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We investigate the interplay dynamics of a cavity QED system, where the two-level atoms are trapped in a
double-well potential, and the cavity mode, with a frequency largely detuned from the atomic level splitting, is
driven by a probe laser. The interaction between the center-of-mass motion of the atoms and the cavity mode
is induced by the position-dependent atom-field coupling. The dynamics of the system is characterized by two
distinct time scales, the inverse of the atomic interwell tunneling rate and the inverse of the cavity loss rate.
The system shows drastically different �quasi�steady behaviors in the short- and long-time intervals, and the
detection of the statistics of atom number distribution from the transmission spectra is available only in the
short-time interval.
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I. INTRODUCTION

The past decade has witnessed great advances in both the
fields of cold atom physics and cavity quantum electrody-
namics �QED�, and the overlap between the two fields is ever
growing. A remarkable achievement in this direction is the
successful coupling of a Bose-Einstein condensate to a quan-
tized field mode of a high-finesse optical cavity �1,2�. In
addition, deterministic loading of individual atoms in a mi-
crocavity has been demonstrated �3� and submicrometer po-
sitioning of single atoms in the cavity has been achieved
�3,4�, which allows control of the atom-field coupling via its
position dependence.

Theoretically, Mekhov, Maschler, and Ritsch proposed to
probe the superfluid-insulator transition of cold atoms in op-
tical lattices using the transmission spectra of an optical cav-
ity �5�. The atoms couple to a quantized cavity mode disper-
sively and hence act as moving refractive media in the
cavity. The cavity transmission spectra directly reflect the
quantum or classical distribution of the atoms, which char-
acterizes the superfluid or insulator phases, respectively. This
nondestructive proposal exploits the fact that, in the domain
of strong coupling, even one atom is enough to shift the
cavity resonance significantly. Techniques based on this
knowledge have been developed to detect the existence of
atoms in a cavity �6�, and have recently been employed to
study the correlation, statistics, and dynamics of matter-wave
fields �7�.

From the atomic-optics and quantum-information point of
view, Ref. �5� also provides us with a model of rich coupled
atom-field dynamics �8�. The atoms effectively influence the
field dynamics by shifting the resonance of the field mode,
while in turn the field intensity determines the dipole poten-
tial for the atoms. The former effect is essential for the result
of Ref. �5� and is treated in detail. However, the latter effect
is neglected. The atomic dynamics is avoided by prescribing
a state �phase� for the atoms. Furthermore, the interaction
with and coupling to the environment may induce entangle-
ment between the atomic and field subsystems, and cause
decoherence of the subsystems, respectively. All these as-
pects of the system were scarcely investigated in Ref. �5�.

The purpose of this paper is to investigate the dynamics of
the composite atom-field system, with the emphasis on the

interplay between the two sides, the correlation and the en-
tanglement between them. We shall consider a “two-site ver-
sion” of the model presented in Ref. �5�. Atoms are trapped
in a double-well potential and interact dispersively with a
damped and driven field mode. The two traps are placed
asymmetrically with respect to the field mode so that the
atomic tunneling dynamics is coupled to the field dynamics.
Under the two-mode approximation, the degrees of freedom
of the atoms are reduced to a minimum and can be taken into
full account �9�. To gain insight into the dynamics of the
system, we assume that the system starts from an initial state
and evolves toward the steady state. We find that this process
involves two distinct time scales; one is the atomic tunneling
rate and the other the cavity loss rate, with the latter much
faster than the former. These two incommensurate time
scales lead to distinct temporal structures of the dynamics. In
the short-time interval, where the atomic tunneling can be
neglected, it is found that the model we consider is analo-
gous to the Dicke model in the dispersive regime, of which a
good understanding exists �10�. Detailed analytical results
are obtained and, by the way, the main result of Ref. �5� is
recovered. In the long-time interval, however, the atomic
tunneling plays an important role. Strong population transfer
between different atomic states is observed, and the system
displays substantially different behavior than in the short-
time interval.

This paper is organized as follows. In Sec. II the basic
model is introduced and the Hamiltonian of the atom-field
system is derived under the two-mode approximation. Then
in Sec. III, based on the master equation, the short- and long-
time behaviors are investigated both analytically and numeri-
cally. Finally, our results are summarized in Sec. IV.

II. THE BASIC MODEL

In this work, we consider the combination of a double-
well and an optical cavity, two paradigmatic models in phys-
ics. We assume that N two-level bosonic atoms with mass m
and transition frequency �a are trapped in a double-well po-
tential V�x� and loaded in an optical cavity, where they in-
teract with a cavity field mode with frequency �c. The cavity
is coherently pumped through the mirror by a weak laser
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with frequency �p and amplitude �. We also assume that the
atom-field detuning is much larger than the atomic spontane-
ous emission rate and the Rabi frequency. Under this condi-
tion, the atomic upper level can be adiabatically eliminated
�11,12�, i.e., the atomic internal dynamics is neglected.

After adiabatic elimination of the atomic upper state, the
single-atom-plus-field Hamiltonian in the frame rotating at
the frequency of the pumping field is �11�

H0 = Hf + Ha, �1�

where Hf is the rotating frame Hamiltonian for the driven
field,

Hf = − �a†a + ��a + a†� , �2�

with �=�p−�c being the pump-cavity detuning, and

Ha =
p2

2m
+ V�x� + u2�x��U0a†a� , �3�

which is the Hamiltonian for a single atom in the superposi-
tion of the classical potential V�x� and the quantum potential
u2�x�U0a†a �11�. Here u�x� is the field mode function with its
magnitude at the antinode normalized to unity. The param-
eter U0=g0

2 / ��c−�a�, with g0 being the atom-field coupling
at the antinode. The quantum potential is of the same nature
as the usual optical potential, i.e., due to the ac Stark shift of
the atomic levels. The only difference is that the optical field
is now quantized and will be treated dynamically.

The many-atom-plus-field Hamiltonian, taking into ac-
count the direct interaction between the atoms which is char-
acterized by the s-wave scattering length as, reads

H = Hf +� d3x �†�x�Ha��x�

+
1

2

4�as

m
� d3x �†�x��†�x���x���x� , �4�

where ��x� is the atomic field operator and we take ��1
here and henceforth. Under the two-mode approximation for
the atomic degrees of freedom �13,14�, the atomic field op-
erator has two components ��x�=b1w1�x�+b2w2�x�=b1w�x
−x1�+b2w�x−x2�. Here we assume a symmetric double well
with the two minima at x1 and x2. The two modes w1�x� and
w2�x� are localized in the left and right traps, respectively,
and satisfy the orthonormal relations �d3x wi

��x�wj�x�=�ij,
�i , j�=1,2. The operator bi

† �bi� �i=1,2� is the creation �an-
nihilation� operator for an atom in the mode wi�x�. Substitut-
ing the expression for ��x� into Eq. �4�, and keeping only
terms with dominating contributions, we obtain

H = Hf + Ha + Hint, �5�

where Ha is the Hamiltonian for the atomic subsystem,

Ha = − t�b1
†b2 + b2

†b1� +
u

2
�n1�n1 − 1� + n2�n2 − 1�� . �6�

Here we introduce the atom number operators ni=bi
†bi,

�i=1,2� and drop the term associated with the zero-
point energy. The atomic tunneling rate t and the on-site
interaction energy u are defined as −t=�d3x w1

��x��− �2

2m

+V�x��w2�x� and u= �4�as /m��d3x�w1,2�x��4. Hint describes
the effective interaction between the atoms and the field,

Hint =� d3x �†�x�u2�x���x��U0a†a�

	 �J1n1 + J2n2��U0a†a� , �7�

where the dimensionless coefficients J1,2 are defined as

J1,2 =� d3x u2�x��w1,2�x��2, �8�

which reflect the overlap between the atomic modes and the
field mode. Note that J1,2 are bounded, 0�J1,2�1, which
follows from the normalization conditions of u�x� and
w1,2�x�. If the field mode u�x� varies slowly in the range of
the spread of the atomic modes, we can take the “tight con-
finement approximation” �5,15� Ji
u2�xi� �i=1,2�. It is
clear from Eq. �7� that the interaction between the atoms and
the field is twofold. For the atoms, the depths of the two
traps are shifted while for the field the energy per photon is
renormalized.

We shall discriminate two different cases: �i� J1=J2; �ii�
J1�J2. The former case is trivial, because in this case the
dynamics of the atoms and the field are uncoupled; the field
is indifferent to the distribution of the atoms in the two traps.
Thus we concentrate on the case J1�J2. Without loss of
generality, we assume J1=1, J2=0. This is always reasonable
mathematically because we can define two effective param-
eters ��=�−U0J2N and U0�=U0�J1−J2�, and rewrite the
Hamiltonian as

H = − t�b1
†b2 + b2

†b1� +
u

2
�n1�n1 − 1� + n2�n2 − 1��

+ U0�a
†an1 − ��a†a + ��a + a†� , �9�

then effectively we have J1=1, J2=0. Experimentally, excel-
lent control of the position of a single atom relative to the
cavity mode has been demonstrated, so atom-field coupling
can be tailored as wanted �3,4,16,17�. In the following, we
shall omit the prime for notational simplicity.

III. ANALYTICAL AND NUMERICAL ANALYSIS
BASED ON MASTER EQUATION

The Hamiltonian derived above controls the coherent evo-
lution of the atom-field system. However, we still have to
take the dissipation into account, which comes from the cav-
ity loss in the model we consider. The overall evolution of
the system is governed by the master equation

	̇ = − i�H,	� + 
�2a	a† − a†a	 − 	a†a� � L	 . �10�

Here 	 is the density matrix of the atom-field system in the
rotating frame, and 
 is the cavity loss rate. Note that gen-
erally the frequency of the cavity mode falls in the optical
regime; hence the environment can be treated as at zero tem-
perature. The master equation will be our starting point for
the rest of the paper.

As for the dynamics of our system, we stress that there are
two distinct time scales �12�. One is the inverse of the atomic
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tunneling rate t−1, the other being that of the cavity loss rate

−1. They are the characteristic times of the atomic and field
subsystems, respectively. In typical experimental situations,

 is of the order of 106 Hz, while t �and u� is of the order of
103 Hz at most �14�. This means that generally there is a
hierarchy t−1�
−1. The identification of two different time
scales leads us to classify the dynamics of the system into
short- and long-time behaviors, which correspond to two dis-
joint time intervals, �i� 0��� t−1 and �ii� �� t−1, respec-
tively. In the short-time interval, the atomic tunneling is “fro-
zen.” However, we still expect the system to display some
nontrivial behaviors, because this time may be long in units
of 
−1. In the long-time interval, the atomic tunneling may
eventually give rise to some important results and should be
taken into full account. Specifically, we divide the Hamil-
tonian H into tunneling and nontunneling terms,

H = Ht + Hnon, �11a�

Ht = − t�b1
†b2 + b2

†b1� , �11b�

Hnon = − �a†a + ��a + a†� + U0a†an1

+
u

2
�n1�n1 − 1� + n2�n2 − 1�� , �11c�

and rewrite the master equation as

	̇ = − i�Hnon,	� + 
�2a	a† − a†a	 − 	a†a� − i�Ht,	� .

�12�

The last term will be neglected �kept� in the short- �long-�
time intervals, respectively. In the following we shall inves-
tigate the behavior of the system in the two time intervals
both analytically and numerically.

A. Short-time behavior

Let us assume initially that the atoms are in the ground
state �G� of the Hamiltonian Ha, while the field is in the
vacuum state �0� f, i.e., 	�0�= �G��G� � �0� f f�0�. Then at �=0
the pump is turned on and the system evolves according to
the master equation �10�. In the short-time interval, as men-
tioned above, we may neglect the tunneling term and ap-
proximate the master equation by

	̇ = − i�Hnon,	� + 
�2a	a† − a†a	 − 	a†a� � Lnon	 .

�13�

As pointed out in the Appendix, Hnon can be mapped into the
Dicke model in the dispersive regime, up to some minor
differences. The dynamics of the Dicke model in a driven
and damped cavity, in the dispersive regime, has been stud-
ied in detail in Ref. �10�. Here we shall follow the techniques
there.

Under the transformation to another reference frame
	̃=eiA�	e−iA�, with A= u

2 �n1�n1−1�+n2�n2−1��, the master
equation �13� takes the form

	̇̃ = − i�H̃, 	̃� + 
�2a	̃a† − a†a	̃ − 	̃a†a� , �14�

with the simplified Hamiltonian H̃=−�a†a+��a+a†�
+U0a†an1. Note that H̃ is diagonal in the atomic space. This
leads us to expand the density matrix 	̃ as

	̃ = 
m,n=0

N

�m��n� � 	̃mn, �15�

where �m���m ,N−m� denotes the atomic state with m atoms
in the left trap and �N−m� atoms in the right trap, and 	̃mn
= �m�	̃�n�, which is still an operator in the field space. The
initial value of 	̃mn is 	̃mn�0�= �m �G��G �n��0� f f�0�. In terms
of 	̃mn, the atomic and field density operators are, respec-
tively,

	̃a = trf�	̃� = 
m,n=0

N

trf�	̃mn��m��n� , �16a�

	̃ f = tra�	̃� = 
m=0

N

	̃mm. �16b�

It is straightforward to obtain the time evolution equation of
the operators 	̃mn from the master equation �14�,

	̇̃mn = − i�− �� − U0p�a†a + ��a + a†�, 	̃mn�

+ 
�2a	̃mna† − a†a	̃mn − 	̃mna†a�

− iU0q�a†a	̃mn + 	̃mna†a� , �17�

where p= �m+n� /2 and q= �m−n� /2. The general solution of
this equation is derived in Ref. �10� by applying the dynami-
cal symmetry method.

For the diagonal cases with m=n and q=0, Eq. �17� re-
duces to the master equation describing the dynamics of a
single field mode subjected to damping and pumping. The
solution of this type of master equation is well known �18�.
Up to a constant coefficient,

	̃mm��� = �m���� f f�m���� , �18�

where �m���� f denotes a field coherent state, and m���
=m����1−e−�
−i��−U0m����, with m���=� / �i
+ ��−U0m��.
Invoking Eq. �16b� and retrieving the coefficients, we have
the field density operator

	̃ f��� = 
m=0

N

��m�G��2�m���� f f�m���� , �19�

which is an incoherent superposition of a series of coherent
states. Due to the atom-field coupling, both the weights of
the coherent states and the coherent states themselves depend
on the initial atomic state. For times ��
−1, m��� saturates
to the value m��� and the field approaches the quasisteady
state

	̃ f��� = 
m=0

N

��m�G��2�m���� f f�m���� . �20�

The average photon number in the quasisteady state is
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�a†a� = 
m=0

N

��m�G��2
�2


2 + �� − U0m�2 . �21�

This is just the central result of Ref. �5� in the two-site case.
The photon number as a function of the detuning � is the
superposition of a series of Lorentzians, the relative heights
of which are determined by the atomic ground state, or, more
fundamentally, the ratio t /u. Note that the field approaches
its quasisteady state in a time of order 
−1, which is well
within the short-time interval 0��� t−1. This indicates that
the analysis above is self-consistent. We refer to this “steady
state” of the field as a quasisteady state so as to differentiate
it from the true steady state in the long-time interval.

For off-diagonal cases with m�n, the last term in Eq.
�17� is nonzero. As pointed out in Refs. �10,18�, this nonuni-
tary term will result in the complete disappearance of the
operators 	̃mn, that is, the complete coherence loss of the
atomic subsystem. Explicitly,

�	a
mn� = �trf�	̃mn�� � exp�− �/�mn� , �22�

with the �m ,n�-dependent characteristic time

�mn =
�
2 + �� − U0m�2��
2 + �� − U0n�2�


�2U0
2�m − n�2 . �23�

The � dependence of �mn indicates that the stronger the
pump, the faster the decoherence of the atomic subsystem. If
all the �mn’s are much smaller than t−1, then eventually the
atomic subsystem will reach a purely mixed state,

	a��� = 
m=0

N

��m�G��2�m��m� , �24�

and the atom-field system is in a separable state,

	��� = 
m=0

N

��m�G��2�m��m� � �m���� f f�m���� . �25�

All the results derived above are based on the approximation
that the atomic tunneling is negligible in the short-time in-
terval. The quality of this approximation is well demon-
strated in Figs. 1 and 2. There we show the time evolution of
the photon number and off-diagonal element 	a

01. The results
are obtained by numerically integrating the master equation
�10� with the atomic tunneling being taken into account. As
shown in Fig. 1, within a time of order 
−1, the photon num-
ber builds up and saturates to the value given by Eq. �21�.
Then it holds on to times of order 103 /
 before signatures of
deviation from the approximation arise. The excellent agree-
ment between the analytical and numerical results is again
demonstrated in the decay of the off-diagonal element 	a

01 in
Fig. 2. Note that the decoherence time is much larger than
the cavity dissipative decoherence time 
−1. The atomic sub-
system decoheres because of its coupling to the cavity field,
which is in turn subjected to dissipation and driving. The
atom-field coupling, the cavity dissipation, and the constant
driving are all indispensable for the absolute decoherence of
the atom ensemble �10�.

B. Long-time behavior

As shown above, in the short-time interval, the atomic
tunneling can be neglected. However, in the long-time inter-
val, where the system enters the steady state 	st, the atomic
tunneling does play an important role. An analytically exact
solution of 	st is unavailable, so we rely on numerical meth-
ods �19�. In Fig. 3 we show the normalized photon number in
steady state as a function of the detuning � with varied pump
strength. The difference between the long-time steady state
result and the short-time quasisteady state result is apparent.
A striking feature of the spectra in steady state is that the
peaks are almost of equal height and, in particular, in the
weak pump limit �� /
�1�, the height converges to some
value around 1/3 �take into account the overlap between the

η
κ

∆

κτ
κτ
κτ
κτ

FIG. 1. �Color online� Normalized photon number
�a†a� / ��2 /
2� as a function of the pump-cavity detuning �, with
the master equation cut off at four different times. The quasisteady
state result �solid line� is shown for comparison. The two lines
corresponding to 
�= �20,200� have been upshifted by 0.15 and
0.30, respectively, unless they coincide with the solid line. The
parameters are �t ,u�=2�� �400,200� Hz and �
 ,U0 ,��=2�
� �1.5,6.0,0.1��106 Hz. The number of atoms is N=2.

ρ

∆

κτ
κτ
κτ
κτ

FIG. 2. �Color online� Decay of the off-diagonal element 	a
01 at

two time sections 
�= �20,200�. Analytical approximate results ac-
cording to Eqs. �22� and �23� and numerical results based on the
master equation �10� are shown for comparison. The parameters are
the same as in Fig. 1.
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peaks�. In contrast, for the specific set of parameters in our
numerical calculations, �t ,u�=2�� �400,200� Hz and N=2,
the quasisteady state result Eq. �21� predicts the heights of
the three peaks to be 0.23, 0.53, and 0.23, respectively.

The difference between the steady state and quasisteady
state may be more directly revealed in Fig. 4, where we
present the diagonal element 	a

00 and off-diagonal element
	a

01 of the atomic density matrix 	a as the detuning and pump
strength are varied. From Fig. 4�a� we see that, when the
detuning is far from all possible resonances, the element 	a

00

is around 1/3 regardless of the pump strength; and, in the
limit of weak pump, 	a

00 is around 1/3 in the whole range of
the detuning. From Fig. 4�b� we see that the off-diagonal
element 	a

01 is far less than unity in the domain of � and �
we consider. Here we would like to draw the reader’s atten-
tion to the detailed shapes of the graphs in Fig. 4�a�. As
the pump strength increases, there develop a peak and two
dips centered, respectively, at � /U0=0 ,1 ,2. We also find
that the other diagonal elements 	a

11 and 	a
22 have similar

behavior �not shown�, the difference being that they peak at

� /U0=1 ,2, respectively. The behavior of the diagonal ele-
ments implies a “self-organization” phenomenon �see Refs.
�9,20�, although in a somewhat different context�. That is,
in the strong pump limit, by locating the pump-cavity detun-
ing � near U0m, we can prepare the atoms in the state
�m ,N−m�. This may be understood qualitatively as follows.
For pump-cavity detuning near U0m, if the atoms are in the
state �m ,N−m�, the intracavity photon number is maximized
because the detuning is compensated by the frequency shift
of the cavity mode. Accordingly, the tilt between the two
traps is maximized �see Eq. �7��. If this tilt is large enough,
i.e., ��2 /
2�U0� �t ,u�, the atomic tunneling and atom-atom
interaction can be viewed as a weak perturbation, the eigen-
states of the atoms are just the Fock states �s ,N−s� �0�s
�N�, and the state �m ,N−m� is chosen self-consistently. Al-
though this phenomenon may be interesting, in this work we
do not discuss it further, because it touches on the subtle
issue that in the strong pump limit the two-mode approxima-
tion may break down �9�.

We also investigated the cases with N�2, and some com-
mon features are found. That is, as long as the condition
�t ,u�� �
 ,U0� is satisfied, in the weak pump limit the nor-
malized photon number in steady state �a†a�st / ��2 /
2� as a
function of the detuning � is the superposition of N+1
Lorentzians, which are centered at �=U0s �s=0,1 , . . . ,N�,
and have heights nearly 1 / �N+1�. In addition, the diagonal
elements of the atomic density matrix converge to values
around 1 / �N+1�, while all the off-diagonal elements are
vanishingly small, i.e., the atomic subsystem is in a nearly
absolutely “unpolarized” mixed state.

The analysis of the short-time behaviors can in fact help
us understand the features of the steady state. The steady
state 	st satisfies

0 = L	st = Lnon	st − i�Ht,	st� . �26�

Because t� �
 ,U0�, we shall treat the second term as a
perturbation over the first term, for which we have analytical
results. Assume that 	st=	st

0 +	st
1 , where 	st

0 is of zeroth order
in t /
, while components of higher orders in t /
 are in-
cluded in 	st

1 . 	st
0 satisfies the equation Lnon	st

0 =0. According
to the analysis in the preceding section, its general solution is

	st
0 = 

m=0

N

Cm�m��m� � �m�����m���� , �27�

with the coefficients Cm being real and arbitrary. Note that 	st
0

is diagonal in the atomic space, which implies that the off-
diagonal elements of the atomic density matrix must come
from 	st

1 and hence are at least of order t /
. This explains
why the off-diagonal elements are vanishingly small as re-
vealed by the numerical calculations. The physical picture is
that, via the atom-field coupling and the dissipation, the co-
herence of the atomic subsystem is greatly depleted, the re-
maining weak coherence is just due to the finite atomic tun-
neling �21�.

The knowledge of the off-diagonal elements of the atomic
density matrix allows us to understand the behavior of the
diagonal elements and the photon number, at least in the

η
κ

∆

η
η
η

FIG. 3. �Color online� Normalized photon number at steady
state �a†a�st / ��2 /
2� as a function of the pump-cavity detuning �
for three different pump strengths. The dashed line corresponding to
the quasisteady state result given by Eq. �21� is shown for compari-
son. The parameters are the same as in Fig. 1.

FIG. 4. �Color online�. �a� Diagonal element 	a
00 and �b� off-

diagonal element 	a
01 of the reduced atomic density matrix 	a at

steady state. The parameters are the same as in Fig. 1.
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weak pump limit. In steady state, we have the following

equation for an arbitrary operator Ô:

0 = �Ô˙ �st = − i��Ô,H��st + 
��a†,Ô�a − a†�a,Ô��st. �28�

Let Ô= �m��m+1�, 0�m�N−1; then we obtain

0 = f�m + 1��Š�m��m�‹st − Š�m + 1��m + 1�‹st�

+ f�m + 2�Š�m��m + 2�‹st − f�m�Š�m − 1��m + 1�‹st

−
u

t
�2m + 1 − N�Š�m��m + 1�‹st −

U0

t
Š�m��m + 1�a†a‹st,

�29�

where f�m�=��m+1��N−m�. In the weak pump limit, the
second and third terms on the right-hand side are of order
t /
, the fourth term of order u /
, and the fifth term of order
�� /
�2, so to zeroth order in t /
, u /
, and � /
, we have

Š�m��m�‹st − Š�m + 1��m + 1�‹st = 0. �30�

This equation, together with the normalization condition
tr�	a�=1, means that to zeroth order in t /
, u /
, and � /
,

Š�m��m�‹st =
1

N + 1
. �31�

Returning to Eq. �27�, we see that in the weak pump limit
�the condition �t ,u��
 is spontaneously satisfied�, the
steady state is well approximated by

	st 

1

N + 1 
m=0

N

�m��m� � �m���� f f�m���� . �32�

The photon number �a†a�st in this limit is given by

�a†a�st =
1

N + 1 
m=0

N
�2


2 + �� − U0m�2 . �33�

Equations �31� and �33� account for the weak pump steady
state features revealed in Figs. 4�a�. In fact, the photon num-
ber is always directly determined by the atomic diagonal
elements Š�m��m�‹st, not limited to the weak pump limit. Let-

ting Ô=a†a and a�m��m�, 0�m�N in Eq. �28�, we have

0 = i���a�st − �a†�st� − 2
�a†a�st

= i�
m=0

N

�Ša�m��m�‹st − c.c.� − 2
�a†a�st, �34a�

0 = itŠ�a�m��m�,b1
†b2 + b2

†b1�‹st − i�Š�m��m�‹st

− �
 − i�� − U0m��Ša�m��m�‹st, �34b�

where c.c. stands for the complex conjugate. By the inequal-
ity ��A†B��2� �A†A��B†B� �22�, it can be shown that the ratio
of the first term to the second term on the right-hand side of
Eq. �34b� is of order t /
. Thus it is safe to neglect the first
term and we get a set of algebraic equations for �a†a�st and
Ša�m��m�‹st. We solve

�a†a�st 	 
m=0

N

Š�m��m�‹st
�2


2 + �� − U0m�2 , �35�

which is valid for arbitrary values of �. This can be readily
understood as follows: because 
� t, the cavity field follows
the motion of the atoms adiabatically, so the probability of
the field being in the state �m���� f is just the probability of
the atoms being in the state �m� �9�. Equation �35� helps us
unify the results depicted in Figs. 4�a� quantitatively.

An important question of concern is what is the time scale
for the system to approach the steady state. The general
solution of a master equation like Eq. �10� with a time-
independent Liouvillian can be written as a sum of a series of
complex exponentials 	���= jaj exp�sj��, where sj =−Rj
+ iIj �Rj , Ij �R� are the eigenvalues of the Liouvillian, while
the coefficients aj are determined by the initial conditions.
As is well known, the Liouvillian is singular and has at least
one zero eigenvalue which correspond�s� to the steady
state�s�, and all the nonzero eigenvalues have negative real
parts. This ensures that 	��� converges to the steady state�s�
in the limit of �→�. Obviously, the time scale of this pro-
cess is set by the inverse of the least modulus real part of the
eigenvalues �22�. We define

�max = max
j
� 1

Rj
;Rj � 0� . �36�

In Fig. 5, we show t�max as a function of the detuning. We
measure �max in units of the atomic tunneling characteristic
time t−1, because, as revealed in Fig. 4�a�, the process of
approaching the steady state involves remarkable atomic
population transfer. It is thus natural to expect that t�max is at
least of order unity, as demonstrated in Fig. 5. Compared
with Fig. 1, this also demonstrates that the long- and short-
time behaviors lie in two well-separated time intervals �
�max
is of order 104−106 for �� /U0��5�. Note that in the regime
0�� /U0�2, �max is of order 10 ms �23�. At present, indi-
vidual atoms have been trapped and detected in an optical

τ

∆

τ

∆

FIG. 5. Time scale �max in units of t−1 for the system approach-
ing the steady state. Inset: closeup of the curve in the regime 0
�� /U0�2. The same parameters as in Fig. 1.
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cavity for time scales exceeding 15 s �3�, so we expect that it
may be possible to observe the steady state features also in
the future.

IV. SUMMARY

We investigated the dynamics of a dispersively interacting
atom-field system, with the slowly varying atomic interwell
tunneling coupled with the rapidly varying field dynamics.
Depending on the role of the atomic tunneling, the dynamics
of the system was classified into short- and long-time behav-
iors.

In the short-time interval �0��� t−1�, as we numerically
verified, the atomic tunneling can be neglected, which justi-
fies the argument of Refs. �5,12� and their proposals. We
recovered the result of Ref. �5� in the two-site case, and went
beyond to obtain a more detailed picture of the dynamics of
the atom-field system, such as the decoherence of the atomic
subsystem, the correlation between the atomic and field sub-
systems. In our analysis, a central observation is the analogy
between the model we consider and the well-known Dicke
model in the dispersive regime. In fact, many results are
directly borrowed from previous work on the Dicke model
�10�. However, we stress that this similarity is not essential.
It is the dispersive nature of the atom-field coupling that
counts. As can be seen from our procedures, similar tech-
niques and results apply also to the many-site case �24�, e.g.,
the original model in Ref. �5�.

As for the long-time behavior, we were primarily inter-
ested in the steady state. If the atomic tunneling is absent, the
steady state of the system is in the form of Eq. �27�. The
atomic and field subsystems are only classically correlated,
and the populations of different atomic states are absolutely
determined by the initial state. However, the presence of
atomic tunneling leads to strong population transfer between
the atomic states. A remarkable feature is that, in the weak
pump limit, the atomic states are almost equally populated,
which is substantially different from the ground state atomic
distribution. We also quantitatively investigated the time
scale of reaching the steady state and found that it lies well in
the long-time interval and is accessible under present experi-

mental situations. This implies that the implementation of the
proposal of Mekhov et al. should be performed within the
short-time interval, or else the spectra could not correctly
reflect the distribution of the atoms.
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APPENDIX: CONNECTION WITH THE DICKE MODEL

In terms of the Schwinger representation of the angular
momentum operators �25� Sx= 1

2 �b2
†b1+b1

†b2�, Sy = i
2 �b2

†b1

−b1
†b2�, and Sz= 1

2 �b1
†b1−b2

†b2�, the Hamiltonian can be re-
written as H=Ht+Hnon, with

Ht = − 2tSx, �A1�

Hnon = �U0N

2
− ��a†a +

U0

2
�2a†a + 1�Sz + ��a + a†�

+ u�Sz
2 +

N2

4
−

N

2
� −

U0

2
Sz. �A2�

Up to terms diagonal in the Sz representation, Hnon corre-
sponds to the Dicke model in the dispersive regime �10�,
with cavity-pump detuning �

U0N
2 −��, effective atom-field

coupling
U0

2 , and pump strength �. It is the two center-of-
mass motion modes that correspond to the two atomic inter-
nal levels involved in the Dicke model.

In this formalism, it is clear that the role of Ht is to induce
transitions between neighboring eigenstates of Sz �that is, the
�m�’s, Sz�m�= �m− N

2 ��m��, with amplitudes of the order of t.
However, since t� �

U0

2 ,
�, this process can be neglected in
the short-time interval.
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