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Unified minimum effective model of magnetic properties of iron-based superconductors
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Iron-based superconductors exhibit many different antiferromagnetically ordered ground states. We construct
a minimum effective magnetic model that displays all magnetic phases. This model also captures three
incommensurate magnetic phases as well, two of which have been observed experimentally. The model
characterizes the nature of phase transitions between the different magnetic phases and explains a variety of
magnetic properties, such as spin-wave spectra and electronic nematism. Most importantly, by unifying the
understanding of magnetism, we cast insight on the key ingredients of magnetic interactions that are critical to
the occurrence of superconductivity.

DOI: 10.1103/PhysRevB.85.144403 PACS number(s): 74.25.Ha, 74.20.De, 74.70.Xa, 75.50.Ee

I. INTRODUCTION

Since 2008, many families of iron-based high-temperature
(high-Tc) superconductors have been discovered.1–4 Unlike all
parent compounds of cuprates that share a common antiferro-
magnetically (AF) ordered ground state, those of iron-based
superconductors exhibit many different AF ordered ground
states, including collinear-AF (CAF) state in ferropnictides5

as shown in Fig. 1(a), bicollinear-AF (BCAF) state in 11-
ferrochalcogenide FeTe6,7 as shown in Fig. 1(b), and block-
AF vacancy (BAFv) order state in 122-ferrochalcogenide
K0.8Fe1.6Se2

8 as shown in Fig. 1(d). While the universal pres-
ence of antiferromagnetism suggests that superconductivity is
strongly interrelated with magnetism, the diversity of the AF
ordered states obscures their interplay.

Theoretically, because of the diversity of the magnetic
orders and the fact that the magnetic properties exhibit the
dichotomic behavior of both local moment and itinerant
electron aspects, it has been extremely difficult to find a
consistent magnetic model to describe the magnetism of iron-
based superconductors. Magnetism can be explained by either
local moment models where local spins interact with each
other or itinerant electron models where magnetic order arises
from nested Fermi surfaces. The former is appropriate for
insulating materials such as the parent compounds of cuprates,
while the latter is suitable for metallic systems, such as
chromium. However, the iron-based superconductors include
rather diversified materials whose parent compounds can have
either metallic or insulating ground states. More specifically,
the parent compounds of ferropnictides are bad metals,1 while
the discovered 122-ferrochalcogenide, K0.8Fe1.6Se2 is a block
AF insulator.8,9 Moreover, it was shown that even in the
insulating parent compounds, itinerant electron aspects have
to be included10 and in the metallic parent compounds, local
moment aspects are manifested.11 Such a dichotomy of the
magnetic properties10–16 leads to many diversified viewpoints
on what is the proper model to describe the magnetism10,17–28.

Here, we attempt to formulate a minimum effective spin
model that unites the description of the magnetic properties
of the parent compounds of the different classes of iron-based
superconductors. The model has to preserve the tetragonal
lattice symmetry so that it is capable of providing us the

detailed relations between different magnetically ordered
states as consequences of spontaneous symmetry breaking at
low temperature. The model should be able to capture all
the magnetically ordered ground states observed in iron-based
superconductors, to explain their correct spin-wave spectra
and the anisotropy of magnetic exchange interactions, and
to predict possible states including incommensurate magnetic
states. In the following, we will show by including the nearest-
neighbor (NN) biquadratic interaction term as proposed in
Ref. 20, but not the next-nearest-neighbor (NNN) biquadratic
interaction term, and the next-next-nearest-neighbor (NNNN)
AF Heisenberg interactions J3

29,30 in J1 − J2 − Jc model,18

we can fulfill above requirements.

II. MODEL AND PHASE DIAGRAM

We start with the following general Hamiltonian:

H =
∑
ij,n

[
Jij

�Sn
i · �Sn

j − Kij

(�Sn
i · �S,n

j

)2] + Jc

∑
i,n

�Sn
i · �Sn+1

i ,

(1)

where n labels layer, Jij describes inplane magnetic exchange
interactions, Jc is interplane magnetic coupling along c axis
(between iron layers), and Kij are inplane non-Heisenberg
biquadratic couplings. In the minimum model proposed here,
we choose nonvanishing Jij = J1, J2, or J3 if and only if i,j are
two NN, NNN, or NNNN sites, respectively, and Kij = K if
and only if i,j are two NN sites. The interactions are sketched
in Fig. 1(a) by the dashed lines. We note that the model is a
natural unification of models in Refs. 18,20,29 and 30 proposed
for ferropnictides and ferrochalcogenides before. However, all
previous models only describe particular family and fail to
provide a comprehensive understanding of different magnetic
states.

The classical phase diagram of the model can be obtained
exactly (see Appendix A). In Fig. 2, we draw a typical phase
diagram in the J3/|J1|-J2/|J1| plane by taking KS2/|J1| =
0.2. The phase diagram is almost symmetric between J1 > 0
(the right part of Fig. 2) and J1 < 0 (the left part of Fig. 2).
For J1 > 0, there are three regions for commensurate phases
labeled as AFM, CAF, BCAF in Fig. 2, which exactly describe
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FIG. 1. (Color online) (a) The collinear-antiferromagnetic
state (CAF) in ironpnictides, for example, CaFe2As2. (b) The
bicollinear-antiferromagnetic state (BCAF) in FeTe. (c) the block-
antiferromagnetic state (BAF) without iron vacancies. (d) The block-
antiferromagnetic state with

√
5 × √

5 vacancy ordering (BAFv) in
K0.8Fe1.6Se2. The exchange couplings are indicated in (a).

the static magnetic states of the parent compounds of curpates,
ferropnictides, and 11-ferrochalcogenide FeTe, respectively.
Intriguingly, a block-AF (BAF) commensurate state as shown
in Fig. 1(c) is degenerate with the BCAF state. The difference
between them is that the BCAF state breaks the C4 rotation
symmetry of the tetragonal lattice while the BAF does not. The
spin configuration of the BAF state is the same as the BAFv

state except that there is no vacancy. Therefore the model
really captures all commensurate magnetic states in iron-based
superconductors and also suggests a BAF state. There are
also two incommensurate phases sandwiched between the
commensurate phases with ordered incommensurate wave
vectors (q,π ) or (π,q) (labeled as IC1) and (q,q) (labeled
as IC3), respectively. The static (q,q) phase was observed in

1 0J
1 0J 2 1/J J

3

1

J

J

(0, 0) ( , )( ,0) ( ,0)

( , )q( ,0)q

( , )q q
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FIG. 2. (Color online) The classical phase diagram of the J1 −
J2 − J3 − K model at K = 0.2J1. There are total four commensurate
and three incommensurate magnetic phases. Their labels and the
ordered wave vectors are specified in the figure.

Fe1+yT e when y > 0.1.6 Although no static (q,π ) phase has
been detected, the (q,π ) incommensurate spin fluctuations
have been observed in FeTe1−xSex ,31,32 electron-overdoped
Ba(Fe1−xCox)2As2,33 and hole-doped KFe2As2.34 If J1 is
switched to negative, namely ferromagnetic (FM), the AFM
phase becomes a FM phase and (q,π ) becomes (q,0) or (0,q)
(labeled as IC2).

More specifically, we can determine phase transition bound-
ary. We scale other parameters with J1 as K̃ = KS2/J1, J̃2 =
J2/J1, and J̃3 = J3/J1 for simplicity. The phase boundary
between the BCAF and the (q,π ) incommensurate phase
is determined by 4(J̃3 − 1

4 )2 − (J̃2 − 1
2 )2 = (K̃ − 1

2 )2 that
defines the upper branch of a hyperbolic curve centered at
(J̃2,J̃3) = (1/2,1/4). The phase boundary between the AFM
and BCAF phases is determined by J̃3 = − 1

2 J̃2 + 1
2 and

that between BCAFM and CAFM phases is determined by
J̃3 = 1

2 J̃2. The incommensurate states appear only when K̃ <

0.5. We emphasize that finite positive K̃ > (1.5 − √
2) and

J̃3 > 0.25 are necessary conditions for the appearance of the
BCAF phase. The incommensurate wave vectors of the three
incommensurate phases can also be explicitly determined: (1)
(q,0) or (0,q) phase with q = arccos 2J̃2+1

2λ
, (2) (q,π ) or (π,q)

with q = arccos 1−2J̃2
2λ

, and (3) (q,q) with q = arccos 1
2(J̃2−λ)

,

where λ = K̃ − 2J̃3.

III. SPIN EXCITATIONS AND EFFECTIVE EXCHANGE
COUPLINGS

Now we discuss each phase and their associated experimen-
tal observations. First, the model captures four commensurate
phases: AFM, CAF, BAF, and BCAF. In these commensurate
phases, the biquadratic interaction term effectively creates
the anisotropy of the NN magnetic exchange interactions
by taking a mean-field decoupling.20 Depending on the spin
alignment of two NN sites, J1a = J1 + 2KS2 if it is AF
and J1b = J1 − 2KS2 if it is FM. Therefore, effectively, our
model becomes a J1a − J1b − J2 − J3 − Jc model in these
phases. Experimentally, the spin-wave excitations in the parent
compounds, CaFe2As2

11 and BaFe2As2,16 were fitted well to
the J1a − J1b − J2 − Jc model.

The BAF and BCAF are degenerate in the classical
limit. Even if we consider our model as a quantum spin
model, the energy difference between two phases due to
quantum fluctuations are extremely small (See Appendix D).
Therefore the degeneracy between them can be broken when
the couplings to other degrees of freedom are included. For
FeTe, the development of the BCAF order is strongly tied to
a monoclinic lattice distortion.6,7 This monoclinic distortion
breaks the same rotational symmetry of the BCAF. Therefore
it lowers the energy of the BCAF state. This explains why
the magnetic order transition in FeTe is a strong first-order
type.6,7 If the transition is a pure magnetic origin, the phase
transition would be a weak first-order or a second-order type.
In the presence of

√
5 × √

5 vacancy ordering, the magnetic
frustration is strongly reduced. As the vacancy ordering does
not break rotational symmetry, the BAF order becomes the
BAFv phase.35 In both FeTe and K0.8Fe1.6Se2, the spin-wave
excitations can be fitted well to a J1a − J1b − J2 − J3 − Jc

model.10,12
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TABLE I. The values of the magnetic exchange interactions in
J1 − J2 − J3 − K model obtained from the experimental results of
different parent compounds of iron-based superconductors.10–12,16

Material Phases (Qx,Qy) J1S J2S J3S KS2 JcS

CaFe2As2 CAF (0,1)π 22 19 ... 14 5
BaFe2As2 CAF (0,1)π 25 14 ... 17 2
FeTe BCAF ( 1

2 , 1
2 )π −34 18.5 9.5 9 ...

K0.8Fe1.6Se2 BAFv ( 3
5 , 1

5 )π −10 16 9 12 1.4

From the experimental results of spin-wave
excitations,10–12,16 we now can extract the magnetic exchange
parameters of our model for different parent compounds.
The results are summarized in Table I. We note that FeTe is
near the boundary of the BCAF phase and incommensurate
phases. The values listed in Table I are within the error bar of
experimental values in Ref. 12. This table displays a central
message that all iron-based superconductors share a similar
AF NNN exchange interaction J2. However, the sign of J1 is
different between ferropnictides and ferrochalcogenides and
a significant AF J3 exists in ferrochalcogenides but not in
ferropnictides.

Second, we discuss incommensurate phases. The model
also predicts three incommensurate phases. Two of them, the
(π,q) and (q,q) phase have been observed. The (0,q) phase is
rather similar to (π,q) phase. Spin excitations in these three
phases generally include two branches, which can be identified
as an acoustic mode and an optical mode. Since there are
neutron scattering experiments on the (π,q) phase,34 we take
it as an example. We plot their typical dispersions of two modes
in Figs. 3(a) and 3(b). If we calculate the imaginary part of
dynamic spin susceptibility, the quality measured by neutron
scattering, an hour-glass-like behavior along this direction
becomes prominent at low energy as shown in Fig. 3(c). This
behavior has been recently reported in FeSe0.4Te0.6

36 and a

clear explanation was not given before. The dispersion along
(δ,π ) as varying δ has much larger energy dispersion than
the one along (π,δ) and reaches maximum at (π,π ), which
is consistent with experimental results observed in Ref. 31
as shown in Fig. 3(c). More detailed spin-wave properties
are included in the appendixes (B, C, and D). These distinct
features can be used to determine the effective magnetic
exchange couplings even if the incommensurate order is not
static.

IV. ELECTRONIC NEMATISM

Finally, we discuss electronic nematism induced by mag-
netic frustrations in the model. The CAF states break the C4

rotational symmetry of the tetragonal lattice. The rotational
symmetry breaking can be separately described by an Ising
or nematic order as shown in Refs. 18 and 19. Without the
specific biquadratic term K , when the parameters of the
J1 − J2 − Jc model are fixed in the CAF phase region, a
weak biquadratic term can be developed through the “order
by disorder” mechanism18,19,37 by quantum fluctuations and
the nematic phase transition can take place at a transition
temperature TN higher than the CAF transition temperature
Tc if the interlayer coupling Jc is much weaker than J2.18

This physics can be analytically described in the continuum
limit. As shown in Ref. 18, the effective field theory of the
J1 − J2 − Jc model in the continuum limit is given by

HCAF =
∫

d2r
∑
n,α

[
1

2
J2

∣∣∇ �φα
n (r)

∣∣2 − Jc
�φα
n (r) · �φα

n+1(r)

]

− g
∑

n

[ �φ1
n(r) · �φ2

n(r)
]2 + J1

∑
n

�φ1
n(r)∂x∂y

�φ2
n(r),

(2)

where we use the same notions as Ref. 18: �φα=1,2
n specify the

two AF Neel orders in the two sublattices of the tetragonal

FIG. 3. (Color online) (a) and (b) Spin waves in the (π,q) incommensurate phases along (1,δ)π and (δ,1)π , respectively. (c) Hour-glass-like
spin waves along (1/2 + δ,1/2 − δ)T in the (π,q) phase. The parameters are taken as S = 1, (J1,J2/|J1|,J3/|J1|,KS2/|J1|) = (1,0.6,0.06,0.02).
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lattice shown in Fig. 1(a) (for simplicity, we take S = 1 in this
section). The nematic order is defined to be σ = 2g〈 �φ1

n(r) ·
�φ2
n(r)〉. Without the biquadratic term K , g ∼ 0.13J 2

1 /J2.
With this term, we just need to modify g ∼ 0.13J 2

1 /J2 + K .
Therefore the calculations and the results in Ref. 18 are still
valid. The large g value due to the specific biquadratic K

term simply enhances the nematic order and increases the
temperature range of spin nematic fluctuation above TN , which
has been observed experimentally.16 In the case of BCAF or
BAF states, the effective field theory model for J1 − J2 − J3

model has also been derived in Ref. 38. With the biquadratic
K term, similar to the CAF case, the effective field theory38

essentially remains valid.

V. DISCUSSION AND CONCLUSION

By describing the magnetism of the different parent
compounds of iron-based superconductors in a single effective
magnetic model, we can cast insight on the microscopic
origin of magnetism. First, from the magnetic exchange
coupling parameters of the effective model, it is very clear
that the magnetism is neither purely local nor purely itinerant,
rather it is a complicated mix of the two. The presence of
significant NNNN coupling J3 suggests the local exchange
mechanisms such as superexchange or double exchange are
not enough to account for all magnetic exchange interactions.
Moreover, the sign change of J1 between ferropnictides and
ferrochacogenides suggests that the NN exchange interactions
are sensitive to subtle difference in band structures. However,
the robustness of NNN J2 interactions indicates that the NNN
J2 coupling is most likely determined by local superexchange
mechanism. Second, the model reveals the significant differ-
ence between ferropnictides and ferrochacogenides: the sign
difference of J1 and the large AF J3 in ferrochcogenides.
These significant differences may suggest the importance of
the p orbitals of As or Te/Se on the influence of magnetism.
So far, most theoretical models are constructed based on the
d orbitals of irons with onsite interactions. Since the effect
of electron-electron correlations is believed to be weaker in
ferropnictides than in ferrochalcogenides, one would expect
the range of magnetic interactions should be shorter in
ferrochalcogenides than in ferropnictides, which contradicts
the existence of large J3 interactions in ferrochalcogenides
but not in ferropnictides. This contradictory can be resolved
if the significant parts of magnetic exchange interactions
are generated through the p orbitals of As or Se/Te. The
effective magnetic exchange interactions obtained from onsite
electron-electron interactions are not enough to account for
entire magnetic exchange couplings. This also explains why
magnetism is so sensitive to the distance of As or Se/Te
away from iron planes39 because the distance may strongly
affect the mixture of p orbitals in electronic structure. Third,
the model, as an effective low-energy model of magnetism,
also tells us the power and limitation of LDA calculations
performed for iron-based superconductors where the effect
of electron-electron correlation can not be ignored. Without
any doubt, the LDA calculations explain many magnetic
properties in iron-based superconductors. For ferropnictides,
the LDA results of J1a , J1b, and J2 values are in a good
agreement with experiments.22 However, LDA calculation

wrongly predicted the large anisotropy of J2 in the BCAF and
BAF states.27,28 This failure is not surprising since the LDA in
magnetically ordered state is simply a complicated mean-field
approach. Finally, it has been shown that the high-energy
magnetic excitations in electron-doped ferropnictides are very
similar to those of parent compounds.40 This proves that the
short-range magnetic correlations in superconducting states
are still dominated by the magnetic exchange interactions
determined in the corresponding parent compounds. The
doping destroys the long-range magnetic correlation but
not the short-range interactions. Especially, the J2 magnetic
exchange interactions should be expected to vary little against
doping. In FeTe1−xSex , the incommensurate spin excitations
are rather robust against the replacement of Te by Se.31,32 This
fact suggests that J3 is relatively stable against the replacement
in this family of materials as well. Therefore, if AF exchange
couplings are responsible for superconductivity, we expect
both J2 and J3 play a significant role in superconductivity of
ferrochacolgenides.

In summary, we construct a minimum effective magnetic
model that captures all the phases in iron-based superconduc-
tors. BAF magnetic states are also predicted. [Recently, the
BAF state in our model has been used to explain the broken
symmetry state observed in scanning tunneling microscopy
(STM) results for KFe2Se2).41
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APPENDIX A: EXACT CLASSICAL GROUND-STATE
PHASE DIAGRAM

Treating the above model classically, we can obtain the
exact ground state and its phase diagram. The inplane unit
cell of iron-based superconductors is determined by two basis
vectors ê1 = (1,1)/

√
2 and ê2 = (−1,1)/

√
2. We define two

relative spin-polarization angles φ1 and φ2 along the two basis
vectors. Defining K̃ = KS2/J1, J̃2 = J2/J1, J̃3 = J3/J1, λ =
K̃ − 2J̃3, φ1 = Qx − Qy , and φ2 = Qx + Qy , we can write
the classical energy of the model as

ẽc = ec

J1S2
= −4J̃3 − 2λ(cos2Qx + cos2Qy)

+ 4J̃2cosQxcosQy + 2(cosQx + cosQy), (A1)

which is symmetric when exchanging Qx and Qy . The ground-
state energies of the incommensurate phases are determined by
minimizing ẽc. We list the solutions as follows: (i) ẽc = 2 −
2K̃ + 1

2λ
(2J̃2 + 1)2 for (q,0) phase with q = arccos( 2J̃2+1

2λ
),

(ii) ẽc = −2 − 2K̃ + 1
2λ

(2J̃2 − 1)2 for (q,π ) phase with q =
arccos( 1−2J̃2

2λ
), and (iii) ẽc = −4J̃3 − 1

J̃2−λ
for (q,q) phase with

q = arccos[ −1
2(J̃2−λ)

].
The energies of the commensurate phases are (i) ẽc =

4 − 4K̃ + 4J̃2 + 4J̃3 for FM phase with (Qx,Qy) = (0,0),
(ii) ẽc = −4K̃ − 4J̃3 for BCAF phase with (Qx,Qy) =
(±π/2, ± π/2), (iii) ẽc = −4K̃ − 4J̃2 + 4J̃3 for CAF phase
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FIG. 4. (Color online) The three-dimensional J3/|J1|-J2/|J1|-
KS2/|J1| phase diagram with S = 1. The exchange coupling J2 is
fixed to be antiferromagnetic, namely, positive.

with (Qx,Qy) = (π,0), and (iv) ẽc = −4 − 4K̃ + 4J̃2 + 4J̃3

for Néel (AFM) phase with (Qx,Qy) = (π,π ).
By comparing the energies of different states, we can

determine the phase boundaries: (i) J̃2 = 0.5 between AFM
and CAF, (ii) J̃3 = − 1

2 J̃2 + 1
2 K̃ + 1

4 between AFM and
(q,q), (ii) J̃3 = − 1

2 J̃2 + 1
2 K̃ + 1

8K̃
between BCAF and (q,q),

(iv) J̃3 = 1
4 + 1

2

√
(K̃ − 1

2 )2 + (J̃2 − 1
2 )2 between (q,π ) and

BCAF, (v)J̃3 = 1
2 J̃2 + 1

2 K̃ − 1
4 between (q,π ) and CAF, (vi)

J̃3 = − 1
2 J̃2 + 1

2 K̃ + 1
4 between (q,π ) and AFM, and (vii)J̃3 =

1
2 J̃2 + 1

2 K̃ between (q,π ) and (q,q) phases.
While the biquadratic term vanishes, the phase diagram

composes of phases AFM, FM, CAF, (q,q)(IC3), (q,π )(IC1),
(q,0)(IC2), as shown in Fig. 4. The BCAF phase appears when
K̃ > 1.5 − √

2 and J̃3 � 1/4. The condition for observing
the (q,π ), (q,0), and (q,q) phases is given by K̃ � 1

2 and
they vanish from the phase diagram simultaneously at K̃ =
1/2. The phase boundaries between the commensurate phases

are independent on K̃ . Therefore the phase diagram does not
change when K̃ � 1/2.

We note that the phase diagram obtained above is the exact
phase diagram of the model in the classical limit. This can be
proved by a standard method for solving a classical model.
For any translation invariant Hamiltonian, one can rewrite the
Hamiltonian by the sum of local Hamiltonians defined in each
supercell as H = ∑

i Hi , where i is the index of supercell.
The size of the supercell depends on the range of couplings [in
our case, the longest range is J3, so it will be limited to 3 × 3
(total nine sites)] and the local Hamitonian has the same form
with respect to the translation of the supercell. Then, one can
show that the ground states we obtained are also ground states
of each Hi . Thus it proves that the state is a ground state. The
method is not valid for the quantum model since His do not
communicate with each other in general.

APPENDIX B: LINEAR SPIN WAVE
THEORY-LARGE S LIMIT

The inplane part of the model Hamiltonian under the linear
spin-wave approximation reads

H = Nec − 1

2

∑
k

TrHk + 1

2

∑
k

	
†
kHk	k

= Ne0 +
∑

k

2∑
n=1

ωn,kα
†
n,kαn,k, (B1)

where e0 = ec − 1
2N

∑
k TrHk is the ground-state energy,

	
†
k = (b†1,k,b

†
2,k,b1,−k,b2,−k) and

Hk =

⎛
⎜⎜⎜⎝

Ak Ck Dk Bk

C∗
k Ak B∗

k Dk

Dk Bk Ak Ck

B∗
k Dk C∗

k Ak

⎞
⎟⎟⎟⎠ (B2)

with C∗ denotes the complex conjugate of C. The general form
of the eigenvalues is given by

ω1,k =
√

A2 − |B|2 + |C|2 − D2 +
√

4(AC − BD)(AC∗ − B∗D) − |BC∗ − B∗C|2, (B3)

ω2,k =
√

A2 − |B|2 + |C|2 − D2 −
√

4(AC − BD)(AC∗ − B∗D) − |BC∗ − B∗C|2. (B4)

APPENDIX C: SPIN-WAVE EXCITATIONS IN
INCOMMENSURATE STATES

Since the spin wave in commensurate states has been
studied, we focus on the features in the spin-wave excitations
of the incommensurate states. In order to compare with
experimental results, it is convenient to have a table (see
Table II) that lists the corresponding ordered wave vectors
defined in the tetragonal unit cell and the conventional unit of
square lattice.

Generally, the spin-wave excitations in incommensurate
states and the corresponding Bogliubov transformation matrix
are written as

ω− =
√

(A2 + C2 − B2 − D2) − 2|AC − BD|, (C1)

ω+ =
√

(A2 + C2 − B2 − D2) + 2|AC − BD|, (C2)

and (
α1,k

α2,k

)
=

(−a a −c, c

−b −b d, d

)
	k (C3)
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with

a,b = ω∓ + (A ∓ C)

2
√

ω∓(ω∓ + A ∓ C)
sign(B ∓ D), c,d = |B ∓ D|

2
√

ω∓(ω∓ + A ∓ C)
. (C4)

The matrix elements can be specified as

Ak = −J1S[cos(Qx) + cos(Qy)] + KS2[3cos2(Qx) + 3cos2(Qy) − 2]

+ 1

2
J2S{[cos(Qx − Qy) + 1]cos(kx − ky) + [cos(Qx + Qy) + 1]cos(kx + ky) − 4cos(Qx)cos(Qy)}

+ 1

2
J3S{[cos(2Qy) + 1]cos(2ky) + [cos(2Qx) + 1]cos(2kx) − 4cos(Qx − Qy)cos(Qx + Qy)}, (C5)

Bk =
[
−KS3cos(2Qx) +

(
1

2
J1S + KS3

)
cos(Qx) − 1

2
J1S

]
cos(kx)

+
[
−KS3cos(2Qy) +

(
1

2
J1S + KS3

)
cos(Qy) − 1

2
J1S

]
cos(ky), (C6)

Ck =
[
−KS3cos(2Qx) +

(
1

2
J1S − KS3

)
cos(Qx) + 1

2
J1S

]
cos(kx)

+
[
−KS3cos(2Qy) +

(
1

2
J1S − KS3

)
cos(Qy) + 1

2
J1S

]
cos(ky), (C7)

and

Dk = −KS3[sin2(Qx) + sin2(Qy)] + 1

2
J2S{[cos(Qx − Qy) − 1]cos(kx − ky) + [cos(Qx + Qy) − 1]cos(kx + ky)}

+ 1

2
J3S{[cos(2Qy) − 1]cos(2ky) + [cos(2Qx) − 1]cos(2kx)}. (C8)

1. (q,π ) phase

Given K̃ , the (q,π ) phase region is determined by

�

(
J̃2 − 1

2

) (
1

2
K̃ + 1

2
J̃2 − 1

4

)
+ �

(
−J̃2 + 1

2

)(
1

2
K̃ − 1

2
J̃2 + 1

4

)
< J̃3 < �

(
J̃2 − 1

8K̃

)

×
⎡
⎣1

4
+ 1

2

√(
K̃ − 1

2

)2

+
(

J̃2 − 1

2

)2
⎤
⎦ + �

(
−J̃2 + 1

8K̃

)(
1

2
K̃ + 1

2
J̃2

)
, (C9)

with �(x) the Heaviside function. To compare with exper-
imental results, we rewrite (Qx,Qy) = (2δ,1)π correspond-
ing to (a,b)T = (1/2 + δ,1/2 − δ), which is often used in
experimental plots. For the (2δ,1)π phase, the incommen-
surate angle δ = 1

2π
arccos −J̃2+1/2

K̃−2J̃3
∈ [0,1/2]. The CAF phase

appears when δ = 0 and Neel order occurs when δ = 1/2 .
We only consider cases with δ > 0 because the spin waves
are generally symmetric about δ and −δ. The incommensurate

order wave vectors are close to the characteristic wave vectors
of CAF when δ < 1/4 and become closer to that of AFM
when δ > 1/4. The incommensurate magnetic excitations in
FeTe1−xSex are related to the former case. In Figs. 5–7, we
plot the typical magnetic excitations and their inelastic neutron
scattering (INS) intensities.

2. (q,q) phase

The phase boundaries of the (q,q) phase are determined by

�

(
J̃2 − 1

4

) (
1

2
K̃ + 1

2
J̃2

)
+ �

(
1

4
− J̃2

) (
−1

2
J̃2 + 1

2
K̃ + 1

4

)
< J̃3 < −1

2
J̃2 + 1

2
K̃ + 1

8K̃
, J1 > 0,

�

(
J̃2 + 1

4

) (
−1

2
J̃2 + 1

2
K̃ − 1

4

)
+ �

(
−1

4
− J̃2

) (
1

2
K̃ + 1

2
J̃2

)
> J̃3 > −1

2
J̃2 + 1

2
K̃ + 1

8K̃
, J1 < 0. (C10)

The order wave vectors (Qx,Qy) = (δ,δ)π are given by δ =
1
π

arccos −1
2(J̃2−K̃+2J̃3)

. AFM phase occurs when δ = 1 and FM
phase appears when δ = 0. However, the (q,q) order can not
continuously transform to BCAF phase.
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TABLE II. The correspondence of ordered wave vectors defined
with the tetragonal unit cell and the conventional unit of square lattice.

phases (a,b)T (Qx,Qy)

BCAF (1/2,0) (1/2,1/2)π
CAF (1/2,1/2) (0,1)π
Neel (1,0) (1,1)π
(q,π ) (1/2+δ,1/2−δ) (2δ,1)π
(q,0) (δ, − δ) (2δ,0)π
(q,q) (δ,0) (δ,δ)π

The two spin excitation modes in this phase are degenerated
when AC − BD = 0 in Eq. (C2). One can notice that the de-
generacy along kx + ky = ±π can never be lifted by changing
the exchange interactions, which means the degeneracy of
the acoustic and optical modes always occurs in the (q,q)
phase. The spin-wave excitations and their INS intensities are
displayed in Figs. 8 and 9.

3. (q,0) phase

The phase boundaries of (q,0) phase are defined by

�

(
J̃2 − 1

8K̃

)(
K̃

2
+ J̃2

2

)
+ �

(
−J̃2 + 1

8K̃

)

×
⎡
⎣−1

4
− 1

2

√(
K̃ + 1

2

)2

+
(

J̃2 + 1

2

)2
⎤
⎦

< J̃3 < �

(
J̃2 + 1

2

) (
1

2
K̃ − 1

2
J̃2 − 1

4

)

× + �

(
−J̃2 − 1

2

) (
1

2
K̃ + 1

2
J̃2 + 1

4

)
. (C11)

For the (2δ,0)π phase, the incommensurate angle δ =
1

2π
arccos J̃2+1/2

K̃−2J̃3
∈ [0,1/2]. The (q,0) order transforms to FM

with δ = 0 and to CAF with δ = 1/2.
Figures 10 and 11 display the spin-wave excitations and

their INS scattering intensities of (q,0) phase.

APPENDIX D: THE SPIN WAVES OF BAF PHASE WITH
NO VACANCIES

The classical ground-state energy of BAF phase with
no vacancies is degenerate with that of BCAF phase. We
consider the effects of quantum fluctuations on the ground-
state energy of these two phases based on the linear spin-wave
approximation.

The zero-point energy per spin due to spin waves in the
BCAF phase is given by

ε0BCAF = 1

2

(
ec − 1

N

∑
k

1

2
TrHk + 1

N

∑
k

1

2

2∑
n=1

ωn,k

)

= e′
c + 1

2

(
1

N

∑
k

1

2

2∑
n=1

ωn,k

)
, (D1)

FIG. 5. (Color online) The spin-wave excitations along (kx,ky) = (1,δ)π and along (δ,1)π in the (π,q) phase near CAF phase. The
parameters are chosen to be S = 1 and (J1,J̃2,J̃3,K̃) = (1,0.7,0.15,0) in (a) and (b), and (1,0.7,0.15,0.05) in (c) and (d). Increasing K̃

(biquadratic interactions) opens a gap between the acoustic and optical modes near (π,0) in the (1,δ)π direction.
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FIG. 6. (Color online) The spin-wave excitations along (kx,ky) = (1,δ)π and along (δ,1)π in the (π,q) phase near AFM phase. The
parameters are chosen to be S = 1 and (J1,J̃2,J̃3,K̃) = (1,0.4,0.15,0) in (a) and (b), and (1,0.4,0.15,0.05) in (c) and (d). Increasing K̃ has a
smaller effect in the (1,δ)π direction but opens a gap near (π/2,π ) in the (δ,1)π direction.

FIG. 7. (Color online) The INS intensity along (kx,ky) = (1,δ)π and along (δ,1)π in the (π,q) phase. (a) and (b) are close to AFM phase
with parameters chosen to be (J1,J̃2,J̃3,K̃) = (1,0.4,0.15,0), (c) and (d) are near CAF with parameters equal to (1,0.6,0.07,0.01). The thin
lines label the boundaries of zone with vanishing intensities.

144403-8



UNIFIED MINIMUM EFFECTIVE MODEL OF MAGNETIC . . . PHYSICAL REVIEW B 85, 144403 (2012)

FIG. 8. (Color online) The spin-wave excitations along (kx,ky) = (δ,δ)π and along (δ, − δ)π in the (q,q) phase. The parameters are chosen
to be S = 1 and (J1,J̃2,J̃3,K̃) = (−1,0.7,0.4,0.1) in (a),(b), and (−1,0.8,0.5,0) in (c),(d).

FIG. 9. (Color online) The INS intensity along (kx,ky) = (δ,δ)π and along (δ, − δ)π in the (q,q) phase. The parameters are chosen to be
S = 1 and (J1,J̃2,J̃3,K̃) = (−1,0.7,0.4,0.1) in (a) and (b), and (−1,0.8,0.5,0) in (c) and (d). The thin lines label the boundaries of zone with
vanishing intensities.
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FIG. 10. (Color online) The spin-wave excitations along (kx,ky) = (0,δ)π and along (δ,0)π in the (0,q) phase. The parameters are chosen
to be S = 1 and (J1,J̃2,J̃3,K̃) = (−1,0.8,0.2,0.) in (a) and (b), and (−1,0.8,0.2,0.05) in (c) and (d).

FIG. 11. (Color online) The scattering intensity along (kx,ky) = (0,δ)π and along (δ,0)π in the (0,q) phase. The parameters are chosen to
be S = 1 and (J1,J̃2,J̃3,K̃) = (−1,0.8,0.2,0.) in (a) and (b), and (−1,0.8,0.2,0.05) in (c) and (d). The thin lines label the boundaries of zone
with vanishing intensities.
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BAF

BCAF BCAF

BCAF

1 0J2 1/J J
(0,0) 0.50.5

1

0.5

11

3 1/J J

1 0J

BAF

Other phases Other phases

FIG. 12. (Color online) The phase diagram of the quantum model
that breaks the degeneracy of the BCAF and BAF phases for S = 1,
K̃ = 0.2.

where e′
c = −J3S(S + 2) − KS3(S + 4) and ωn,k is

determined by Eq. (B4) with Ak = 8KS3 + 4J3S + J +
2,k ,

Bk = −J +
1 (e−ikx + eiky ),Ck = J −

1 (eikx + e−iky ), Dk =
−J −

2,k + J3,k,J ±
1 = J1S ± 2KS3, J ±

2,k = 2J2Scos(kx ± ky),
and J3,k = −2J3S[cos(2kx) + cos(2ky)].

The spin waves in the BAF state are given by

H = Nec − 1

2N

∑
k

TrHk + 1

2

∑
k

	
†
kHk	k

= Ne0 +
∑

k

∑
n

ω̃n,kα
†
n,kαn,k, (D2)

where 	
†
k = (b†1,k,b

†
2,k,b

†
3,k,b

†
4,k,b1,−k,b2,−k,b3,−k,b4,−k) and

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ J −
1 e−ikx J −

2,k J −
1 eiky J3,k −J +

1 eikx −J +
2,k −J +

1 e−iky

λ J −
1 eiky J +

2,k −J +
1 e−ikx J3,k −J +

1 e−iky −J −
2,k

λ J −
1 eikx −J +

2,k −J +
1 eiky J3,k −J +

1 e−ikx

λ −J +
1 eiky −J −

2,k −J +
1 eikx J3,k

λ J −
1 e−ikx J −

2,k J −
1 eiky

λ J −
1 eiky J +

2,k

λ J −
1 eikx

λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D3)

with λ = 4J3S + 8KS3.

Only the upper right part of the matrix is shown since the Hamiltonian is Hermitian. The zero-point energy per spin due to
spin waves is given by

ε0BAF = 1

4

(
ec − 1

N

∑
k

1

2
TrHk + 1

N

∑
k

1

2

4∑
n=1

ω̃n,k

)
= e′

c + 1

4

(
1

N

∑
k

1

2

4∑
n=1

ω̃n,k

)
. (D4)

The difference between the zero-point energy of BAF phase and that of BCAF phase is given by

δε0 = 1

4

(
1

N

∑
k

1

2

4∑
n=1

ω̃n,k

)
− 1

2

(
1

N

∑
k

1

2

2∑
n=1

ωn,k

)
. (D5)

The analytic form of the energy difference is hard to obtain. Numerically, the energy difference is in the order of 10−3J1,
a tiny value. In the large region, the BAF state has lower energy than the BCAF state. In the region close to incommensurate
phases, the energy of BCAF can be lower than that of the BAF. In Fig. 12, we report numerical results for the quantum ground
states of the model by taking S = 1, K̃ = 0.2.
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