investigation of entanglement
production and manipulation in the spin system.

The decoherence scenario considered in this work is the
simplest but physically fundamental and unavoidable one.
Nevertheless, it would be of more practical importance to
extend this case to the more realistic decoherence scenarios
and more qubits, such as non-zero temperature bath and pure
dephasing since, in reality, there are definitely many degrees
of freedom in the system-environment coupling, especially
in the solid-state quantum information processing systems.
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