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We present a family of exact vector-soliton solutions for the coupled nonlinear Schrödinger equations with
tunable interactions and harmonic potential, and then apply the model to investigate the dynamics of solitons
and collisions between two orthogonal solitons in the case with equal interaction parameters. Our results show
that the exact vector-soliton solutions can be obtained with arbitrary tunable interactions as long as a proper
harmonic potential is applied. The dynamics of solitons can be controlled by the Feshbach resonance and the
collisions are essentially elastic and do not depend on the initial conditions.
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I. INTRODUCTION

The soliton, as a fundamental excitation of the atomic
matter waves, has been studied intensively and attracted
more and more attention in Bose-Einstein condensates
�BECs� �1–9�. Experimental realization of BECs, in which
two �or more� internal states or different atoms can be popu-
lated, has stimulated great interests in vector solitons
�10–16�. Vector solitons in the form of “dark-dark” �17�,
“bright-bright” �18�, and “bright-dark” solitons �19� are stud-
ied. Comparing with the single-component BECs, the extra
internal degrees of freedom introduced by multiple compo-
nents give rise to more rich phenomena and complex dynam-
ics, such as soliton trains, soliton pairs, multidomain walls,
and multimode collective excitations �20–22�. Besides, a
new type of soliton, symbiotic solitons, has been found in
two-component BEC system �23,24�. Recently, experimental
observation of heteronuclear Feshbach molecules from 87Rb
and 85Rb gases and tunable miscibility in a dual-component
Bose-Einstein condensates has been realized in �25�. Theo-
retically, the growth of a dual species Bose-Einstein conden-
sate is simulated by using a Gross-Pitaevskii �GP� equation
with an additional grain term giving rise to the growth in
�26�.

The properties of the nonlinear excitation are determined
by the interaction between atoms, which is typically charac-
terized by the s-wave scattering length �SL�. A tunable inter-
action suggests very interesting studies of the many-body
behavior of condensate system. Recently experiments have
demonstrated that “tuning” of the effective SL, including a
possibility to change its sign, can be achieved by using the
so-called Feshbach resonance ��27� and references therein�
with a tunable time-dependent magnetic field B�t�. This ex-
citing technical progress offers a great opportunity for ma-
nipulation of atomic matter waves and nonlinear excitations
in multicomponent BECs.

As is well known, the nonlinear Schrödinger equation
without external potential supports solitonic solutions. How-
ever, the coupled GP equations, which are a combination of
the nonlinear Schrödinger equation and external potential
term, are nonintegrable. Much of the recent study about the
analytical solutions has focused on particular situations and

thus based on specific assumptions. For example, the relative
interaction strengths for inter- and intracomponent collisions
are presumed to be equal �28–30�. Motivated by our previous
study on single-component BECs, the aim of this paper is to
study vector solitons and their dynamics in two-component
BECs with tunable interaction parameters and harmonic trap-
ping potential. We extend our previous study on single-
component BECs to the two-component case and obtain the
integrability conditions for the exact vector-soliton solutions
�6�. We also investigate the dynamics of a single soliton and
collisions between two orthogonal solitons in the symmetric
vector-soliton case. Our results show that the dynamics of a
single soliton can be controlled by Feshbach resonance, and
the collisions between two orthogonal solitons are essentially
elastic and do not depend on the initial separation length,
velocities, and the amplitudes of the modulation.

II. MODEL

Two interacting dilute Bose condensates can be well de-
scribed by the zero-temperature mean-field theory, in which
the collisions between the condensate atoms and the thermal
cloud are neglected. Considering a two-component BECs
each of mass m trapped in a quasi-one-dimensional �1D�
harmonic potential, the evolution of this system is govern by
a pair of coupled dimensionless GP equations,

i
��1

�t
= �−

�2

�x2 + V1 + g11��1�2 + g12��2�2��1,

i
��2

�t
= �−

�2

�x2 + V2 + g22��2�2 + g21��1�2��2, �1�

where �i denotes the macroscopic wave functions of the ith
component, with the normalization conditions �−�

� ��1�2dx=1
and �−�

� ��2�2dx=N2 /N1. Here we do not allow for the com-
ponents to transform into each other and N1=N2, so the num-
ber of atoms is conserved for both components. The external
harmonic potential can be written as Vi=�i

2�t�x2

=�i
2�t�x2 /�i�

2 , where �i and �� are the angular frequencies
in the axial and radial directions. Time t and coordinate x are
the temporal and spatial coordinates measured in units 2 /��
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and ��=	� /m��, where �� is linear oscillator length in the
transverse direction. The interactions between atoms are de-
scribed by a self-interaction gii=4aiiNi /�� and the interac-
tion between different components g12=g21=4aijNi /��,
where aii are the scattering lengths of component i and a12 is
that between components 1 and 2. In the present paper, we
assume m1=m2, �1=�2=�, and define variables �1=g12

2

−g11g22, �2=g12−g11, and �3=g12−g22 for the facilitation of
expression.

III. VECTOR SOLITONS

Since we are interested in the exact vector-soliton solu-
tions, we first consider the integrability of Eq. �1�. The sim-
plest case is that all the interactions take exactly the same
form. Then we can directly extend our previous study on
single-component BECs to the two-component case and ob-
tain a similar integrability conditions for the existence of the
exact symmetric vector solitons �6�. However, in typical
BEC experiments, the strength of the interactions is always
unequal to each other; but fortunately, we can employ the
extend mapping deformation method, which dose not depend
on the integrability, to obtain the exact asymmetric vector-
soliton solutions and determine the regions where those so-
lutions are existing.

A. Symmetric vector solitons

When the interactions take equal values, Eq. �1� can be
simply written as

i
��i

�t
= 
−

�2

�x2 + �2�t�x2 + g�t����i�2 + ���3−i��2���i. �2�

In order to obtain the exact analytical solutions of Eq. �2�, we
need to get an integrability condition for these equations—
that is, if we allow the axial frequency of the harmonic po-
tential to become also time dependent, i.e., �=��t�, and re-
quire it to satisfy the following integrability relation with the
interaction parameter g�t�:

−
1

2g�t�
d2g�t�

dt2 +
1

g2�t�
�dg�t�

dt
�2

+ 2�2 = 0. �3�

Then by using the following transformation �31�:

�i =
1

	g�t���t�
�i�X,T�exp�i�f�t�x2� , �4�

where �i is an arbitrary function with spatial and temporal
variables X=x /��t� and Tt=�−2, which together with f�t�,
��t� is determined by

f t + 4f2 + �2 = 0, �t − 4f� = 0. �5�

With the above transformations, Eq. �2� can be reduced to
the standard coupled nonlinear Schrödinger �NLS� equations

i�iT = − �iXX + ����1�2 + ��2�2��i, �6�

where �= �1 corresponds to the cases of positive and nega-
tive scattering lengths. These coupled equations are nothing

but the well-known integrable model proposed by Manakov
�32� or the defocusing-defocusing NLS equations. Since the
exact solutions for these systems have been well studied, the
exact vector-soliton solutions for Eq. �2� can be easily ob-
tained by combining the well-known solutions for the Mana-
kov system or the defocusing-defocusing NLS equations
through Eq. �4�.

The virtue of the transformation is that the variable �i
satisfies the integrable Manakov system or the defocusing-
defocusing NLS equations while the varying of the scattering
length and external potential appear in the remains of Eq. �4�
and variables X and T. It is interesting to observe that the
amplitude and width of the bright-bright vector solitons vary
with function g�t� according to Eq. �4�, which offers us also
a possibility to change the soliton’s parameters in a control-
lable manner by choosing a proper external potential to sat-
isfy the integrability condition.

B. Asymmetric vector solitons

We now turn to Eq. �1� with a more general situation, with
unequal interaction parameters g11�t��g22�t��g12�t�. To
carry out the analysis we start from the constant amplitude
solutions of Eq. �1� without external potential,

�i�x,t� = Ai exp�i	it� ,

	i = gii�Ai�2 + gi,3−i�A3−i�2. �7�

The instability of this coupled constant amplitude solu-
tions with small perturbations is discussed in �23�. When a
harmonic trapping potential is added along the longitudinal
direction, the exact vector-soliton solutions only exist under
specific assumptions. Does the introduction of the external
potential and arbitrary interaction parameters make any
qualitative change in the behavior of the integrability condi-
tions? The answer is yes and we find that the integrability
conditions in this case have more constrains on the soliton’s
parameters. In the following, we take advantage of the ex-
tend mapping deformation method, which does not depend
on the integrability, to obtain the exact vector-soliton solu-
tions for the general equations �1�.

Expressing the order parameters in terms of their modulus
and phases, i.e., �i�x , t�=	ni exp�i
i�, and then separating
real and imaginary parts, we obtain a set of coupled nonlin-
ear equations for ni and 
i,

	nixx − 	ni
it − 	ni
ix
2 − g12n�3−i�	ni

− gii�	ni�3 − �2x2	ni = 0,

	nit + 	ni
ixx + 2	nix
ix = 0, �8�

where i=1,2. By setting 	ni=A0�t�+Ai�t�����, �= p1�t�x
+ p2�t�, and 
i=ki�t�+�i�t�x+i�t�x2 and using the auxiliary
equation ��2=c0+c2�2+c4�4, we derive a set of overdeter-
mined partial differential equations with respect to p1�t�,
p2�t�, ki�t�, �i�t�, i�t�, A0�t�, A1�t�, and A2�t�. Finally, solv-
ing these equations, we can obtain the following constrains
for the existence of the exact vector-soliton solutions:
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g11A1
2�t� + g12A2

2�t� = g22A2
2�t� + g12A1

2�t� ,

− �2p1�t�
�t2 p1�t� + 2� �p1�t�

�t
�2

+ 4p1
2�t��2 = 0,

p1
2�t� − g11p1�t� − g12

�2

�3
p1�t� = 0, �9�

where � is the trapping frequency. Equation �9� implies that
the exact vector-soliton solutions exist with many constrains.
For example, the first equation of Eq. �9� imposes a constrain
that the amplitudes of the vector solitons must satisfy
A1

2 /A2
2= �g12−g22� / �g12−g11�; in particular, the others impose

a relation between the scattering length and trapping poten-
tial which reads

g12 − g22

g12
2 − g11g22

=
a1 sin�2�t� − a2 cos�2�t�

2�
. �10�

In the case of all the interaction parameters gij �0, Eq. �1�
has bright-bright vector solitons

�1B = C1
	− a�t� sech���x,t��exp�iv1B�x,t�� ,

�2B = C2
	− �a�t� sech���x,t��exp�iv2B�x,t�� , �11�

where

viB = −
a��t�
4a�t�

x2 + C2a�t�x + �C1
2 − C2

2�� a�t�2dt + Ci+2,

��x,t� = C1a�t�x − 2C1C2� a�t�2dt + C5,

a�t� =
�1

�3
� 0, � =

�2

�3
� 0. �12�

When a�t��0 and ��t��0, Eq. �1� has dark-dark vector
solitons

�1D = D1
	a�t� tanh���x,t��exp�iv1D�x,t�� ,

�2D = D2
	�a�t� tanh���x,t��exp�iv2D�x,t�� , �13�

where ��x , t�, a�t�, and ��t� are the same as Eq. �12�, but the
phase functions are given by

viD = −
a��t�
4a�t�

x2 + D3a�t�x − �2D1
2 + D2

2�� a�t�2dt + Di+3.

�14�

In Eqs. �11� and �13�, the coefficients C1, C2, C3, C4, C5, D1,
D2, D3, D4, and D5 are arbitrary constants. Based on the
above results, we can conclude the following conditions for
the existence of the exact vector-soliton solutions:


1 � 0, 
2 � 0: bright-bright �BB� ,


1 � 0, 
2 � 0: dark-dark �DD� �15�

with 
1�−�3 /�1 and 
2��2 /�1. As long as Eqs. �9� and
�15� are satisfied, we can obtain the exact vector-soliton so-

lutions, either bright-bright or dark-dark, for an arbitrary pe-
riodic time dependence of the scattering length since we can
choose an appropriate � to satisfy the above equations. It is
relevant to mention that all interaction parameters gii and gij
can be functions of time t in our cases.

Now, we conclude the regions for the existence of these
vector solitons. In the case of bright-bright vector solitons,
we consider a simple case where one of the intracomponent
interaction parameters g11 is time dependent while others are
time independent. According to the integrability condition,
the bright-bright vector solitons can exist in two regions: �i�
g12�g11�0 �here we assume that 0�g22�g12� and �ii�
g11�g12�0 �here we assume that 0�g12�g22�. In real ex-
periments, we consider a two-component condensates with
N1=N2=5000, a12=−2 nm, a22=−1 nm, ��=2�
�100 Hz, and �i=2��2 Hz. Then the nonlinearities can
be taken as g12=−40, g22=−20, and −40�g11�0.

Table I shows the regions where the dark-dark vector soli-
tons can exist when the intercomponent interaction param-
eter gij is time dependent and intracomponent ones gii are
time independent. Case 1 has been extensively studied in
�25,33,34�. In cases 2 and 3, it is interesting to find that dark
soliton can be formed in a condensate with self-attractive
atom-atom interaction. The common sense is that the dark
solitons only exist in a condensate with self-repulsive atom-
atom interaction; however, in the two-component BECs, the
repulsive interaction coming from the second component or
the intercomponent interaction induces an effective repulsive
interaction in the self-attractive one. This leads to the forma-
tion of dark solitons in the component with self-attractive
interaction. It is clear that the vector solitons in case 2 are
different from the Manakov solitons, where vector solitons
are formed by all the nonlinear coefficients cooperation. In
our case, the mutual repulsive interaction between the two
components solely supports the existence of such dark-dark
vector solitons. At last, we would like to point out that the
formation of this type of vector solitons has a threshold value
in g12, which indicates that the intercomponent repulsive in-
teraction must be strong to induce an effective repulsive in-
teraction in the self-attractive ones.

Furthermore, when a linear gain term, which contributes
to the growth of each component during the simultaneous
evaporative cooling, is added to the coupled GP equations,
our methods will also allow us to obtain the exact vector-
soliton solutions, but with a more complicated integrability
condition. These solutions may help us to better understand
the nonlinear dynamics of the condensates and the dynamical

TABLE I. Table for the existence of dark-dark solitons vs inter-
component interaction g12. + �−� indicates the repulsive �attractive�
atom-atom interaction in single component. The single-component
interaction parameters g11 and g22 are assumed to be unvaried and
g11�g22.

Parameters g11 g22 g12

Case 1 + + g12�g11, −	g11g22�g12�g22

Case 2 − − g12�	g11g22

Case 3 + − g12�g11
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pattern formation during growth of a dual-component BECs,
which has been experimentally realized in �25� and theoreti-
cally investigated in �26�. This needs a further investigation
and is beyond the scope of the present paper.

IV. DYNAMICS AND COLLISIONS OF THE SYMMETRIC
VECTOR SOLITONS

One extension of application of the transformation used in
Sec. III A is to study the dynamics of a single soliton and the
collisions between two orthogonal solitons. In real experi-
ments, the s-wave scattering length can be changed with lin-
ear, exponential, and periodic time dependence of the mag-
netic field via Feshbach resonance. As mentioned above,
once a function of the scattering length is given, we can
choose a proper external potential according to Eq. �3� to
satisfy the integrability condition. In the following, we focus
on the most natural periodic time dependence of the scatter-
ing length.

A. Dynamics of a single soliton

To better understand the influence of Feshbach resonance
on soliton’s parameters, we study the dynamics of a single
solitons with Feshbach management. As discussed in
�35,36�, a periodic scattering length is obtained by means of
an ac magnetic field, which allows one to create a self-
confined two-dimensional �2D� BEC without the magnetic
trap. We suppose that the intercomponent interaction param-
eter g12 is modulated periodically as

ḡ12 = � g12�1 + m sin��t�� , �16�

where m and � are the amplitude and frequency of the
modulation. The symmetric vector solitons can be realized in
a two-component system constituting from different hyper-
fine spin states of the same atom, such as 87Rb with two
hyperfine spin states which can be chosen as �F=1,mf =−1�
and �F=2,mf =1�. In this case, the trapping potential has the
same shape for these two states, which is in accordance with
our previous assumption. We choose the atom number N1
=N2=104, and a11=a22=a12=−5.36�1+m sin��t�� nm. Ac-
cording to Eq. �3�, the axial frequency of the harmonic po-
tential should be

�1
2�t� = −

m�2��
2

4�1 + m sin��t��2 �sin��t� + m + m cos2��t�� .

�17�

We now investigate how the amplitude of the ac drive can
be used to control the parameters of the vector solitons.
When the amplitude is small, m=0.1, this leads to a small
periodically modulation of the scattering length and the trap-
ping frequency. As shown in Fig. 1, we observe that the
amplitude and width of the vector solitons vary periodically
with time. When the amplitude takes a bigger value, the vec-
tor solitons will have a larger oscillation in amplitudes and
widths. A natural extension are the cases where the magnetic
field varies exponentially and linearly with time; in these
cases, the amplitude and width of the vector solitons are also

proportional and inversely proportional to the scattering
length, respectively.

B. Collisions between solitons

Finally, we study the collision between solitons. Interac-
tions between solitons are fascinating since in many aspects
solitons interact like particles: they pass through one another
and accomplish elastic collision. As shown in Eq. �6�, the
nonlinearity appears solely through the invariant combina-
tion ���1�2+ ��2�2�. The isotopic invariance ensures that once
we obtain a soliton solution for one component, the other one
can be obtain in an obvious way,

��1�x,t�
�2�x,t� � = �cos���

sin��� ��exp�− i�t�
exp�− i�t� ���x� �18�

with 0���� /2. Furthermore, the general vector solitons
with unequal chemical potentials are also possible. We con-
sider a special case with equal chemical potential between

FIG. 2. �Color online� The interaction between two orthogonal
solitons when the scattering length varies periodically with time t.
The parameters are given as follows: x0=20, v=1, m=0.1, a11

=a22=a21=−�1+m cos��t�� nm, �=1, and the other parameters
are the same as in Fig. 1.
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0.16

0.18

0.2

0.22

t

A(t) w(t)

FIG. 1. The variation of amplitude A�t� and width W�t� of the
vector solitons when the scattering length varies periodically with
time t. The parameters are given as follows: ��0�=g�0�=1, �=1,
m=0.1, a11=a22=a21=−5.36�1+m cos��t�� nm, and the initial am-
plitude A�0� and width W�0� are taken equal to 1. The amplitude
and width are measured in units 4aN /��. Time t and coordinate x
are the temporal and spatial coordinates measured in units 2 /��

and ��=	� /m��.
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two orthogonal solitons which reads �=0 and �=� /2 and set
the initial velocities as ��, respectively. In this case, the
initial conditions at t=0 are given by

��1
�0��x�

�2
�0��x� � = ��1�x − x0/2�

�2�x + x0/2� � , �19�

where x0 is the initial separation. Figure 2 shows the inter-
action between two orthogonal solitons when the scattering
length varies periodically with time. Our results show that
the parameters of the two colliding solitons do not change
after collision, which remarkably indicates no energy ex-
change between the two solitons. Shown in Fig. 3 is the
collision scenario when the amplitude of the modulation has
a large value as m=0.5. It demonstrates that the intrinsic
oscillations and elastic collision do not depend on the ampli-
tude of the modulation. The only difference between the two
cases is that the parameters of the two solitons, such as am-
plitude, width, and velocity, have a larger oscillation in the
latter. Another interesting issue is whether the initial velocity
and separation will destroy the intrinsic elastic collision. Our
results show that the outcome does not depend on the initial
velocity and separation except for a large enough value of x0.

The elastic collisions between solitons originate from the
integrable Manakov system which is obtained with the con-
dition g���1�2+ ��2�2��1. These collision scenarios are simi-

lar to the cases in nonlinear optics where vector solitons
collide with each other elastically, except that their polariza-
tion may change after collision �if the vector solitons have
the same or orthogonal polarization, such change will not
occur�. While, if the condition g���1�2+ ��2�2��1 is not sat-
isfied, a more accurate coupled nonpolynomial Schrödinger
equations, which are nonintegrable, can be applied to inves-
tigate the inelastic collision between solitons. The various
inelastic collision scenarios in BEC system and fiber optics
were studied in �29,37�, which will help us to better under-
stand the physics behind the equations.

V. CONCLUSIONS

In summary, we have obtained the exact vector solitons in
the frame of the coupled GP mean-field theory. When the
interactions take equal values, we reduce the coupled GP
equations to the Manakov system or the defocusing-
defocusing NLS equations by another transformation and ob-
tain the exact vector-soliton solutions. Based on this model,
we investigate the dynamics of a single soliton and the col-
lisions between two orthogonal solitons. The results show
that the soliton’s parameters, such as amplitude and width,
can be controlled by the Feshbach resonance, and the colli-
sions are essentially elastic and do not depend on the initial
conditions. Moreover, we obtain the integrability conditions
for a general coupled GP equations with unequal interactions
and get the exact vector-soliton solutions. It shows that the
dark-dark solitons can be formed in two-component attrac-
tive BECs for a sufficiently repulsive intercomponent inter-
action, which induces an effective repulsive interaction be-
tween bosons of the same type. We hope that the results in
our paper may be helpful for the experimental realization of
such solitons in BECs and may help us understand the prop-
erties of the Bose condensate mixtures.
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