
Nonlinear dynamics of a cigar-shaped Bose-Einstein condensate in an optical cavity

J. M. Zhang, F. C. Cui, D. L. Zhou, and W. M. Liu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China

�Received 3 December 2008; published 3 March 2009�

We investigate the nonlinear dynamics of a combined system which is composed of a cigar-shaped Bose-
Einstein condensate and an optical cavity with the two sides coupled dispersively. This system is characterized
by the cavity-induced nonlinearity; after integrating out the fast degree of freedom of the cavity mode, the
potential felt by the condensate depends on the condensate itself. Adopting a discrete-mode approximation for
the condensate, we map out the steady configurations of the system. It is found that due to the nonlinearity of
the system, the nonlinear levels of the system may fold up in some parameter regimes. That will lead to the
breakdown of adiabatic evolution of the system. Analysis of the dynamical stability of the steady states
indicates that the same level structure also results in optical bistability.
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I. INTRODUCTION

Recently, a lot of investigations have been devoted to the
combination of ultracold atom physics and cavity quantum
electrodynamics. Experimentally, the efforts culminate in the
successful coupling of a Bose-Einstein condensate �BEC�,
that is, a single matter-wave field mode, to a single cavity
mode in a high finesse optical cavity �1,2�. Though of a very
short history, this type of combined system has demonstrated
many interesting phenomena, such as vacuum Rabi splitting
�1,2�, �N scaling of the atom-photon coupling �1,2�, optical
bistability �3,4�, cavity-enhanced super-radiance of a BEC
�5�, and most surprisingly, a map between the atom
ensemble-cavity system and the canonical optomechanical
system is found �6,7�. Besides playing an active role in the
dynamics, the cavity can also be utilized to characterize the
properties of the matter-wave field. It has been experimen-
tally implemented to study the statistics of an atom laser by
detecting single atoms falling through a cavity �8�. Based on
similar principles, proposals to probe the atomic number sta-
tistics in optical lattices so as to differentiate different quan-
tum phases are brought up �9,10�.

One of the most remarkable characteristics of the atom
ensemble-cavity system is its intrinsic nonlinearity. If we are
only interested in the mechanical motion of the atoms and
thus restrict to the large detuning limit, the atom-photon in-
teraction is of a dispersive nature. The atom-photon interac-
tion provides a potential �an optical lattice� to the atoms, and
meanwhile shifts the cavity mode frequency. By shifting the
cavity mode frequency, the atom ensemble can influence or
even determine the potential acting on itself. This entails a
nonlinearity substantially different than the usual atom-atom
interactions. It is this nonlinearity that lies at the heart of
previous experimental and theoretical works �3,6,7,11–14�,
in particular, the dispersive optical bistability �3,11�.

Along this line, we consider the nonlinear dynamics of a
cigar-shaped Bose-Einstein condensate in an optical cavity in
this work. Experimentally, this has been achieved �though
not a cigar-shaped BEC� and investigated by Brennecke et
al. �7�, with the main finding that in the weak atom-atom
interaction and weak excitation �or nondepletion� limit, the

condensate-cavity system maps onto the generic cavity opto-
mechanical system perfectly. In this work we approach the
same problem from the perspective of diffraction of matter
wave by an optical lattice. We will not restrict to the weak
excitation limit. We will develop a discrete-mode approxima-
tion �DMA� for the condensate with the idea that the dynam-
ics of the condensate confines to some discrete modes. By
comparing with the full description of Gross-Pitaevskii �GP�
equation, we find that the finite-mode approximation is quan-
titatively good in the case of weak atom-atom interaction.
The DMA also enables us to find out the steady states of the
system, analyze their stability, and elucidate the possibility of
breakdown of adiabaticity and optical bistability in this sys-
tem.

This paper is organized as follows. In Sec. II, the system
and the general formalism are described. In particular, the
discrete-mode approximation is introduced. Then in Sec.
III A, we compare the DMA with the full GP dynamics so as
to validate it. On this basis, in Sec. III B, we address the
problem of adiabatic evolution of the system, which is rel-
evant to optical bistability. Our results are summarized in
Sec. IV.

II. GENERAL FORMALISM

We assume that a cigar-shaped Bose-Einstein condensate
is located inside an optical cavity with its axial direction
parallel to that of the cavity. The internal transition frequency
of the two-level atoms is �a, while the relevant cavity mode
interacting with the atoms is of frequency �c. The cavity
mode is coherently driven by a pump laser with frequency
�p and a possibly time-dependent amplitude ��t�. The
atom-pump and cavity-pump detunings are denoted as
�a=�a−�p and �c=�c−�p, respectively. In the large detun-
ing limit and by transferring into the rotating frame at the
pump frequency, we get the Hamiltonian for the condensate-
cavity system ��=1 throughout this paper� �7�,

H =� dx�̂†�x��−
1

2m

d2

d2x
+ Vext�x� + U0â†â cos2�kx�

+
g1D

2
�̂†�x��̂�x���̂�x� + �câ

†â + ��t��â + â†� + H�.

�1�
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Here, �̂† and â† are the creation operators for the atoms
�with mass m� and the cavity photons, respectively. Vext�x�
= 1

2m�	
2x2 is the harmonic potential in the axial direction with

characteristic frequency �	 and g1D is the effective atom-
atom interaction strength in a transversely tight-confining
trap �15�. Besides the harmonic potential Vext �which may
also owe to atom-photon interaction, as in an optical trap�,
the atom-cavity photon interaction provides an additional po-
tential U0â†â cos2�kx� for the atoms. The difference is that
the former is static, while the latter, being proportional to the
intracavity photon number, may be dynamical and quantized
�16�. Here U0=−g0

2 /�a is the maximal light shift per photon
that an atom may experience �at an antinode�, with g0 being
the atom-photon coupling constant. Note that we assume that
the transverse radius of the condensate is much smaller than
the cavity mode waist, and therefore it is legitimate to ne-
glect the variation in g0 in the transverse direction. The cav-
ity mode function in the axial direction is cos�kx�, with the
wave vector k=2� /�. Finally, H� accounts for cavity photon
decay with a rate �.

In the mean-field approximation, we take �̂�x , t�

��x , t� and â
	, i.e., both the matter-wave field and the
electromagnetic field are described as classical fields. The
GP equation for the condensate is

i
���x,t�

�t
= �−

1

2m

d2

d2x
+ Vext�x� + U0�	�2cos2�kx�

+ g1D���x,t��2���x,t� , �2�

and the equation of motion for the cavity field is

�	

�t
= − i��c + U0� dx���x,t��2cos2�kx��	 − �	 + ��t� .

�3�

We can numerically integrate these coupled equations so as
to study the dynamics of the combined system. To this end,
technically, we had better convert the original equations into
their dimensionless form. The characteristic length scale and
energy scale of the system are 
=� /2� and �r=k2 /2m, i.e.,
the period of the optical lattice divided by � and the atomic
recoil energy, respectively. We thus rescale position and time
as x= x̃
 and t= t̃ /�r, respectively, and accordingly the con-

densate wave function ��x , t�=�N /
�̃�x̃ , t̃� so that the

scaled wave function is normalized to unity, �dx̃��̃�x̃ , t̃��2
=1. Here N is the total atom number. Equations �2� and �3�
then convert to

i
��̃�x̃, t̃�

� t̃
= �−

d2

d2x̃
+ �2x̃2 + Ũ0�	�2cos2 x̃

+ g��̃�x̃, t̃��2��̃�x̃, t̃� , �4�

�	

� t̃
= − i��̃c + NŨ0� dx̃��̃�x̃, t̃��2cos2 x̃�	 − �̃	 + �̃�t� .

�5�

Here we introduced the rescaled dimensionless quantities

�Ũ0 , �̃c , �̃ , �̃�= �U0 ,�c ,� ,�� /�r, the rescaled harmonic

frequency �=�m�	
2
2 /2�r, and the atom-atom interaction

strength g=Ng1D /�r
.
At this point, a further simplification is possible. Note that

experimentally the cavity damping is much faster than the
mechanical motion of the condensate. The former occurs at a
rate of �, while the latter, roughly speaking, is on the order
of �r �see the discrete-mode approximation below�. In the
experiment of Brennecke et al. �7�, �=2��1.3 MHz and �r
is around 2��3.75 kHz �87Rb� so the cavity decay is al-
most 3 orders of magnitude faster than the condensate mo-
tion. We thus can safely assume that the cavity field follows
the condensate adiabatically and solve the photon number as

nph = �	�t��2 =
�2�t�

�2 + ��c + NU0cos2 x̃��2 , �6�

where cos2 x̃� is defined as �dx̃��̃�x̃ , t̃��2cos2 x̃ and has the
meaning of the overlap between the cavity mode intensity
and the condensate density distribution. Obviously, it is
bounded from above and below, 0� cos2 x̃��1. Equation
�6� gives the dependence of the intracavity photon number,
i.e., the intracavity optical lattice depth on the condensate.
The cavity-pump detuning is shifted by the condensate to an
effective value �eff=�c+NU0cos2 x̃�.

Substituting Eq. �6� into Eq. �4�, we get a GP equation for
the condensate; the most prominent feature of which is that
the potential acting on the condensate depends in a highly
nonlocal and nonlinear way on the condensate itself. This is
to be compared with the nonlinear term in the usual GP
equation, the atom-atom interaction, which is nonlinear but
local. If this cavity-induced nonlinearity is to exhibit itself
apparently, the influence of the condensate on the cavity field
should be strong. To this end, it is desirable to have
�NU0 �with an appropriate �c�. Only under this condition
is the condensate able to shift the cavity into or out of reso-
nance with the pump �see Eq. �6�� so as to influence the
cavity field drastically. It is worth noting that this condition
has been fulfilled with both Fabry-Perot cavities �3,6,7� and
ring cavities �11�.

Although a brutal integration of Eq. �4� is possible and
that captures all the possible atomic modes simultaneously,
we would like to introduce the DMA. The advantage of
DMA is that it captures the physics and is technically simpler
than the full GP equation. To explain the basic idea, let us
consider the extremal case �=0 and g=0, i.e., a noninteract-
ing homogeneous condensate. The ground state of the con-
densate is the zero-momentum state �p=0�. The effect of the
intracavity optical lattice is to diffract this state into the state
��p=2k�+ �p=−2k�� /�2 �diffraction into the asymmetrical su-
perposition state is forbidden by the parity symmetry of the
potential�, which can then be further diffracted into
��p=4k�+ �p=−4k�� /�2 �or back into �p=0��, and so on. Thus
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the dynamics of the system actually confines to some dis-
crete atomic modes. This stimulates us to introduce the
DMA.

In the actual case, ��0 and g�0, and the ground state
�g�x� is not strictly the zero-momentum state. However,
usually the length of the condensate is much larger than the
period of the optical lattice; thus by the long-range coherence
of the condensate and the uncertainty relation, we infer that
the momentum distribution of the condensate is well local-
ized around the origin with a width much smaller than 2k.
Thus the picture for the noninteracting homogeneous BEC
carries over to the actual case as long as in the time scale we
are concerned with, the atomic diffraction process dominates
other effects caused by the finite trap potential and
atom-atom interaction. We can take into account the small
but finite momentum spread of the initial state by defining
the discrete modes as �0=�g�x�, �1=�2 cos�2kx��g�x�,
�2=�2 cos�4kx��g�x�, and generally for n�N,
�n=�2 cos�2nkx��g�x� �17�. In the momentum representa-
tion, �n is a coherent superposition of the two peaks local-
ized at �2nk, respectively. For the nth mode, we introduce
the creation �annihilation� operator ĉn

† �ĉn� with common bo-
son commutation relations. Note that these mode functions
are not strictly orthonormal, so this assignment of commuta-
tion relations is a bit problematic. However, as long as the
ground state �g�x� varies slowly on a length scale of � /2,
the error is negligible.

The DMA assumes that the condensate dynamics is con-
fined in the subspace spanned by ��n�. Numerically, we find
that it is enough to cutoff at �2. Higher modes play a minor
role due to the quadratically increasing eigenenergies. Sub-
stituting ��x�=�i=0

2 ĉi�i�x� into Eq. �1� and neglecting the
atom-atom interaction, we get the Hamiltonian in the DMA

H = 4�rĉ1
†ĉ1 + 16�rĉ2

†ĉ2 +
U0

4
a†a��2�ĉ0

†ĉ1 + ĉ1
†ĉ0� + c1

†ĉ2

+ c2
†ĉ1 + 2N� + �ca

†a + ��a + a†� + H�. �7�

In our calculations, we have used the equations
�dx�0

��− 1
2m

d2

d2x
+Vext��0��0, �dx�m

� �− 1
2m

d2

d2x
+Vext��n

��mn��0+4n2�r�, and �dx�m
� cos2�kx��n� 1

2�mn

+ 1
4��m−n�,1�1+ ��2−1��m+n,1�, and dropped the constant term

proportional to �0. These equations become exact in the non-
interacting homogenous case. In the DMA Hamiltonian, the
atom-photon interaction can be interpreted in two ways. For
the atoms, they are diffracted between adjacent modes with
coupling strengths proportional to the photon number. For
the photons, their frequency is renormalized proportional to
the interference of the atomic modes.

The atom-atom interaction we neglect contains terms such
as ĉ1

†ĉ1ĉ0
†ĉ0 �18�, which shift the energies of the excited

modes, and more importantly, it mixes the discrete modes we
retain and other modes we discard in a four-wave mixing
way. Therefore, the atom-atom interaction impairs the
discrete-mode approximation. However, since the energy
scale of the atom-atom interaction is on the order of the
chemical potential of the condensate �= �3g� /4�2/3 �in units
of �r in the Thomas-Fermi regime�, one can neglect it on a
time scale of 1 /�r if ��4—the free frequency of the first

excited mode in units of �r. In the experiment of Brennecke
et al., 4�r�2��15 kHz, while the chemical potential of
the condensate is about 2��2.4 kHz.

From Hamiltonian �7�, by taking the mean-field approxi-
mation ĉi
�NZi, a
	, and integrating out the cavity field,
we get the equation of motion for the condensate

i
d

dt̃
Z = H�nph�Z = �H1 + nphH2�Z , �8�

with Z= �Z0 ,Z1 ,Z2�T and

H1 = �0

4

16
�, H2 =

Ũ0

4 � 0 �2 0

�2 0 1

0 1 0
� . �9�

The photon number is

nph = �	�2 =
�̃2

�̃2 + ��̃c� + 4NZ†H2Z�2
, �10�

where �̃c�= �̃c+NŨ0 /2 is the rescaled effective cavity-pump
detuning with the condensate in its ground state
�Z= �1,0 ,0�T�. We would also like to define the general ef-

fective cavity-pump detuning �̃eff= �̃c�+4NZ†H2Z. Equation
�10� is just Eq. �6� in the discrete-mode approximation.

III. APPLICATION OF THE FORMALISM

In this section, we apply the formalism developed in Sec.
II to two different cases. The first case deals with a constant
pump, which acts on the BEC-cavity system abruptly. The
evolution of the BEC-cavity system is studied both with the
GP equation and the DMA. The second case involves the
scenario that the pump is turned on slowly and smoothly. We
aim to study the adiabatic evolution of this nonlinear system.

A. Constant pump: Validity of the discrete-mode
approximation

Assume that initially the BEC is in its ground state and
the cavity mode is in the vacuum state. Then at t=0 a beam
of laser with constant frequency and constant amplitude is
projected onto the cavity. In a time scale of 1 /�, the intrac-
avity field and hence the intracavity optical lattice build up,
which then diffracts the BEC into higher momentum states.
In the position representation, the condensate is deformed by
the optical lattice potential. The point is that as the conden-
sate deforms, its overlap with the cavity mode and hence the
effective cavity-pump detuning vary, which in turn leads to
the variation in the lattice potential. Though matter-wave dif-
fraction by an optical lattice has been extensively studied
both theoretically and experimentally since two decades ago
�19–23�, in all previous works the optical lattice is either
static or just a time-dependent parameter. In contrast, here
the lattice potential has to be treated as a dynamical variable.

We have simulated the dynamics of the BEC-cavity sys-
tem with both the GP equation and the discrete-mode ap-
proximation. The GP simulations are shown in Figs.
1�a�–1�c� with �=0.01 being fixed and g=100, 50, and 10,
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respectively. In each figure, we present the evolution of the
photon number nph and the normalized populations
Pn= ��n ���t���2 on different atomic modes. In one dimen-
sion, the Thomas-Fermi approximation is valid if g��2��
�24�. With this criterion, we find that the three cases are all
deep in the Thomas-Fermi regime. Thus, the atom-atom in-
teraction plays an important role in determining the ground
state of the condensate. In particular, the radius of the con-
densate is enlarged from �1 /��1/2 to RTF= �4g /3��1/3 �in
units of 
=� /2��. For all the three cases, we have RTF��;
therefore the basic condition for DMA is satisfied.

The simulation based on DMA is presented in Fig. 1�d�.
Note that in DMA, the atom-atom interaction and the initial
ground state are irrelevant. Thus, Fig. 1�d� is a common ap-
proximation to Figs. 1�a�–1�c�. By comparing Fig. 1�d� with
Figs. 1�a�–1�c�, we see that to a time scale as long as
�rt=15, the discrete-mode approximation agrees with the
full GP equation very well. Moreover, the agreement im-
proves as the atom-atom interaction decreases. The DMA
recovers the g=10 case �Fig. 1�c�� almost exactly. By exam-
ining the difference of Figs. 1�a�–1�c� with Fig. 1�d�, we
identify two consequences of the atom-atom interaction.
First, we see in Figs. 1�a� and 1�b� that as time goes on, the
total populations on the discrete modes we take decrease and
the time scale of this process increases with decreasing atom-
atom interaction. Therefore, it is reasonable to attribute this
phenomenon to the atom-atom interaction, which populates
the atoms outside the modes we take. Second, the atom-atom
interaction shifts up the frequencies of the excited atomic
modes and thus shortens the oscillation period of the system
�25�.

To illustrate the second point, we plot in Fig. 2 the evo-
lution of the effective detuning �eff in Figs. 1�a�–1�d�. The
oscillation of �eff is directly related to that of the photon
number. We see clearly that the periods in GP simulations are
a bit shorter than that in DMA, and the stronger the atom-
atom interaction, the more apparent this effect. Figure 2 also

helps us understand the double-peak structure of the photon
number line in Fig. 1. Each time �eff crosses zero, nph attains
its maximal value �̃2 / �̃2.

B. Slowly varying pump: Breakdown of adiabaticity
and optical bistability

In this section, we proceed to consider the scenario that
initially the BEC is in its ground state and the cavity mode is
in the vacuum state, and subsequently the pump is slowly
and smoothly turned on. In contrast to the situation above
where the system is exposed suddenly to a finite pump and
experience oscillations indefinitely, here we are concerned
with the adiabatic following of the self-sustained steady
states. By a self-sustained steady state, we mean that the two
sides are stationary and consistent with each other, the con-
densate is in the ground state determined by the optical lat-

FIG. 1. �Color online� Simulations of the BEC-cavity dynamics ��a�–�c�� with Gross-Pitaevskii equation and �d� with discrete-mode
approximation. In each panel, the black solid line is for the photon number, while the blue dashed line and red dotted line are for the
normalized populations on the atomic modes �0 and �1, respectively �populations on the second mode are exaggerated by a factor of 2,

whereas that on the third mode are too small and not shown�. The parameters are N=4.8�104, Ũ0=0.25, ��̃ , �̃c� , �̃�= �0.4,0.4,2.4��103,
�=0.01, and g=100, 50, and 10 in �a�, �b�, and �c�, respectively.

FIG. 2. �Color online� Evolution of the effective detuning �eff.
The dashed line, dashed dotted line, dotted line, and solid line cor-
respond to Figs. 1�a�–1�d�, respectively.
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tice �plus the harmonic trap�, and meanwhile the optical lat-
tice �its depth� is determined by the condensate
configuration, i.e., fulfilling Eq. �6� or Eq. �10�. Naively, it is
expected that as long as the pump is ramped up sufficiently
slow, the BEC-cavity system will follow the steady states all
the way. However, now we are dealing with a nonlinear sys-
tem and the nonlinearity may give rise to the breakdown of
adiabaticity �26–29�. That is what we are interested in.

For our purpose, the key issue is to map out all the pos-
sible steady states as the pump strength varies. Although this
is a bit difficult �time consuming numerically� in the GP
formalism, it can be done very conveniently with DMA. In
the framework of DMA, a steady state corresponds to a so-
lution of Eq. �8� such that

Zs�t̃� = Zse
−iE0t̃. �11�

Or equivalently,

H�nph�Zs = �H1 + nphH2�Zs = E0Zs, �12�

which defines a nonlinear eigenvalue problem because the
Hamiltonian H depends on the eigenstate Zs through nph. It is
impossible to invoke the concepts and tools in linear algebra
to solve this problem. Our strategy is to first take an arbitrary
trial photon number ntr, solve the ground state of the Hamil-
tonian H�ntr�, Ztr, and then substitute it into Eq. �10� to get an
output photon number nout. If nout=ntr, then the solution is
self-consistent and a steady state is obtained. Note that nout,
as a function of ntr, is continuous and moreover, it is bounded
both form above and below, 0�nout��̃2 / �̃2. Therefore, if
we scan ntr from 0 to �̃2 / �̃2 by the principle of continuity,
there must be at least one point where nout=ntr. This guaran-
tees the existence of steady-state solutions �clearly the same
strategy and arguments apply also in the GP formalism�. Fur-
thermore, because of the nonlinearity of the system, the pos-
sibility of more than one steady-state solution for a given set
of parameters is expected. As observed and argued in Refs.

�26–28�, the existence of more eigenvectors than the dimen-
sional of the Hilbert space is unique for nonlinear systems.

In Fig. 3�a�, we depict the output photon number nout as a
function of the trial photon number ntr as the pump strength
�̃ varies while other parameters are held constant. For each
curve, each of its intersections with the dotted line nout=ntr
corresponds to a steady state. We see that for �̃�960 and
�̃�1440, there is only one steady-state solution, while in an
intermediate range, there can be three �for example,
�̃=1200�. This fact is made more evident in Figs. 3�b� and
3�c�, where we plot the photon number at steady state nst and
the nonlinear eigenvalue E0 as a function of �̃ directly. In the
interval ��̃2 , �̃1�= �1016,1296�, each �̃ corresponds to three
steady states, and hence three nst’s and three E0’s. The folded
level structure in Fig. 3�c� is similar to the looped level struc-
ture in Refs. �26,28�.

With these figures as maps, we return to the scenario
again. As the pump is slowly ramped up from zero, the BEC-
cavity system follows the curve OHI in Fig. 3�b� adiabati-
cally. Things go on like this until the pump exceeds �̃1,
where the curve terminates. Interpreted in terms of Fig. 3�a�,
the system first evolves from A to B to C; then at some point
C coincides with D, and then they disappear all together.
Similar interpretation can be made in terms of Fig. 3�c�. As �̃
crosses �̃1, the system cannot jump discontinuously from I to
K. Therefore, beyond this critical value of the pump, there is
no way for the BEC-cavity system to evolve adiabatically
anymore, no matter how slow the external pump is varied.
We thus expect large amplitude oscillations to appear
abruptly as in Fig. 1. This is verified with simulations both
based on the GP equation and DMA, as shown in Fig. 4.
There we assume that the pump is ramped up and down with
a Gaussian profile. Both simulations reveal clearly a two-
stage feature of the history of the BEC-cavity system. Before
a critical moment t̃c
40 �corresponding to �̃c
 �̃1�, the
photon number varies smoothly and coincides with the pre-
diction of DMA perfectly. This indicates that the system

FIG. 3. �Color online� �a� The output photon number nout as a function of the trial photon number ntr. The intersection points �A–G� of

the curves with the diagonal dotted line correspond to steady states. The parameters are N=4.8�104, Ũ0=0.25, ��̃ , �̃c��= �0.4,1.2��103, and
from bottom to up �̃= �0.72,0.96,1.20,1.44,1.68��103, respectively. �b� Photon number at steady state nst and �c� nonlinear eigenvalue E0

as a function of the pump strength �̃. Parameters other than �̃ are the same as in �a�. The coordinates of I and J are
��̃1 ,nst1�= �1296,2.416� and ��̃2 ,nst2�= �1016,6.36�, respectively.
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evolves adiabatically along the line OHI. However, just
across this point, pronounced oscillations with large ampli-
tudes and small periods occur. Experimentally, this sharp
transition can be observed by detecting the transmitted light,
which is proportional to the intracavity photon number. Note
that here the breakdown of adiabaticity is related to the dis-
appearance of a nonlinear eigenstate. This is to be compared
with its counterpart in linear systems, which generally results
from level crossing. While the latter can be avoided, in prin-
ciple, the former cannot. In the viewpoint of state prepara-
tion, to prepare the system on the line KL, we cannot take
the route we take here in the parameter space.

The structure of the curve in Fig. 3�b� reminds us of op-
tical bistability �30�. This motivates us to study the dynami-
cal stability of the steady states. We would like to stress that
adiabaticity and stability are two different but closely related
issues. Only those steady states which are dynamically stable
can be adiabatically evolved �29�. Let Z�t̃�=Zs�t̃�+�Z�t̃�,
with �Z being an infinitesimal derivation from the solution
Zs. Substituting this into the differential Eq. �8� and making

use of the fact that i d

dt̃
Zs= �H1+H2nph�Zs , Z̄s��Zs, we get, to

the first order in �Z,

i
d

dt̃
�Zi = �H1

ij + H2
ijnph�Zs,Z̄s���Zj

+ H2
ijZsj�� �nph

�Zk
�

s

�Zk + � �nph

�Z̄k
�

s

�Z̄k� . �13�

Here the subscript s means taking value at �Zs , Z̄s�. Assuming

�Z�t̃� = e−iE0t̃�ue−i�t̃ − v�ei��t̃� �14�

and substituting this into Eq. �13�, we get

M�u

v
� = ��u

v
� , �15�

where

M = �A + B − E0 − B

B − A − B + E0
� . �16�

Here the 3�3 real matrices A and B are defined as

A = H1 + nph�Zs,Z̄s�H2,

Bij = �H2
ikZsk�� �nph

�Zj
�

s

, 0 � i, j,k � 2. �17�

The dynamical stability of the steady states is determined by
the eigenvalues of the matrix M. If all the eigenvalues are
real, the steady state is dynamically stable; otherwise, it is
dynamically unstable �31�.

In Fig. 5, we examine the stability of the steady states on
the curve OHIJKL by plotting the maximal imaginary part
Im=maxi�Im��i�� of the eigenvalues of M �as a real matrix,
its eigenvalues appear in conjugate pairs�. The curve is pa-
rametrized with the photon number nst. We see that for
nst�nst1�nst�nst2�, which corresponds to OHI �JKL�, the ei-
genvalues are all real, and thus steady states on these seg-
ments are stable. While for nst1�nst�nst2, which corre-
sponds to IJ, some eigenvalues are complex, and thus steady
states on this segment are unstable. This is consistent with
the usual observation that the negative sloped parts are al-
ways unstable, though the positive sloped parts are not nec-
essarily stable �30,32�. As noted previously, stability is a pre-
requisite of adiabaticity. Here, this implies that we can
propagate adiabatically the BEC-cavity system along the line
OHI �as we do above�, but it is not feasible to do that along
IJ.

The analysis of stability confirms the possibility of optical
bistability in the BEC-cavity system. In previous experi-
ments dealing with a cloud of thermal cold atom gas �3�,
optical bistability has been discussed and observed, but an

FIG. 4. �Color online� Evolution of the cavity photon number
nph as the pump is varied as �̃�t�= �̃maxexp�−��rt−50�2 /�2� with
the peak amplitude �̃max=1440 and the pulse width �=31.25, and
other parameters are the same as in Fig. 3. �a� Simulation with the
GP equation ��=0.01 and g=10 as in Fig. 1�c��; �b� simulation with
DMA—the dotted line dictates the photon number of steady states
drawn from Fig. 3�b�. Note the sharp edges around �rt=40 in both
panels.

FIG. 5. Maximal imaginary part Im=maxi�Im��i�� of the eigen-
values of M. The points on the curve OHIJKL in Fig. 3�b�, which is
parametrized with nst, are examined. The interval where Im is non-
zero is �nst1 ,nst2�.
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analysis of stability is lacking. If there are some dissipation
channels, it may be possible to switch between the upper and
lower stable branches and observe the typical hysteresis loop
of optical bistability in the BEC-cavity system. Here we can
only simulate the coherent behavior of the system, and thus
this phenomenon is beyond our means. However, the mecha-
nism underlying optical bistability still manifests itself in the
form of breakdown of adiabaticity.

IV. CONCLUSIONS

We have investigated the nonlinear dynamics of a BEC-
cavity system. This system is characterized by the nonlinear-
ity that the optical lattice acting on the condensate depends
on the condensate itself in a highly nonlinear and nonlocal
way. By borrowing ideas from atom optics, we develop the
discrete-mode approximation �DMA�. The philosophy of
DMA is that the dynamics of the condensate confines to a
series of discrete standing-wave modes. It is numerically
verified that in the limit of weak atom-atom interaction,
DMA agrees with the full GP equation dynamics perfectly.
We focus on the adiabatic evolution of the BEC-cavity sys-
tem, as the external parameter, the pumping strength slowly
varied. The DMA facilitates us to solve the nonlinear eigen-
states of the system and analyze their stability. Due to the
nonlinearity of the system, the nonlinear energy level can be
folded in some parameter regimes. This structure gives rise
to both the breakdown of adiabaticity and optical bistability
in this system. We conjecture that these two effects are
complementary to each other. If the dynamics of the system

is purely coherent, breakdown of adiabaticity will show up;
otherwise, if dissipations are strong, coherent oscillations
will damp out and the system will settle down to the steady
states on the other stable branch, i.e., optical bistability takes
the place in the end.

Note added. Recently, we became aware of the experi-
mental progress made by Ritter et al. �33�. Both coherent
dynamics and optical bistability have been confirmed in their
experiment. In particular, coherent oscillations of the con-
densate resulting from the nonadiabatic branch transition
�corresponding to our Fig. 4� are observed. However, the
transition between the two stable branches is sharp overall,
which indicates that dissipation effects are very efficient in
their experiment. Potential dissipation channels include atom
loss and interaction between the condensate and the normal
component, which may damp the coherent oscillations of the
condensate. Moreover, since the atom-induced cavity fre-
quency shift depends on the total atom number, atom loss
may also influence the dynamics of the system in another
way. All these effects deserve further studies.
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