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We investigate the entanglement of assistance which quantifies capabilities of producing pure bipartite
entangled states from a pure tripartite state. The lower bound and upper bound of entanglement of assistance
are obtained. In the light of the upper bound, monogamy constraints are proved for arbitrary n-qubit states.
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I. INTRODUCTION

In quantum-information theory, entanglement is a vital re-
source for some practical applications such as quantum cryp-
tography, quantum teleportation, and quantum computation
�1,2�. During the last decade, this inspired a great deal of
effort for detecting and quantifying the entanglement �3–11�.
On the other hand, the creation and distribution of entangle-
ment are also of central interest in quantum-information pro-
cessing. More especially, the distribution of bipartite en-
tanglement is a key ingredient for performing certain
quantum-information processing tasks such as teleportation.

One of the methods, generating bipartite entanglement, is
the entanglement of assistance that is defined in Refs.
�12,13�. It quantifies the entanglement which could be cre-
ated by reducing a multipartite entangled state to an en-
tangled state with fewer parties �e.g., bipartite� via measure-
ments. Such producing of entanglement, also called “assisted
entanglement,” is a special case of the localizable entangle-
ment �14�, which is especially important for quantum com-
munication, where quantum repeaters are needed to establish
bipartite entanglement over a long length scale �15�. For a
pure 2 � 2 � n state, the analytical formula of entanglement
of assistance has been derived by Laustsen et al. �16�,
whereas the calculation of entanglement of assistance is not
easy for a general pure tripartite state �17�.

In this paper, we explore the entanglement of assistance
for a general pure tripartite state in terms of I concurrence
�18�. We obtain a lower bound of entanglement of assistance,
which is also the lower bound of a tripartite entanglement
measure, the entanglement of collaboration. This may help to
characterize the localizable entanglement. Furthermore, an
upper bound is also obtained. Deducing from the upper
bound of entanglement of assistance, we find a proper form
of entanglement monogamy inequality for arbitrary n-qubit
states, which is analogous to the monogamy constraints for
concurrence proposed by Coffman et al. �19� and proven by
Osborne and Verstraete �20� for the general case.

The paper is organized as follows. In Sec. II, we derive a
lower bound and upper bound of entanglement of assistance
for pure tripartite states. In Sec. III, monogamy constraints
are proved in terms of this upper bound. Finally in Sec. IV,
we conclude with a discussion of our results.

II. BOUND OF ENTANGLEMENT OF ASSISTANCE

We consider a pure �d1�d2�N� tripartite state shared by
three parties referred to as Alice, Bob, and Charlie, who per-

forms a measurement on his party to yield a known bipartite
entangled state shared by Alice and Bob. Charlie’s aim is to
maximize the entanglement of the state between Alice and
Bob. This maximum average entanglement that he can create
is called entanglement of assistance, which was originally
defined in terms of entropy of entanglement �12,13�. In
this paper, we define entanglement of assistance in terms
of the entanglement measure I concurrence Ea����ABC�
�Ea��AB��max�ipiC���i�AB�, which is maximized over all
possible pure-state decompositions of �AB=TrC����ABC	���
=�ipi��i�AB	�i�. By applying the method in Ref. �4�, we can
obtain the lower bound of entanglement of assistance for
pure tripartite states.

For any given pure-state decomposition of �AB, �AB
=�ipi��i�	�i�, we have

Ea����ABC� = max�
i

piC���i�AB�

= max�
i

pi
�
mn

�	�i
��Smn��i��2

� max
�
mn

��
i

pi�	�i
��Smn��i���2

, �1�

where Smn=Lm � Ln, Lm ,m=1, . . . ,d1�d1−1� /2, and Ln ,n
=1, . . . ,d2�d2−1� /2 are the generators of groups SO�d1� and
SO�d2�, respectively. The inequality holds according to the
Minkowski inequality ��i=1��kxi

k�p�1/p��k��i=1�xi
k�p�1/p , p

�1.
For any given decomposition �AB=�ipi��i�	�i�, we can

take the matrix notation �21� and rewrite the state as �AB
=�P�†, where P is a diagonal matrix with Pii= pi and � is
a unitary matrix whose columns are the vectors �i. Consider
the eigenvalue decomposition �AB=	M	†, where M is a
diagonal matrix whose diagonal elements are the eigenvalues
of �AB and the columns of the matrix 	 correspond to the
eigenvectors of �AB. Moreover, we can get the relation
�P1/2=	M1/2U, where U is a right-unitary matrix. Thus we
can rewrite inequality �1� as

Ea��AB� � max
�
mn

��
i

��TP1/2SmnP1/2��ii�2

= max
�
mn

��
i

�UTM1/2	TSmn	M1/2U�ii�2

= max
�
mn

��
i

�UTAmnU�ii�2
, �2�

where Amn=M1/2	TSmn	M1/2.
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In terms of the Cauchy-Schwarz inequality
��ixi

2�1/2��iyi
2�1/2��ixiyi, the inequality

Ea��AB� � max
�
mn

��
i

�UTAmnU�ii�2
�
mn

�zmn�2

� max�
i

�UT��
mn

zmnAmn�U�ii �3�

is implied for any zmn=ymn exp�i
mn�, with ymn�0 and
�mnymn

2 =1. Since �mnzmnAmn is a symmetric matrix, we can
always find a unitary matrix U such that
�i�UT��mnzmnAmn�U�ii= �mnzmnAmn as shown in Ref. �22�,
where  ·  stands for the trace norm defined by G
=Tr�GG†�1/2.

For an arbitrary unitary matrix V, we have

�
i
�VT��

mn

zmnAmn�V�
ii

= �
i
�VT�U−1�TUT��

mn

zmnAmn�UU−1V�
ii

= �
i

�VT�U−1�TDiag��1,�2¯�U−1V�ii � �
ij

��U−1V�ij�2�i

= �
i

�i,

where �i�z�’s, dependent on the choice of the y and 
, are the
singular values of the matrix T=�mnzmnAmn, i.e., the square
roots of the eigenvalues of the positive Hermitian matrix
TT†. Therefore, the maximum of Eq. �3� is given by
maxz�C��i�i�z��=maxz�C�mnzmnAmn. Hence, we arrive at
the lower bound of entanglement of assistance for a pure
tripartite state as following:

Ea��AB� � max
z�C ��

mn

zmnAmn� . �4�

Moreover, it has been shown by Gour and Spekkens �23�
that, for tripartite states, entanglement of collaboration
�24,25� is greater than or equal to entanglement of assistance
in terms of a given entanglement measure. Therefore, our
lower bound is also the one for entanglement of collabora-
tion. Our bound may help to characterize localizable en-
tanglement. For a pure 2�2�N state, this lower bound is
consistent with the result of Ref. �16�.

Generally, for each set �ymn ,
mn�, we can obtain a lower
bound of Ea��AB�, which can be tightened by numerical op-
timization. In fact, there is always one matrix Amn that gives
the main contribution to the right-hand side of Eq. �4�.
Hence, the singular values of this matrix provide a simple
algebraic approximation for the lower bound of Ea��AB�. As
an example, we consider a state ���ABC=
a�000�+
b�111�
+
c�222� with a+b+c=1. Without loss of generality, we as-
sume that a�b�c�0. Then, we get a purely algebraic es-
timate for the lower bound of Ea��AB�, 2
ab, without nu-
merical optimization. In the case a=b=c=1 /3, a lower
bound of Ea��AB�, 4
3 /9, is obtained through an optimiza-
tion.

We can also obtain the upper bound of entanglement of
assistance. From the definition of entanglement of assistance,
we have

�Ea��AB��2 = �max�
i

piC���i�AB��2

� max�
i

�
piC���i�AB��2�
i

�
pi�2

= max�
i

2pi�1 − Tr��i
A�2� � 2�1 − Tr �A

2� ,

where �i
A=TrB��i�AB	�i�. The first inequality holds according

to the Cauchy-Schwarz inequality �26�; the last one, which
has also been proved in Ref. �27�, holds due to the convex
property of Tr �A

2 . Define the upper bound as the tangle of
assistance �a��AB��max�ipi�C���i�AB��2.

In addition to the tangle of assistance being the upper
bound of entanglement of assistance, the tangle of assistance
for n-qubit states also exhibits some proper forms of mo-
nogamy inequality. In fact, not only does the concurrence
satisfy the monogamy constraints for n-qubit state �19,20�,
but also the entanglement of assistance exhibit monogamy
constraints for n-qubit pure states �28–30�. We will show
below the monogamy inequalities in the light of the tangle of
assistance �31�.

III. MONOGAMY INEQUALITY

Consider a pure tripartite state �	�ABC. The tangle of as-
sistance is defined by �a��	�ABC�=max�px,��x���xpx�C���x���2

=max�px,��x���xpxS2�TrB���x�	�x���, where the linear entropy
S2���=2�1−Tr���2� and the maximum runs over all pure-
state decompositions �px , ��x�� of �AB=TrC��	�ABC		��
=�xpx��x�	�x�. In the case of pure state �AB, the tangle of
assistance is the square of concurrence of this state.

Theorem 1. For an arbitrary n-qubit state, the tangle of
assistance satisfies

�a��A1A2
� + �a��A1A3

� + ¯ + �a��A1An
� � �a��A1�A2A3¯An�� ,

�5�

where �a��A1�A2A3¯An�� denotes the tangle of assistance in the
bipartite partition A1 �A2A3¯An.

Proof. First of all, we prove the following inequality:

�a��AB� + �a��AC� � �a��A�BC�� , �6�

for arbitrary tripartite states �ABC in 2�2�2n−2 system.
We first prove Eq. �6� for pure states. In this case, due to

the local-unitary invariance of �a��AC�, we can rotate the
basis of subsystem C into the local Schmidt basis �Vk�, k
=1, . . . ,4, given by the eigenvectors of �C=TrAB��ABC�. In
this way, we can regard the 2n−2-dimensional qudit C as an
effective four-dimensional qudit. Therefore, we simply need
to prove Eq. �6� for a 2�2�4 pure state ABC.

For pure states of a tripartite system ABC of two qubits A
and B and a four-level system C, we have �a��A�BC��
−�a��AC�=S2��A�−max�pj,��j��

� jpjS2�TrC��� j�	� j���, where
� jpj�� j�	� j�=�AC. It can be shown that any pure-state de-
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composition of �AC can be realized by positive-operator-
valued measures �POVMs� �Mx� performed by Bob, the rank
of which is 1 �for more details see �17,32��. Therefore, we
get the following expression:

�a��AC� = max
�Mx�

�
x

pxS2��x� , �7�

where the maximum runs over all rank-1 POVMs on Bob’s
system, px=Tr�IA � Mx�AB� is the probability of outcome x,
and �x=TrB�IA � Mx�AB� / px is the posterior state in Alice’s
subsystem. For convenience, we take the definition I��AB�
ªS2��A�−max

�Mx�

�
x

pxS2��x�. By comparing I��AB� to Eq. �6� for

pure tripartite states, we see that it is sufficient to prove the
inequality I��AB���a��AB� for all two-qubit states �AB.

We first derive a computable formula for I��AB�. Any bi-
partite quantum state �AB may be written as

�AB =  � IB��VB�B�	VB�B�� , �8�

where VB�B is the symmetric two-qubit purification of the
reduced density operator �B on an auxiliary qubit system B�
and  is a qubit channel from B� to A. Deducing from
Eq. �7�, we have �x=TrB�IA � Mx�AB� / px=TrB��IA � Mx�
�� � IB��VB�B�	VB�B�� / px=�TrB�IA � Mx�VB�B�	VB�B��� / px.
Since the rank of Mx is 1, �TrB�IA � Mx�VB�B�	VB�B��� is a
pure state. Moreover, all pure-state decompositions of �B�
=TrB��VB�B�	VB�B��=�B can be realized by the rank-1 POVM
measurements �Mx� operating on subsystem B of
�VB�B�	VB�B�. Hence, I��AB� satisfies

I��AB� = S2���B�� − max
�px,��x��

�
x

pxS2����x��� , �9�

where the maximum runs over all pure-state decompositions
�px , ��x�� of �B such that �xpx��x�	�x�=�B.

The action of a qubit channel  on a single-qubit state
�= �I+r ·�� /2, where � is the vector of Pauli operators, may
be written as ���= �I+ �Lr+ l� ·�� /2, where L is a 3�3 real
matrix and l is a three-dimensional vector. In this Pauli basis,
the possible pure-state decompositions of �B are represented
by all possible sets of probabilities �pj� and unit vectors �r j�
such that � jpjr j =rB, where �I+rB ·�� /2=�B. In terms of the
Block representation of one-qubit states, the linear entropy
S2 is given by S2��I+r ·�� /2�=1− �r�2. In this way, we get
the following equation: S2��I+r ·�� /2�=1− �Lr+ l�T�Lr
+ l�.

Substituting r j =rB+x j, one can easily check that Eq. �9�
reduces to the following one whose value is determined by
�pj ,x j� subject to the conditions � jpjx j =0 and �rB+x j�=1:

I��AB� = S2���B�� − max
�pj,xj�

�
j

pjS2�� I + �rB + x j� · �

2
�� = 1

− �LrB + l�T�LrB + l� − max
�pj,xj�

�
j

pj

��1 − �L�rB + x j� + l�T�L�rB + x j� + l��

= min
�pj,xj�

�
j

pj�x j
TLTLx j� . �10�

Without loss of generality, we assume that LTL is diagonal

with diagonal elements �x��y ��z. The constrains �rB+x j�
=1 lead to the identities �x j

x�2=1− �rB�2−2rB
Tx j − �x j

y�2− �x j
z�2.

Substituting this into Eq. �10�, we get I��AB�=�x�1− �rB�2�
+min�pj,xj�

� jpj���y −�x��x j
y�2+ ��z−�x��x j

z�2�. This expression
is obviously minimized by choosing x j

z=x j
y =0 for all j. Then,

from the condition �rB+x j�=1, x j
x have two solutions. The

ensemble of two states corresponding to such two solutions
can reach the minimum �x�1− �rB�2�.

As S2��B�= �1− �rB�2�, we obtain the following computable
expression: I��AB�=�minS2��B�. Note that a local filtering
operation of the form �AB� = �I � B��AB�I � B†� / Tr��I
� B†B��AB� leaves L invariant and transforms S2��B��
=det�B�2 / Tr��I � B†B��AB�2S2��B� �33�.

If the local filtering operator B is invertible, we can get
the conclusion that there does not exist a pure-state decom-
position �qj , �� j�� of �AB� such that �a��AB� ��det�B�2 / Tr��I
� B†B��AB��a��AB� by the contradiction. For the case that the
operator B is not invertible, such pure-state decomposition
also does not exist. Furthermore, there exists exactly an op-
timal pure-state decomposition �pi , ��i�� of the state �AB
for �a��AB� such that �ipiC��I � B����i�	�i�I � B†� / Tr��I
� B†B��AB��2=det�B�2 / Tr��I � B†B��AB�2�a��AB�. There-
fore, the tangle of assistance �a��AB� �=det�B�2 /
Tr��I � B†B��AB�2�a��AB�. Since I��AB� �=det�B�2 / Tr��I
� B†B��AB�2�minS2��B�, it transforms exactly in the same
way as the tangle of assistance �a��AB� � does. As there always
exists a filtering operation for which �B� � I, we can assume,
without loss of generality, that S2��B�=1.

So let us consider �AB with �B=TrA��AB�= 1
2 I. In terms of

Pauli operators, we can rewrite the pure state as follows: �I
� B��VB�B�	VB�B��I � B†� / Tr��I � B†B��VB�B�	VB�B�� = 1 / 4 �I
+�imiI � �i+�ini�i � I+�ijOij�i � � j�, where �1, �2, and �3
are �x, �y, and �z, respectively. Then we get the conclusion,
from its purity and unity reduced density, that mi=ni=0 for
all i and the 3�3 real matrix O is orthogonal. Thus we have
�AB= 1

4 � IB�I+�ijOij�i � � j�= 1
4 �I+�ili�i � I+�ij�LO�ij�i

� � j�. As unitary operator U1 satisfies the equation U1�iU1
†

=� jPij� j, where P is a real orthogonal 3�3 matrix, we can
always find local-unitary operators, in terms of the theorem
of singular value decomposition, so that U1 � U2�ABU1

†

� U2
†= 1

4 �I+�i�lP�i�i � I+�ij�QLOP�ij�i � � j� = 1
4 �I+�ili��i

� I +�i�L��ii�i � �i�, where Q and P are real orthogonal ma-
trices and L� is a diagonal matrix with its diagonal elements
the singular values of L. Because of the local-unitary invari-
ance of �a��AB� and I��AB�, without loss of generality, we
assume that �AB= 1

4 �I+�iti�i � I+�i�R�ii�i � �i�, where R is a
diagonal matrix with its diagonal elements the singular val-
ues of L. Due to the positivity of

�AB =
1

4�
1 + R3 + t3 0 t1 − it2 R1 − R2

0 1 − R3 + t3 R1 + R2 t1 − it2

t1 + it2 R1 + R2 1 − R3 − t3 0

R1 − R2 t1 + it2 0 1 + R3 − t3

� ,

the inequality 1− t1
2− t2

2− t3
2�R3

2 must hold. Therefore we ob-
tain
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�a��AB� � �Ca��AB��2 � Tr��y � �y�AB
� �y � �y�AB�

=
1

16
�4 + 4�R1

2 + R2
2 + R3

2� − 4�t1
2 + t2

2 + t3
2��

�
1

4
�R1

2 + R2
2 + 2R3

2� � �min�LTL� .

These inequalities imply that I��AB���a��AB� for all two-
qubit states �AB, which then proves Eq. �6� for pure states.

Now we extend Eq. �6� to mixed state case. Consider
the maximizing pure-state decomposition �px , ��x��
for �a��A�BC��. By applying the inequality Eq. �6� and
taking into account the concavity of �a, we have
�a��A�BC�� = �xpx�a��A�BC�

x � � �xpx��a��AB
x � + �a��AC

x ��� �a
��AB�+�a��AC�, where �A�BC�

x = ��x�	�x�.
Let C=C1C2 be a 2�2n−3 system and apply Eq. �6�, then

we get �a��A�BC����a��AB�+�a��AC���a��AB�+�a��AC1
�

+�a��AC2
�. Successively applying Eq. �6� to partitions of C,

we obtain the inequality Eq. �5� by induction. �
In fact, Eq. �5� turns out to be an equality for product

states under partition A �BC1Cn. For the generalized n-qubit
GHZ states ���= ��0¯0�+ �1¯1�� /
2, Eq. �5� is a strictly
inequality.

IV. DISCUSSION

In summary, as an important quantity in quantum compu-
tation, the entanglement of assistance has been investigated
in terms of I concurrence for pure tripartite states. We have
obtained a lower bound of entanglement of assistance, which
is also the lower bound of the tripartite entanglement mea-
sure, the entanglement of collaboration. Instead of great dif-
ficulty involved in computing the entanglement of collabora-
tion, the lower bound Eq. �4� can be calculated in a
numerical optimization to make a good estimate of entangle-
ment of collaboration. Furthermore, this bound can also be
reduced to a simple algebraic bound to provide a good ap-
proximation of entanglement of assistance without a numeri-
cal optimization. In addition to the lower bound, an upper
bound is also obtained. In the light of the upper bound of
entanglement of assistance, we find a proper form of en-
tanglement monogamy inequality for arbitrary n-qubit states.
We hope that this concise form of monogamy inequality may
help to apprehend the nature of distributed entanglement.
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