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We study the mean-field dynamics of a Bose Josephson junction which is dispersively coupled to a single
mode of a high-finesse optical cavity. An effective classical Hamiltonian for the Bose Josephson junction is
derived, and its dynamics is studied from the perspective of a phase portrait. It is shown that the strong
condensate-field interplay does alter the dynamics of the Bose Josephson junction drastically. The possibility of
coherent manipulating and in situ observation of the dynamics of the Bose Josephson junction is discussed.
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Cavity quantum electrodynamics �cavity QED� has now
grown into a paradigm in the study of the matter-field inter-
action. To tailor the atom-field coupling effectively, a high
degree of control over the center-of-mass motion of the at-
oms is essential. Although previous works have focused on
the few-atom level �1�, recently, a great step was made as
two groups succeeded independently in coupling a Bose-
Einstein condensate to a single-cavity mode �2,3�. That is, a
single-cavity mode dressed condensate has been achieved.
This opens up a new regime in both the fields of cavity QED
and ultracold atom physics. In the condensate, all the atoms
occupy the same motional mode and couple identically to the
cavity mode, thus realizing the Dicke model �4� in a broad
sense. As shown by these experiments, the condensate is
quite robust; it would not be destroyed by its interaction with
the cavity mode in the time scale of the experiments.

In this paper, we investigate the mean-field dynamics of a
Bose Josephson junction �BJJ� �5�, which is coupled to a
driven cavity mode. This extends our previous work to the
many-atom case �6�. The system may be constructed by split-
ting a Bose-Einstein condensate, which is already coupled to
a single-cavity mode, into two weakly linked condensates, as
can be done in a variety of ways �7–11�. We restrict our-
selves to the large-detuning and low-excitation limit, so that
atomic spontaneous emission can be neglected. In this limit,
the effect of the strong coupling between the atoms and the
field, seen by the field, is to shift the cavity resonance fre-
quency and hence modify the field intensity. Unlike the
single-condensate case, we now have two, which may couple
with different strengths to the cavity mode because of the
position dependence of the atom-field coupling. Conse-
quently, the field dynamics couples to the tunneling dynam-
ics of the BJJ and vice versa. It is the very interplay between
the two sides that we are interested in. The interplay is made
possible by the greatly enhanced atom-field coupling in a
microcavity, which is unique in the context of cavity QED.
In the usual optical traps and optical lattices, the interaction
between the atoms and the light field is one way in the sense
that the light field affects the motion of the atoms effectively,
while the atoms have little back-action on the light field—the
laser intensity is almost the same with or without the pres-
ence of the atoms. We would like to stress that, although
there had already been some experimental investigations on
this subject and phenomena such as dispersive optical bista-
bility were observed �12,13�, all of them dealt with thermally
cold atoms. However, here, the long-range coherence of the
condensates will surely make a difference.

The Hamiltonian of the system consists of three parts:

H = Ha + Hf + Hint. �1�

Ha is the canonical Bose-Josephson-junction Hamiltonian in
the two-mode approximation ��=1 throughout�,

Ha = − ��b1
†b2 + b2

†b1� +
V

2
�b1

†b1
†b1b1 + b2

†b2
†b2b2� , �2�

where b1
†, b2

† �b1, b2� create �annihilate� an atom in its inter-
nal ground state in the left and right traps, respectively. � is
the tunneling matrix element between the two modes, while
V denotes the repulsive interaction strength between a pair of
atoms in the same mode. The two-mode model assumes two
stationary wave functions �the single-atom ground states ac-
tually� in the individual traps, while neglecting modifications
due to the atom-atom interaction. The regime in which this
approximation is valid can be found in Ref. �14�. Hf is the
single-mode field Hamiltonian,

Hf = �ca
†a + ��t�e−i�pta† + �*�t�ei�pta , �3�

where �c and �p are the cavity-mode frequency and pump
frequency, respectively, and ��t�, the amplitude of the pump,
varies slowly in the sense that ��̇ /����p. In the limit of
large detuning �15� and weak pump, the atom-field interac-
tion is of dispersive nature, and the two-level atoms can be
treated as scalar particles with the upper level being adiabati-
cally eliminated. Under the two-mode approximation for the
atoms, the interaction between the atoms and the cavity
mode is �16�

Hint = U0a†a�J1n1 + J2n2� , �4�

where U0=g0
2 / ��c−�a� is the light shift per photon—i.e., the

potential per photon an atom feels at an antinode—g0 being
the atom-field coupling strength at an antinode. The two di-
mensionless parameters J1,2 �0�J1,2�1� measure the over-
laps between the atomic modes and the cavity mode �6�. n1
=b1

†b1 �n2=b2
†b2� counts the atoms in the left �right� trap. The

term Hint has a simple interpretation: from the point of view
of the cavity mode, its frequency is renormalized, while from
the point of view of the atom ensemble, the trapping poten-
tial is tilted provided J1�J2.

We would like to point out that in the interaction Hamil-
tonian �4�, we have dropped a term U0a†aJ12�b1

†b2+b2
†b1�,

which couples the cavity mode to the atomic tunneling. Here
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the dimensionless parameter J12 is proportional to the over-
lap between the two atomic modes �16� and is thus much
smaller than J1,2, which are of the order of unity. Although
this type of coupling may have some nontrivial conse-
quences �17�, for our purposes we neglect it because �i� from
the standpoint of the cavity mode, the atomic coherence-
induced frequency renormalization is much smaller than that
by the atomic densities; �ii� from the standpoint of the atoms,
the cavity-induced tunneling coefficient modulation
U0J12a

†a is much smaller than the intrinsic tunneling coeffi-
cient � as long as U0J12�a†a���, as is the case in the pa-
rameter regime we consider �see �28��. Technically, if this
term is retained, Eqs. �9a� and �9b� below will be modified a
little, and then we cannot find an effective Hamiltonian like
�10� anymore. As a result, the only resource we have to ana-
lyze the behavior of the BJJ is its phase flow diagram. By
numerical simulations, we do observe that modification of
the phase-flow diagram of the BJJ due to the extra term is
small and only quantitative.

According to the Heisenberg’s equation, we have

iḃ1 = − �b2 + Vb1
†b1b1 + J1U0a†ab1, �5a�

iḃ2 = − �b1 + Vb2
†b2b2 + J2U0a†ab2, �5b�

iȧ = ��c + U0�J1n1 + J2n2��a − i�a + ��t�e−i�pt. �5c�

Note that in Eq. �5c� we have put in the term −i�a to model
the cavity loss, with � being the cavity-loss rate. Under the
mean-field approximation, we treat the operators b1, b2, and
a as classical quantities, b1�	N1ei�1, b2�	N2ei�2, and a
�	. Here N1 and N2 are, respectively, the numbers of atoms
in the left and right condensates, and �1 and �2 are their
phases. By taking the mean-field approximation, we are ac-
tually confined to the so-called Josephson regime as elabo-
rated in detail in Ref. �18�. This regime is defined as 1 /N
�V /��N, N=N1+N2 being the total atom number, and is
characterized by small quantum fluctuations both in the rela-
tive phase 

�2−�1 ��
�1� and in the populations N1,2
��N1,2�	N�. This property then justifies the mean-field ap-
proximation. As shown in Ref. �19�, the mean-field predic-
tions �self-trapping, etc.� are well recovered in a full quan-
tum dynamics on a short time scale, and their breakdown
occurs only at a long time scale, which increases exponen-
tially with the total atom number. We can have a glimpse of
the dynamics of the system from Eq. �5�. The last terms in
Eqs. �5a� and �5b� reflect the fact that the BJJ is effectively
tilted with an amplitude proportional to the photon number,
which is a dynamical variable depending on the atom distri-
bution of the BJJ itself, as can be seen in Eq. �5c�. Conse-
quently, we expect the BJJ dynamics to be modified, to a
certain extent, by this condensate-field interplay.

It is clear from Eq. �5c� that the relaxation time scale of
the cavity mode is of the order of 1 /�, which is much shorter
than the plasma oscillation period of a bare Bose Josephson
junction �20�, which, roughly speaking, is of the order of
1 /�. In fact, the typical values of � of high-finesse optical
cavities are of the order of 2�
106 Hz, while the experi-
mentally observed � is of the order of �2�
10�– �2�


102� Hz �10�. This implies that the cavity field follows the
motion of the condensates adiabatically �21�; thus, from Eq.
�5c� we solve

�a� 
 	�t� =
��t�e−i�pt

i� + ��p − �c − U0�J1N1 + J2N2��
�6�

and the photon number is

�a†a� 
 �	�t��2 =
���t��2

�2 + �� − �U0�N1 − N2�/2�2 , �7�

where �
�p−�c− �J1+J2�NU0 /2 and �
J1−J2 is the cou-
pling difference between the two atomic modes to the cavity
mode. We then see that with other parameters fixed, the pho-
ton number depends only on the atom population difference
between the two traps. Moreover, the motion of the cavity
mode couples to that of the condensates only in the case that
the two traps are placed asymmetrically with respect to the
cavity mode such that � is nonzero. Considering that the
cavity-field intensity varies rapidly along the cavity axis
�with period � /2�0.5 �m�, while rather smoothly in the
transverse plane �with 1 /e2 mode waist w�10–25 �m�, and
that the extension of the condensates and the separation be-
tween them are in between, it may be wise to create the
coupling difference � by a transverse rather than a longitu-
dinal position difference between the two condensates. In the
experiment of Colombe et al. �3�, the transverse position of
the cigar-shaped condensate, which is aligned parallel to the
cavity axis, can be adjusted in the full range of the cavity-
mode waist. On this basis, the condensate may be split along
its long axis by using of the radio-frequency-induced adia-
batic potential �8,9�, which is also compatible with an atom
chip, into two parts offset in the transverse direction. For a
mode waist w=10 �m, a separation d=1 �m is hopeful to
create a coupling difference �=0.12 if the two condensates
are located near the inflection point xc=w /2 of the cavity-
field intensity.

By introducing the dimensionless parameter z= �N1
−N2� /N, which describes the population of the atoms be-
tween the two traps, we rewrite the photon number �7� as

�	�z,t��2 =
A�t�2

�z − B�2 + C2 , �8�

where the three dimensionless parameters are defined as
A�t�=��t� / ��U0N /2�, B=� / ��U0N /2�, and C=� / ��U0N /2�.
We may understand A�t�, B, and C as the reduced pumping
strength, reduced detuning, and reduced loss rate, respec-
tively. Equation �8� implies that the photon number, as a
function of z, is a Lorentzian centered at zc=B and with
width 2C. Since −1�z�1, to maximize the influence of the
condensates on the cavity field, it is desirable to have B
within the same interval and C�1. Under these conditions,
the atomic motion is able to shift the cavity in or out of
resonance. Apart from the factor �, the latter condition means
that the light shift per photon times the number of atoms
exceeds the resonance linewidth of the cavity, which has
been realized with both a ring cavity �12� and a Fabry-Perot
cavity �13�.

In the following, we follow closely the line of Refs.
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�22,23�. Substituting Eq. �8� into Eqs. �5a� and �5b�, we find
that the two equations can be rewritten in terms of z and the
phase difference 
 as

dz

dt
= − 	1 − z2 sin � , �9a�

d�

dt
=

z
	1 − z2

cos � + rz +
�U0

2�
�	�z,t��2, �9b�

where the time has been rescaled in units of the Rabi oscil-
lation time 1 / �2��, 2�t→ t. The dimensionless parameter
r
NV / �2���0 measures the interaction strength against
the tunneling strength. We further define a Hamiltonian Hc
=Hc�z ,
 , t� in which z and 
 are two conjugate variables—
i.e., ż=−

�Hc

�
 , 
̇=
�Hc

�z . Such a Hamiltonian is

Hc�z,�,t� = − 	1 − z2 cos � +
1

2
rz2 +

�U0

2�
F�z,t� , �10�

with

F�z,t� =
A2�t�

C
arctan� z − B

C
� . �11�

The first two terms in Eq. �10� are the Hamiltonian of a bare
Bose Josephson junction as first derived in Refs. �22,23�.
They describe the energy cost due to the phase twisting be-
tween the two condensates and the atom-atom repulsion, re-
spectively. The last term may be termed as a cavity-field-
induced tilt, as can be seen from its derivation. It reflects that
the two traps, which are originally symmetric, are now sub-
jected to an offset determined by the atom populations. In its
nature, this term is similar to the potential an atom feels
when passing a cavity adiabatically �24�, with the variable z
playing the role of the center of mass of the atom. The
Hamiltonian can be made explicitly time dependent if the
pump strength varies in time. This may offer us a tool to
coherently manipulate the motion of a Bose Josephson junc-
tion �25�. However, in this work, we concentrate on the case
that the pump strength is a constant, ��t�
�, so that the
system is autonomous and the Hamiltonian is conserved in
time.

As a one degree-of-freedom Hamiltonian system and with
the Hamiltonian itself being a first integral, the system is
integrable and there is no chaos. The trajectory of the system
in the phase space �plane� follows the manifold �line� of
constant energy. Thus, qualitatively speaking, the dynamics
of the system is to a great extent determined by the structure
of its phase portrait, or more specifically, the number of sta-
tionary points, their characters �minimum, maximum, or
saddle�, and their locations. Before proceeding forward, we
have some remarks on the structure of the phase space of the
system and its implications. Superficially, the Hamiltonian
Hc is defined on the rectangular domain −1�z�1, 0�

�2�. However, physically 
 is periodic in 2�, and for z
= �1, 
 is not well defined, so we should identify �z ,0� with
�z ,2�� and collapse the lines �z= �1,
� to two points
�mathematically, this is justified by the fact that Hc�z ,0�
=Hc�z ,2�� and Hc�1,
�=C1, Hc�−1,
�=C2, with C1, C2 be-

ing two constants�. Therefore, the domain of the Hamiltonian
or the phase space of the system is homeomorphous to a
sphere. Euler’s theorem for a smooth function on a sphere
states that the number of minima, m0, the number of saddles,
m1, and that of maxima, m2, satisfy the relation m0−m1
+m2=2 �26�. This relation can be checked in Figs. 1 and 2
below.

In the following, we explore the dynamics of a Bose Jo-
sephson junction uncoupled or coupled to a cavity mode in
the perspective of phase portrait. This approach has the ad-
vantage that it captures the whole information of the BJJ
dynamics into one �27�. As a first step, we work out the
stationary points of the system, which are determined by the
equations

�Hc

�z =0,
�Hc

�
 =0. The second equation implies that

=0 or 
=�. Substituting these two possible values of 

into the first one, we have two equations of z, respectively,

f1�z� = rz +
z

	1 − z2
+

Ã

�z − B�2 + C2 = 0, �12a�

f2�z� = rz −
z

	1 − z2
+

Ã

�z − B�2 + C2 = 0, �12b�

where Ã=�U0A2 / �2��. The character �minimum, saddle, or
maximum� of the possible stationary points are determined
by the corresponding Hessian matrices.

As a benchmark, we first consider the uncoupled case. If
r�1, there are a minimum �z ,
�= �0,0� and a maximum
�z ,
�= �0,��. If r�1, the point �z ,
�= �0,0� remains a
minimum, while �z ,
�= �0,�� turns now into a saddle point,
and there are two maxima at �z ,
�= ��	r2−1 /r ,��. The
transition of the point �z ,
�= �0,�� from a maximum to a
saddle and the split �bifurcation� of this old maximum into
two new maxima at r=1 mark the onset of running-phase
and �-phase self-trapping states �14,23�. Note that the afore-
mentioned Euler’s theorem carries over from r�1 to r�1.

For the coupled case, the roots of Eqs. �12a� and �12b�
have to be solved numerically. It is natural to expect that the
last term will not only shift the positions of the stationary
points, but may also alter the total number of them. Thus the
phase portrait of a cavity-field-coupled BJJ may be quantita-
tively or even qualitatively different from that of the un-
coupled case. A particular example is given in Fig. 1. As
shown in Figs. 1�c� and 1�d�, in the specific set of param-
eters, both functions f1�z� and f2�z� have two new roots when
the BJJ couples to the single-cavity mode. The two new roots
of f1�z� give rise to a new minimum and a new saddle point
along the line 
=0, while those of f2�z� correspond to a new
maximum and a new saddle point along the line 
=�, as
clearly visible in the contour map of Hc in Fig. 1�b�. Com-
paring Fig. 1�b� with Fig. 1�a�, we see that the cavity-mode-
coupled BJJ has more complex and diverse behaviors than its
uncoupled counterpart. To be specific, the coupled BJJ has
now three types of zero-phase modes and three types of
�-phase modes, while the uncoupled BJJ possesses just one
type of zero-phase mode and two types of �-phase modes.
We attribute the appearance of new stationary points, and
hence new motional modes of the BJJ, to the nonlinearity of
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the cavity-field-induced tilt. To appreciate this point, let us
consider the tilt due to the zero-point energy difference of the
two traps or height difference in the gravitational field. That
will contribute a term linear in z to the Hamiltonian Hc

�22,23� and, in turn, a constant to the functions f1,2. As a
constant just shifts the graph of a function up or down as a
whole, it is ready to convince oneself that no new roots will
arise.
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FIG. 1. �Color online� Energy contours of a Bose Josephson junction �a� uncoupled and �b� coupled to a single-cavity mode. �c� and �d�
Gradient of the energy along the line 
=0 and 
=�, respectively. Zeros of f1�z� with positive �negative� derivatives correspond to minima
�saddle points� of Hc, while zeros of f2�z� with positive �negative� derivatives correspond to saddle points �maxima�. The parameters are

NV / �2��
r=3, Ã=0.02, B=−0.65, and C=0.07 �28�.
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FIG. 2. �Color online� �a� A slice of the phase diagram of the Bose Josephson junction. Different regimes are differentiated by their colors

and are labeled with the numbers of zeros �z1 ,z2� of the functions f1 and f2. The fixed parameters are r=3 and Ã=0.02. The asterisk
corresponds to the set of parameters in Fig. 1, while the cross and plus signs correspond to �B ,C�= �−0.8,0.05� and �B ,C�= �−0.65,0.1�,
respectively. �b� and �c� Energy contours of the Bose Josephson junction with the parameters indicated by the cross and plus signs in �a�,
respectively.
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It is natural to expect that there are many other qualita-
tively different possibilities than the one presented in Fig.
1�b�, since there are at least four free parameters in Hc. To
get a general picture of this point, we present something like
a phase diagram of the BJJ in Fig. 2�a�. We classify the
regimes according to the numbers of zeros �z1 ,z2� of the two
functions f1,2. In different regimes, the numbers of stationary
points differ, and that will result in qualitatively different
behaviors of the BJJ. The phase diagram strongly indicates
that the BJJ dynamics can be very diverse. The �1,3� regime
occurs also for a bare BJJ, as in Fig. 1�a�, while the other
regimes are unique to the cavity-mode-dressed BJJ. Note that
these regimes are in accord with our estimation that for the
condensate-field interplay to manifest itself, it is desirable to
have �B��1 and C�1. Figure 1�b� �indicated by the aster-
isk� falls in the �3,5� regime, and two representative cases
�indicated by the cross and plus signs, respectively� in the
�3,3� and �1,5� regimes are given in Figs. 2�b� and 2�c�.

We note that the cavity mode plays a dual role here. On
the one hand, it plays with the condensates interactively and
modifies their dynamics effectively; on the other hand, it also
carries with it information on the population of the atoms
between the two traps as it leaks out of the cavity. In Figs.
3�a� and 3�b�, we plot the time evolution of the population
imbalance and the number of intra cavity photons �which is
proportional to the cavity output�, with the latter calculated
from the former by using Eq. �8�. Initially, the phase 
�0�
=0 and z�0�=−0.75 or −0.8, respectively. Despite the mini-
mal difference between the two initial states, the subsequent
dynamics is quite different. The outputs of the cavity differ
not only in their periods, but also in their detailed temporal
structures. The trajectories of the BJJ, as can be read off from
Fig. 1�b�, are shown in Fig. 3�c�. The influence of the cavity
field on the BJJ dynamics can be seen by comparing Fig.
3�c� with Fig. 3�d�. It is worth noting that this influence may
occur at an extremely low intra cavity photon number
�13,28�. If the parameters can be determined independently,
we may infer the population imbalance evolution from the
outputs of the cavity. This may serve as a different approach,
which is nondestructive, than the usual absorption image
method, to track the tunneling dynamics of two weakly

linked Bose-Einstein condensates. Of course, because the
atom-field interaction involves only the atom numbers �see
Eq. �4� or Eqs. �6� and �7��, no information on the relative
phase of the two condensates is contained in the cavity out-
puts. To fully characterize the dynamics of a BJJ, techniques
such as the release-and-interfere technique �9–11� are still
needed.

So far, our discussion has been facilitated by the two-
mode approximation for atomic motion. We assumed two
rigid atomic modes defined by the double-well potential.
However, the interaction with the cavity mode provides a
time-varying optical lattice potential for the atoms, and that
may disturb the atomic modes chosen a priori. We then need
to check the validity of the two-mode approximation for con-
sistency. For a cigar-shaped condensate with a length much
larger than the cavity-mode wavelength �, the long-range
coherence of the condensate and the uncertainty relation im-
ply that the atomic axial momentum distribution is localized
around p=0�k with a width much smaller than �k �k
=2� /�� �29�. The intra cavity optical lattice potential
couples the p=0�k atomic mode to the p= �2�k modes.
The coupling strength is approximately �	�2U0 /2, and the
energy gap between the two manifolds is about 4 times the
recoil energy of the atoms. Here the former is on the order of
2�
1 kHz �28�, while the latter is about 4Er=2�

100 kHz �for 23Na�. Thus the intracavity optical lattice can
be considered as a weak perturbation and the contamination
of higher-momentum modes in the condensate wave function
is negligible. Therefore, it is safe to take the two-mode ap-
proximation under some circumstances. Of course, the two-
mode approximation is just technical; the interplay between
the condensate and the cavity field does not depend on it.
Even if in the future we have to go beyond the two-mode
approximation, we believe the interplay is still there.

Another possible detrimental effect the cavity may intro-
duce is to heat up the condensate, because of the temporal
fluctuations of the intracavity photon number and hence the
fluctuations of the optical lattice �30�. That may give rise to
atom loss and may damp the Josephson oscillation, and it
deserves further study.

In conclusion, we have derived an effective Hamiltonian

Ω

α
Ω

(δ

φ/π φ/π

FIG. 3. �Color online� Motion of the Bose Josephson junction. �a� Atom population imbalance z and �b� intra cavity photon number �	�2
�in units of 2� / ��U0�� versus the reduced time 2�t. The initial conditions are (
�0� ,z�0�)= �0,−0.75� �black solid lines� and (
�0� ,z�0�)
= �0,−0.8� �red dashed lines�. �c� and �d� Trajectories of the Bose Josephson junction �c� coupled or �d� uncoupled to the cavity mode, with
the two different initial conditions above. The same parameters as in Fig. 1.
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for a Bose Josephson junction dispersively coupled to a
single-cavity mode under the mean-field approximation. The
dynamics of the Bose Josephson junction was studied by
means of phase portraits, and we found that it can be sub-
stantially different from that of a bare Bose Josephson junc-
tion, due to the strong condensate-field interplay. Moreover,
the dynamics of the cavity-mode-coupled Bose Josephson
junction is very diverse. By engineering the parameters, a
large variety of possibilities are accessible, as shown in Fig.
2. Although in this work, as a starting point, we have re-
stricted ourselves to the time-independent case, it may be
interesting to go into the time-dependent case. By using an
external feedback depending on the outputs of the cavity

�31�, in situ observation and manipulation of the state of a
Bose Josephson junction may be possible. Furthermore, gen-
eralization of the present scenario to a Josephson junction
array �32� may be worth consideration. That will allow us to
study the cavity-mediated long-range interactions �33� be-
tween far-separated condensates.
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