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In this paper, we study the rotated ferromagnetic Heisenberg model (RFHM) in two different transverse fields,
hx and hz, which can be intuitively visualized as studying spin-orbit coupling (SOC) effects in two-dimensional
(2D) Ising or anisotropic XY model in a transverse field. At a special SOC class, it was found in our previous
work [Phys. Rev. A 92, 043609 (2015)] that the RFHM at a zero field owns an exact spin-orbit coupled ground
state called the Y -x state. It supports not only the commensurate magnons (called C-C0 and C-Cπ ), but also the
incommensurate magnons (called C-IC). These magnons are nonrelativistic, not embedded in the exact ground
state, so need to be thermally excited or generated by various external probes. Their dramatic response under a
longitudinal hy field was recently worked out by Sun et al. [arXiv:1502.05338]. Here we find they respond very
differently under the two transverse fields. Any hx (hz) introduces quantum fluctuations to the ground state and
changes the collinear Y -x state to a canted coplanar YX-x (YZ-x) state. The C-C0, C-Cπ , and C-IC magnons
become relativistic and sneak into the quantum ground state. We determine the competing boundaries among
the C-C0, C-Cπ , and C-IC magnons, especially the detailed dispersions of the C-IC magnons inside the canted
phases, which can be mapped out by the transverse spin structure factors. As hx (hz) increases further, the C-C0

magnons always win the competition and emerge as the seeds to drive a transition from the YX-x (or YZ-x) to
the ferromagnetic along the X (orZ) direction called the X-FM (or Z-FM) phase. We show that the transition is
in the 3D Ising universality class and it becomes the 3D XY transition at the two Abelian points. We evaluate
these magnons’ contributions to magnetization and specific heat at low temperatures which can be measured by
various established experimental techniques. The nature of the finite-temperature transitions are also studied.
Some analogies with quantum fluctuations generated multiple vortices and multiple landscapes in quantum spin
glass are mentioned. The implications to cold-atom systems and some 4d and 5d materials with strong SOC are
briefly discussed.

DOI: 10.1103/PhysRevB.94.024409

I. INTRODUCTION

A fundamental problem in any branch of physics regards the
nature of the ground state. In strongly correlated electron sys-
tems, competing orders comprise a general concept to describe
various quantum phases and transitions in various materials
[1–6]. In this work, we focus on competing excitations in a
given quantum phase which could lead to a natural explanation
of some competing orders. It is known that a given quantum
phase can still support different kinds of excitations with their
own characteristics. These different classes of excitations are
generated by quantum fluctuations inherent in the quantum
ground state, so are intrinsic objects embedded in the ground
state itself. Under various external probes; these excitations
compete to emerge to drive the instability of the system into
various other quantum phases through different universality
classes of quantum phase transitions. So classifying different
classes of excitations of a given phase and investigating their
behaviors under various external probes could lead to deep
understandings not only on the nature of the ground state
itself, but also its broad connections to various other quantum
phases.

A quantum phase is characterized by its symmetry breaking
and excitation spectrum [1–6]. For quantum spin or bosonic
systems, gapless excitations indicate long-range correlations

encoded in the quantum phase. External probes could open a
positive gap to the excitation or induce a “negative” gap, which
indicates a quantum phase transition to another phase, while
gapped excitations indicate short-ranged fluctuations encoded
in the phase. The external probes such as magnetic fields, pres-
sures, electric fields, etc., may drive these gapped excitations
near a QCP, close their gaps, and lead to their condensations
into a new phase through a quantum phase transition. For
fermionic systems [7–13], the quantum phase supports both
fermionic excitation and collective bosonic excitations. The
two sectors may compete to lead to various other quantum
phases under various external probes. Due to the absence of
any symmetry breaking, a topological phase (such as quantum
Hall state, spin liquids, etc.) [4,6,7] is characterized by its
topological orders and associated fractionalized excitations.
The gap closings of these fractionalized excitations could
lead to another topological phase through a topological phase
transition. In this work, we only focus on quantum phases
without topological orders and with only different kinds of
bosonic excitations.

In a previous work [14], the authors studied interacting
spinor bosons at integer fillings hopping in a square optical
lattice subject to any linear combinations of Rashba and
Dresselhaus spin-orbit coupling (SOC). In the strong-coupling
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limit, it leads to the rotated ferromagnetic Heisenberg model
(RFHM) [Eq. (1)] at a zero Zeeman field [15–17], which is
a new class of quantum spin models to describe quantum
magnetisms in cold-atom systems or some materials with
strong SOC. The RFHM [14] with any spin S at a generic
SOC parameters (α,β) in a square lattice in a Zeeman field �H
is described by

H = −J
∑

i

[SiRx(2α)Si+x + SiRy(2β)Si+y]

− �H ·
∑

i

�S, (1)

where J > 0 is the ferromagnetic interaction and the sum is
over a unit cell i in a square lattice and the Rx(2α), Ry(2β) are
the two SO(3) rotation matrices around x̂, ŷ spin axis by the
angle 2α, 2β, which are put on the two bonds x̂, ŷ, respectively.
As shown in [14], at H = 0, the Hamiltonian Eq. (1) has
the time-reversal (T ) symmetry, translational symmetry and
three spin-orbital coupled Z2 symmetries Px,Py,Pz: (1)
Px symmetry, Sx → Sx, ky → −ky, Sy → −Sy, Sz → −Sz;
(2) Py symmetry, Sy → Sy, kx → −kx, Sx → −Sx,Sz →
−Sz; (3) Pz symmetry, kx → −kx, Sx → −Sx, ky →
−ky, Sy → −Sy, Sz → Sz, which is also equivalent to a joint
π rotation of the spin and orbital around ẑ axis. Along the
line (α = π/2,β), it also has the spin-orbital coupled U(1)soc

symmetry [H,
∑

i(−1)ix Sy

i ] = 0. Under the local rotation
S̃i = Rx(π )Ry(iyπ )Si followed by the T , which is called
mirror transformationM in [18], β → π/2 − β. At the middle
point, β = π/4, the Hamiltonian is invariant under such a
mirror transformation.

At the two Abelian points β = 0,π/2 and H = 0 in
Eq. (1), the Hamiltonian has the SU(2) symmetry in
the rotated basis S̃U(2) with S̃i = Rx(ixπ )Si or ˜̃SU(2)
with ˜̃Si = Rx(ixπ )Ry(iyπ )Si , respectively. Transferring back
to the original basis, the SU(2) symmetry is gener-
ated by

∑
i S

x
i ,

∑
i(−1)ix Sy

i ,
∑

i(−1)ix Sz
i at β = 0 and by∑

i(−1)iy Sx
i ,

∑
i(−1)ix Sy

i ,
∑

i(−1)ix+iy Sz
i at β = π/2, respec-

tively. Both contain
∑

i(−1)ix Sy

i . At any hy studied in [18],
only

∑
i(−1)ix Sy

i remains as a conserved quantity at both
β = 0 and β = π/2. In fact, as mentioned above [14], the
spin-orbital coupled U(1)soc symmetry [H,

∑
i(−1)ix Sy

i ] = 0
extends along the whole line (α = π/2,β) at any hy .

At any hx �= 0, only
∑

i S
x
i and

∑
i(−1)iy Sx

i remains as
a conserved quantity at β = 0 and β = π/2, respectively.
At any hz �= 0, only

∑
i(−1)ix Sz

i and
∑

i(−1)ix+iy Sz
i remain

as conserved quantities at β = 0 and β = π/2, respectively.
So the U(1) symmetry at the two Abelian points β = 0,π/2
at a nonzero hx,hz is very much different than the U(1)soc

symmetry along the line (α = π/2,β) at hx = 0 or hz = 0
case. This distinction is important in the following two
sections, Secs. I and II.

When expanding [14] the two R matrices in Eq. (1), it leads
to a Heisenberg [1,2] + ferromagnetic Kitaev [19] (or quantum
compass in a square lattice) + Dzyaloshinskii-Moriya (DM)
interaction [20,21]. For a specific SOC class, we identify a
spin-orbital entangled commensurate ground state: the Y -x
state shown at the horizontal axis in Figs. 1 and 5. It
supports three kinds of magnons: commensurate magnons
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FIG. 1. Phase diagram of the RFHM in a transverse field hx .
Boundaries between C-C0, C-Cπ , and C-IC are indicated by white
dashed lines. At hx = 0, the boundary between C-C0 and C-IC is
β1 and that between C-Cπ and C-IC is β2, as shown in Ref. [14].
They are nonrelativistic. At hx = 0, the ground state is the Y -x
state which is exact without any quantum fluctuations. So it contains
no information of C-C0, C-Cπ , and C-IC. Any hx > 0 introduces
quantum fluctuations and transfers them into the YX-x canted state.
The C-C0, C-Cπ , and C-IC sneak into the YX-x ground state and
become relativistic. At the critical field hc(β), the YX-x canted state
undergoes a quantum phase transition to the X-FM state. It is in the
3D Ising university class and always driven by the condensation of
C-C0 magnons. The C-IC and C-Cπ magnons always lose to the C-C0

magnons before hitting the phase boundary. However, at the Abelian
point β = π/2, C-C0 and C-Cπ magnons condense simultaneously
and lead to a 3D XY class transition to the X-FM. The fine landscape
of the C-IC regime is given in Fig. 2 and also discussed in detail
in Appendix B. As shown in [13,14], the dispersions of C-C0, C-Cπ ,
and C-IC magnons can be mapped out by the transverse spin structure
factors.

such as C-C0 and C-Cπ and also a new gapped elementary
excitation, incommensurate magnon (C-IC), with its two gap
minima continuously tuned by the SOC strength. They are
gapped bosonic excitations taking nonrelativistic dispersion
with anisotropic effective mass mx , my . However, the Y -x
ground state is an exact quantum ground state with no quantum
fluctuations. So the C-C0, C-Cπ , C-IC magnons in the RFHM
are extrinsic, not embedded in the ground state due to the
absence of quantum fluctuations. They need to be excited by
thermal fluctuations or dragged out by various external probes
which introduce quantum fluctuations into the ground state.
Their parameters such as the minimum positions (0,±k0

y),
gap �, and masses mx , my can only be measured by various
characteristics of the transverse structure factor at a finite T : It
is a Gaussian shape, peaked at (0,±k0

y) with an exponentially
suppressed amplitude e−�/T , with a temperature-dependent
width σx = √

mx(β)T . The existence of the C-IC above a
commensurate phase is the most striking feature of the RFHM.
An important question to ask is how to drag out these magnons
by various external probes, closing their gaps, and drive
into new quantum phases through the condensation of these
magnons.
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In a recent work [18], the authors showed that applying a
uniform longitudinal Zeeman field hy could do the job very
well: The C-C0, C-Cπ , C-IC magnons compete to emerge
under its effects to drive quantum phase transitions. It turns
out that the C-IC always win the competition. Indeed, any
infinitesimal small Zeeman field hy immediately drags out
the C-IC magnon and drives the condensation of the C-IC
at h = hc1, which vanishes as β → 0,π/2; therefore, the
Y -x state to noncoplanar incommensurate Skyrmion crystal
(IC-SkX) phases through new universality class of quantum
phase transitions. The IC-SkX phase is strikingly similar
to the incommensurate, counter-rotating (in A/B sublattice),
noncoplanar magnetic orders detected on iridates [22–24]
α,β,γ -Li2IrO3.

Because the SOC breaks the spin rotation symmetry, the
two transverse fields hx , hz may play quite different roles
in dragging out the C-IC magnons and therefore drive into
completely different phases and phase transitions than the
longitudinal field hy studied in [18]. These are the goals to
be studied in this paper. Following [14,18], in this work,
we also focus along the solvable line (α = π/2,β) of the
RFHM in a transverse field [Eqs. (2) and (30)]. Results away
from α = π/2 will be briefly mentioned in the Conclusion
section and be presented in a separate publication. The two
models can be considered as incorporating possible dramatic
effects of SOC on a well-studied two-dimensional (2D) Ising,
anisotropic (or isotropic) quantum XY model in a transverse
field [5]. They are also complimentary to the previous study of
frustrated Ising model in a transverse field [25,26]. Note that
the hy field in [18] keeps the U(1)soc symmetry

∑
i(−1)xSy

i

of the Hamiltonian at the zero field, but hx , hz breaks it.
This fact alone may lead to dramatic different competition
among the magnons when they are subject to the longitudinal
hy or the two transverse fields hx and hz. Indeed, in the
longitudinal field hy , under the mirror transformation [18],
(β,hy) → (π/2 − β,hy). So β = π/4 still enjoys the mirror
symmetry. However, because hx and hz explicitly break the
U(1) symmetry, the mirror transformation does not work
anymore in the hx and hz cases. However, in the hx case,
we are still able to find a generalized mirror transformation
to characterize systematically the competitions among the
magnons on the two sides of β = π/4. Unfortunately, there
is even no such a generalized mirror transformation in the hz

case, so the competitions are more intricate in the hz field than
in hx field. The main results achieved in the hx and hz case are
summarized in the beginning of Secs. II and III. Their relations
to some previous works are given in Sec. IV.

Very recently, there was a remarkable experimental real-
ization of 2D Rashba or Dresselhaus SOC or any of their
linear combinations in Fermi gas or spinor Bose-Einstein
condensate [27,28] in a square lattice. Various Zeeman
fields are naturally generated by the Raman lasers. The two
models Eqs. (2) and (30) can be realized in these cold-atom
experiments. The results achieved in this work can be detected
by various techniques such as specific heat [29,30], in situ mea-
surement [31], and light or atom Bragg spectroscopy [32,33].
They may also shed some light on the study of magnetic order-
ings in some strongly correlated SOC materials [7,18,22–24],
such as α,β,γ -Li2IrO3, with hx , hz playing the roles of
different crystal fields or external applied magnetic fields.

II. TRANSVERSE FIELD hx

In this section, we study the RFHM at (α = π/2,β) [Eq. (1)]
in the hx field:

H = −J
∑

i

[SiRx(π )Si+x + SiRy(2β)Si+y] − Hx

∑
i

Sx
i .

(2)

Any Hx will break all the symmetries of the Hamiltonian at
Hx = 0, except the Px symmetry. It also keeps the combined
T Py and T Pz symmetries.

The main results to be achieved in this section are
summarized as follows: In the hx field, any infinitesimal
hx will change the Y -x state into a canted YX-x state
(Fig. 1). In sharp contrast to the Y -x state, which is an exact
ground state free of quantum fluctuations, the YX-x state
suffers quantum fluctuations. So at T = 0, these magnons
are quantum fluctuations generated, sneak into the YX-x
state and become important components embedded inside the
quantum ground state. They stand for quantum fluctuations
with intrinsic wavelength and frequency and so can be detected
by spin structure factor even at T = 0. We also evaluate their
contributions to magnetization, specific heat, and uniform and
staggered longitudinal susceptibilities at a finite temperature.
Using the generalized mirror transformation, we map out the
competing boundaries of the commensurate magnons C-C0

and C-Cπ and the incommensurate magnons C-IC inside the
YX-x canted phase shown in Figs. 1 and 2. As hx increases,
the C-C0 magnons emerge from the competitions and drives

C-C 0 C-Cπ

C-IC

ky
0 =π

/2

ky
0 =π/3

ky
0 =2

π/
3

0.33050.3304

1.1990

1.1992

1.1994

1.1988

β/π

hx

(β0 ,h0x)

(β*
 ,hx

*)

FIG. 2. The evolution of the C-IC magnons and the boundaries
of the three kinds of magnons in Fig. 1 magnified (×104) around
(β0 = 0.330 458π, h0x = 1.198 99) and (β∗ = 0.330 482π, h∗

x =
1.199 21). There is a generalized mirror symmetry around k0

y =
±π/2. The minimum at (0,±k0

y) and its mirror image at [0,±(π −
k0

y)] symmetrically located on the two sides of k0
y = ±π/2 must end

in the regime β0 < β < β∗, where they become degenerate minima.
The three segments of the contour line k0

y = ±π/2 are explained in the
text and also Appendix B. As shown in [13,14], the C-IC dispersion
can be mapped out by the transverse spin structure factors.
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the quantum phase transition at a critical field hcx(β) from
the YX-x phase to the ferromagnetic X-FM phase in Fig. 1.
By performing symmetry analysis, identifying a suitable order
parameter and contrasting with the spin-wave expansion, we
find it is in the 3D Ising universality class. Due to the enlarged
U(1) symmetry mentioned in the Sec. I, the transition at
the Abelian β = π/2 point is driven by the simultaneous
condensations of the C-C0 and C-Cπ magnons and is in the
universality class of the 3D XY model. We also work out the
finite-temperature phase diagram in Fig. 4.

A. X-FM state and excitations in a high field

To map out the phases of Eq. (2), it is instructive to start
from the high field limit Hx � J . In this limit, the system is
in X-FM phase with all the spins fully (classically) polarized
to Sx direction (Fig. 1). Obviously, the X-FM keeps all the
symmetries of the Hamiltonian.

Under the global spin rotation (Sx
i ,S

y

i ,Sz
i ) → (Sz

i ,S
y

i ,−Sx
i ),

the Hamiltonian Eq. (2) becomes

H = −J
∑

i

[SiRz(π )Si+x + SiRy(2β)Si+y] − Hx

∑
i

Sz
i .

(3)

Introducing the Holstein-Primakoff (HP) bosons [14,18],
S+ = √

2S − a†aa, S− = a†√2S − a†a, Sz = S − a†a, the
Hamiltonian Eq. (3) can be written in a systematic 1/S

expansion in terms of the HP bosons. Up to the linear
spin-wave (LSW) order at 1/S, we get

H2 = E0 + 2JS
∑

k

{[hx + cos kx + cos2 β(2 − cos ky)]a†
kak

+ sin2 β cos ky(aka−k + a
†
ka

†
−k)/2},

(4)

where the classical ground-state energy E0 =
−2JNS2 cos2 β − HxNS and we have introduced the
dimensionless field hx = Hx/(2JS). Now the Hamiltonian
can be diagonalized by a Bogoliubov transformation,

H2 = E′
0 + 4JS

∑
k

ωkα
†
kαk, (5)

where the ground-state energy at the order of 1/S is E′
0 =

E0 − 2JS
∑

k ωk and the energy spectrum is

ωk =
√

[hx + cos kx + cos2 β(2 − cos ky)]2 − sin4 β cos2 ky,

(6)

where, for 0 < β < π/2, one can identify that there is a unique
minimum located at k0 = (kx,ky) = (π,0) with the energy gap

�π = ωk=k0 =
√

hx(hx − 1 + cos 2β). (7)

The gap vanishing condition leads to the critical field
strength hc,

hcx(β) = 1 − cos 2β = 2 sin2 β, (8)

which is shown in Fig. 1. The gap vanishing at k0 = (kx,ky) =
(π,0) indicate a quantum phase transition into a spin-orbital
correlated state with orbital order (π,0). It was known that at
hx = 0, the ground state Y -x state also has the (π,0) orbital

order. That indicates that there is only one phase transition and
the state below hcx could be just the YX-x state with a canted
angle. As to be shown in the next section, we show that it is
indeed the YX-x state with the orbital order (π,0). So near the
Quantum Phase transition (QPT), �π ∼ (hx − hcx)1/2.

From Eq. (6), we find the excitation spectrum around the
minimum k0 = (π,0) takes the relativistic form

ωq =
√

�2
π + v2

xq
2
x + v2

yq
2
y , k = k0 + q, (9)

where

v2
x = (2hx − 1 + cos 2β)/2,

(10)
v2

y = [hx + cos 2β(hx − 1 + cos 2β)]/2.

At h = hcx , �π = 0, the critical velocities are v2
x,c = v2

y,c =
sin2 β. As long as β > 0, we obtain a nonzero critical velocity,
which indicates a relativistic critical behavior with the dynamic
exponent z = 1.

Before starting the next section, we discuss a little bit further
the enlarged symmetry and its consequences at the two Abelian
points β = 0,π/2 in Fig. 1.

The U(1) symmetry at the two Abelian points β = 0,π/2 at a
nonzero field hx

At the two Abelian points β = 0,π/2 and hx = 0, the
system has a SU(2) symmetry in the rotated basis S̃U(2),
with S̃i = Rx(ixπ )Si or ˜̃SU(2) with ˜̃Si = Rx(ixπ )Ry(iyπ )Si ,
respectively. So Eq. (2) can be mapped to a FM Heisenberg
model in −hx

∑
i S̃

x
i and −hx

∑
i(−1)iy ˜̃Sx

i [see Eq. (11)],
respectively. So at β = 0, any hx will pick up the X-FM
phase as the exact ground state. At β = π/2, taking the result
from [18], any hx will lead to a spin-flop transition, resulting in
a U(1) symmetry-breaking canted phase with one Goldstone
mode φ. Then there is another transition to the X-FM at a
finite hc = 2. These results at the two Abelian points fit into
the general result Eq. (8) and shown in Fig. 1.

At β = 0,hx = 0, transferring back to the original basis,
the Hamiltonian Eq. (2) has the SU(2) symmetry generated
by

∑
i S

x
i ,

∑
i(−1)ix Sy

i ,
∑

i(−1)ix Sz
i . At any hx > 0, only∑

i S
x
i remains as a conserved quantity. Obviously, the X-FM

state keeps all symmetries of the Hamiltonian. Having the
conserved quantity eiφ

∑
i (−1)iy Sx

i which carries the momentum
(0,π ), act on the the excitation (or eigenstate) at the minimum
(π,0) in Eq. (9) changes nothing. So at β = 0,hx > 0, the
system has only one minima located at (π,0), as shown in the
left axis in the Fig. 1.

Similarly, at β = π/2, hx = 0, transferring back to the
original basis, the Hamiltonian Eq. (2) has the SU(2) symmetry
generated by

∑
i(−1)iy Sx

i ,
∑

i(−1)ix Sy

i ,
∑

i(−1)ix+iy Sz
i . At

any hx > 0, only
∑

i(−1)iy Sx
i which carries momentum (0,π )

remains as a conserved quantity. Having the conserved quan-
tity ei

∑
i (−1)iy Sx

i , which carries the momentum (0,π ), act on
the excitation(or eigenstate) at the minimum (π,0) in Eq. (9),
will generate another minimum (π,π ), so at β = π,hx > 0,
the system has two minima [18] located at (π,0) and (π,π ), as
shown in the right axis in the Fig. 1.

As stressed in the Introduction, the U(1) symmetry
∑

i S
x
i

or
∑

i(−1)iy Sx
i at the Abelian points β = 0 or β = π/2 at a

nonzero transverse field hx is different than the spin-orbital
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coupled U(1) symmetry
∑

i(−1)ix Sy

i along the line (α =
π/2,β) at hx = 0 in the RFHM Eq. (1).

B. Y X-x canted state below hcx

1. Classical Y X-x canted phase at h < hcx

When β = π/2, in the ˜̃SU(2) basis ˜̃Si =
Rx(ixπ )Ry(iyπ )Si , the Hamiltonian Eq. (2) takes the
form

H = −J
∑
〈ij〉

˜̃Si · ˜̃Sj − Hx

∑
i

(−1)iy ˜̃Sx
i . (11)

When 0 < Hx < Hxc, the classical state takes the form

˜̃Si = S((−1)iy cos θ, sin θ cos φ, sin θ sin φ), (12)

where φ is nothing but the Goldstone mode due to the U(1)
symmetry breaking. Reverting back to the original basis, we
obtain

Si = S(cosθ,(−1)ix sin θ cos φ,(−1)ix+iy sin θ sin φ). (13)

Note that although we obtained Eqs. (12) and (13) at β =
π/2, the same ansatz hold for 0 < β < π/2 whose classical
ground energy is

Ec = −2NJS2(1 + hx cos θ − sin2 β cos2 θ

− cos2 β sin2 θ sin2 φ). (14)

It is easy to see that any deviation from β = π/2 explicitly
breaks the U(1) symmetry at β = π/2 listed in Sec. II A, and
so picks up φ = 0, opens the gap to the Goldstone mode [34],
and leads to the YX-x canted state,

Si = S( cos θ,(−1)ix sin θ,0), (15)

which indeed has the (π,0) order as indicated from the magnon
condensations from the X-FM studied in the Sec. II A.

Substituting φ = 0 in Eq. (14) leads to the classical ground-
state energy

Ec = −2NJS2(1 + hx cos θ − sin2 β cos2 θ ), (16)

whose minimization leads to the canted angle

cos θ = hx

2 sin2 β
< 1, when hx < hcx, (17)

which always has a solution as long as hx < hcx .
Only when h = hcx,θ = 0 does it become the X-FM phase.

The fact that we achieved the same critical field hcx from the
X-FM state Eq. (8) above it and the YX-x state Eq. (17) below
it indicates that there is only one phase transition with the
critical field h = hcx shown in Fig. 1. Note that from above
h > hcx , we achieved it by the LSW at the order of 1/S,
while from below h > hcx we achieved it just by the classical
ground-state energy minimization at S = ∞.

In sharp contrast, in the hy case [18], there are two
critical fields hc1 < hc2; there is an intermediate IC-SkX phase
between the two critical fields.

2. Spin-wave analysis in the Y X-x canted state

Again performing the global spin rotation (Sx
i ,S

y

i ,Sz
i ) →

(Sz
i ,S

y

i ,−Sx
i ), then applying the spin rotation Rx(θ ) for the A

sublattice and Rx(−θ ) for the B sublattice lead to

H = − J
∑
i∈A

[SiRz(π )Si+x + SiRx(θ )Ry(2β)Rx(−θ )Si+y]

− J
∑
i∈B

[SiRz(π )Si+x + SiRx(−θ )Ry(2β)Rx(θ )Si+y]

− Hx

∑
i∈A

[
sin θS

y

i + cos θSz
i

]

− Hx

∑
i∈B

[− sin θS
y

i + cos θSz
i

]
. (18)

Introducing the HP bosons S+ = √
2S − a†aa, S− =

a†√2S − a†a, and Sz = S − a†a for sublattice A and S+ =√
2S − b†bb, S− = b†

√
2S − b†b, Sz = S − b†b for sublat-

tice B, the Hamiltonian Eq. (18) can be written in a systematic
1/S expansion in terms of the HP bosons. Up to the LSW order
at 1/S, we get

H2 = Ec + 2JS
∑

k

[(Ak + Bk)a†
kak + (Ak − Bk)b†kbk

+Ck(a†
kbk + b

†
kak) + Dk(aka−k + bkb−k + H.c.)],

(19)

where Ec is the classical ground-state energy Eq. (16) and

Ak = 2 − (cos2 β − sin2 β sin2 θ ) cos ky,

Bk = sin 2β sin θ sin ky,
(20)

Ck = cos kx,

Dk = sin2 β cos2 θ cos ky.

The Hamiltonian Eq. (19) can be diagonalized by a
Bogoliubov transformation

H2 = E′
c + 4JS

∑
k

(ω−
k α

†
kαk + ω+

k β
†
kβk), (21)

where E′
c = Ec − 2JS

∑
k(ω−

k + ω+
k ) is the ground-state en-

ergy up to the order of 1/S and the energy spectra are

ω±
k =

√
A2

k + B2
k + C2

k − D2
k ± 2

√
A2

k

(
B2

k + C2
k

) − B2
k D

2
k ,

(22)

from which one can determine the minimum positions.
We found there are three regimes inside the YX-x canted

state: C-C0 regime, C-IC regime, and C-Cπ regime which, at
hx = 0, reduce to the three regimes identified in [14]. Among
the three regimes, only the C-C0 regime sits just below the
transition line hcx , so the transition from the YX-x state to
the X-FM is driven by the condensations of the C-C0 magnons
only. Then we find that just below the phase boundary, the C-C0

magnons take also the relativistic form around k0 = (0,0),

ωq =
√

�2
0 + v2

xq
2
x + v2

yq
2
y , k = q + k0, (23)
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where

�0 =
√

(1 − cos 2β)

(
1 − cos 2β − h2

x

2 sin2 β

)
,

v2
x = 2 sin2 β −

(
hx

2 sin β

)2

,

v2
y =

[
2 sin2 β −

(
hx

2 sin β

)2
]

×
[

cos 2β − sin2 2β + h2
x

4 sin2 β
+ h2

x cos2 β

sin2 β

]

+
(

hx

2 sin β

)4
⎡
⎣1 +

sin2 2β
(
1 − h2

x

4 sin4 β

)
2 − cos 2β − (

hx

2 sin β

)2

⎤
⎦. (24)

At h = hcx , the critical velocities are v2
x,c = v2

y,c = sin2 β,
which are the same as those achieved from X-FM from above
the hcx in Eq. (10). Near hcx , � ∼ (hcx − h)1/2. Now we can
check the consistence of the orbital orders on both sides of
hcx . The YX-x state has the orbital order (π,0); the C-C0

has the orbital order (0,0) = (π,0) in the reduced Brillouin
zone (RBZ). So its condensation on the top of YX-x could
lead to the two orbital orders, either (π,0) + (0,0) = (π,0) or
(π,0) + (π,0) = (0,0), in the extended Brillouin zone (EBZ).
The (0,0) order is nothing but that of the X-FM in Fig. 1.

The competition between C-C0 and C-Cπ gives the bound-
ary between C-C0 and C-Cπ , where they become degenerate
(see Appendix B),

h0π = 2 sin β
√

− cos 2β < hcx, (25)

where β∗ ∼ 0.330 482π < β < π/2.
The competition between C-C0 and C-IC is given by the

condition: ∂2ω−
k

∂k2
y

|k=(0,0) = 0. That between C-Cπ and C-IC is

given by the condition: ∂2ω−
k

∂k2
y

|k=(0,π) = 0. We find that the

three boundaries (dashed lines) in Fig. 1 meet at the same
point (β∗ = 0.330 482π, h∗

x = 1.199 21). The fine structure
near this point is shown in Fig. 2.

C. Evolution of the C-IC magnons inside the C-IC regime in
Fig. 1: Generalized mirror symmetry about the contour

k0
y = ±π/2

In the longitudinal field hy , which keeps the spin-orbital
coupled U(1) symmetry [18], there is a mirror transformation
relating (β,hy) to (π/2 − β,hy). So β = π/4 enjoys the mirror
symmetry. However, because hx and hz explicitly breaks the
U(1) symmetry, so the mirror transformation does not work
anymore in hx and hz case. Even so, it would be important to
first understand the minimum contour at k0

y = ±π/2. In the hx

case, it seems there is a “generalized” mirror transformation
relating the minimum at (0,±k0

y) to its associated mirror
image at [0,±(π − k0

y)] as shown in Fig. 2, while the k0
y =

±π/2 is the self-dual line which starts at (β = π/4,hx = 0).
Unfortunately, in contrast to the hy case, it is difficult to find
the exact form of such a generalized mirror transformation in
terms of (β,hx). Its form in terms of the contour k0

y would be
enough to analyze the structure of the C-IC regime in Fig. 2 at

least to the order of 1/S. However, as to be shown in the next
section, there is no generalized mirror symmetry in the hz case.

As shown in the Appendix B, the minimum contour k0
y =

±π/2 can be determined by the equation

hπ/2(β) = 2 sin β
√

− cos 2β, (26)

where 0.25π < β < β0 ≈ 0.330 458π .
If comparing Eq. (26) with the C-C0/C-Cπ boundary

Eq. (25), we find out they have the same form but different
domains. In fact, one can extend Eq. (26) to the whole
domain 0.25π < β < 0.50π , where we have two special β:
β0 ≈ 0.330 458π and β∗ ≈ 0.330 482π . For 0.25π < β < β0,
Eq. (26) describes the minimum contour k0

y = π/2 shown
in Fig. 8, for β∗ < β < 0.50π ; it describes the C-C0/C-Cπ

boundary. What happens when β0 < β < β∗ is shown in Fig. 9
and summarized below.

As shown in the Fig. 2, the constant contour line at
k0
y = π/2 can be divided into three segments. (1) π/4 <

β < β0 ∼ 0.330 458π , k0
y = ±π/2 is indeed a minimum as

shown in Fig. 8. (2) β0 < β < β∗ ∼ 0.330 482π , k0
y = ±π/2

becomes a local maximum, k0
y = 0,π are also local maximum.

There are four degenerate minima (0,±k0
y) and [0,±(π − k0

y)]
symmetrically located on the two sides of k0

y = ±π/2, as
shown in Fig. 9. At β0, the second derivatives of the spectrum
at k0

y = ±π/2 vanish. (3) β∗ < β < π/2, C-C0, and C-Cπ

become two degenerate minima, with k0
y = ±π/2 being still

the maximum as shown in Fig. 2. At β∗, the second derivatives
of the spectrum at k0

y = 0,π vanish.
So all the two mirror related minima (0,±k0

y) and [0,±(π −
k0
y)] must end in the regime β0 < β < β∗ shown in Fig. 2,

where they become four degenerate minima.

D. The transition from the Y X-x canted state to the X-FM at
T = 0 and finite T

1. The zero-temperature transitions: Symmetry breaking and
order parameters

The transition from the YX-x canted state to the X-FM
is characterized by the order parameter My(T = 0) = 〈Sy〉,
which is staggered along x axis. As said at the beginning
of Sec. II, the Hamiltonian Eq. (2) has Px symmetry:
Sx → Sx, ky → −ky, Sy → −Sy, Sz → −Sz and the trans-
lational symmetry. The X-FM respects both symmetries, so
My(T = 0) = 0, but the YX-x states break both, but keep its
combination Px × (x → x + 1) as shown in Appendix A, so
My(T = 0) �= 0. Due to the spin-orbital locking, destroying
the My(T = 0) = 〈Sy〉 order will also restore the translational
symmetry along x direction. As shown in Eqs. (9) and (23),
there are relativistic gapped C-C0 magnons on both sides,
indicating the dynamic exponent z = 1. So we conclude
that the transition is in the 3D Ising universality class. The
renormalization group (RG) flow is controlled by a fixed point
on the phase boundary shown in Fig. 3.

At hx = 0, the Y -x collinear state is the exact eigen-
state [14], so My(T = 0) = S. The ground state itself contains
no information on the C-C0, C-Cπ , and C-IC magnons. As
shown in Sec. II B, any hx �= 0 transfers the Y -x state into the
YX-x canted state and also introduces quantum fluctuations.
The canted angle of the classical YX-x state is given in
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Canted YX-x

x-FM

hx

0 0.1 0.2 0.3 0.4 0.5
β/π

β1 β2

0.5

1.0

1.5

2.0

2.5

FIG. 3. The RG flow for RFHM in the transverse field hx . There is
a fixed point on the phase boundary controlling the zero-temperature
transition from the YX-x state to the X-FM state, which is in the 3D
Ising universality class. At the Abelian point β = π/2, the transition
is in the 3D XY class. Any deviation from the two Abelian points are
relevant and drive the system into the 3D Ising fixed point. All the
crosses stand for RG fixed points. The whole YX-x state is controlled
by the fixed point at (β = π/4,h = 0), which enjoys the enlarged
mirror symmetry [14,18]. Inside the YX-x state, all the quantum
fluctuation generated C-C0, C-Cπ , and C-IC are irrelevant under the
RG sense, but they are the competing to become the driving seed to
the X-FM. Figures 1 and 2 show that it is the C-C0, which wins the
competition and becomes the driving seed.

Eq. (17). The ground state itself contains information on the
C-C0, C-Cπ , and C-IC magnons. They all compete and move
to the phase transition boundary.

From the classical YX-x state Eq. (15) with the canted
angle Eq. (17) and Eq. (19), we find that they reduce the order
parameter below its classical value,

My(T = 0) = Mc

[
1 − 1

2SN

∑
k

(
P +

k

ω+
k

+ P −
k

ω−
k

− 2

)]
, (27)

where Mc = S
√

1 − (h/hcx)2 is the classical order parameter

and P ±
k = A2

k[1 ± (B2
k + C2

k )/
√

A2
k(B2

k + C2
k ) − B2

k D
2
k ].

When approaching the phase boundary hcx = 2 sin2 β,
the quantum fluctuations get stronger and stronger; finally,
the C-C0 wins the competition and the order parameter
should vanish as My(T = 0) ∼ (hcx − h)β3d with the 3D Ising
exponent βIsing ∼ 0.31. Equation (27) leads to My(T = 0) ∼
� ∼ (hcx − h)1/2 with the mean-field exponent βMF = 1/2.
The quantum fluctuations at the LSW order do not change
the phase boundary hcx and the mean-field exponent. At the
LSW order, near the critical line hcx , the C-C0 magnon gap
� on both sides own the critical scaling � ∼ |h − hcx |1/2,
which also gives the mean-field exponent νMF = 1/2. Note
that νIsing = 0.64 for the 3D Ising model. To achieve these exact
3D Ising exponents, one needs to incorporate the interactions
between the magnons. In practice, just from the symmetry
analysis, we conclude that the Ginsburg-Landau action to
describe the transition is in the 3D Ising universality class.
The T = 0 RG flow is shown in Fig. 3.

At the Abelian β = π/2 point, starting from h > hcx ,
as shown in [18], due to the enlarged U(1) symmetry, the
transition is driven by the simultaneous condensation of the
magnons at the two degenerate minima (π,0) and (π,π ), from
below h < hcx , it is also a simultaneous condensations of
C-C0 and C-Cπ magnons, so the transition is in the 3D XY

universality class.

2. The low-temperature behaviors

Except at the Abelian point β = 0, h = 0, there is a gap
�−(β) in the excitation spectrum in the YX-x canted phase,
so the order survives up to a finite critical temperature Tcx ∼
�−(β,hx) above which the system gets to the X-FM state.
Of course, at the phase boundary in Fig. 1, �−(β,hx) = 0, so
Tcx = 0. Note that the spin wave expansion works in the whole
phase diagram in Fig. 1 at T = 0, but its use at a finite T is
only limited to T � Tcx ; it fails when getting too close to Tcx .
At low temperatures T < Tcx , inside the C-IC regime in Fig. 1,
by expanding ω−

k in Eq. (22) around the C-IC minima (0,±k0
y),

we find that the excitation spectrum takes the relativistic form

ωq =
√

�2
ic + v2

xq
2
x + v2

yq
2
y , k = (

0,±k0
y

) + q, (28)

whose detailed behaviors along the k0
y = ±π/2 are shown

in Figs. 8 and 9. They dominate the contributions to the
magnetization and the specific heat when T � �ic,

Cm(T ) ∼ �3
ic

2πvxvyT
e−�ic/T ,

(29)

My(T ) ∼ My(T = 0) − T 2

2πvxvy

e−�ic/T ,

where My(T = 0) is the zero-temperature staggered magneti-
zation given in Eq. (27).

Following the procedures in [14], one can also evaluate the
uniform and staggered susceptibilities along the y direction
and various dynamic spin correlation functions. Especially,
we expect that the C-IC magnons will lead to two split peaks
located at (0,±k0

y) in the transverse spin structure factors

S+−(�k). All these physical quantities can be measured by
specific heat [29,30], in situ measurement [31], and light or
atom Bragg spectroscopy [32,33], respectively.

3. The finite-temperature phase transitions

Because inside the YX-x phase in Fig. 1, the RG flows
to the fixed point (β = π/4, h = 0), so the finite-temperature
transition from the YX-x canted phase to the X-FM is in
the same universality class as that at the zero-field case. Its
nature was briefly discussed in [14], where we argued that,

due to the extra symmetry breaking of �̃Si = Rx(π )Ry(iyπ )�Si

at β = π/4, its universality class (Fig. 3 in [14]) remains to
be determined. Here we argue that the universality class is
simply a 2D Ising one with the order parameter My = 〈Sy〉 �= 0
in the low-temperature Y -x state and My = 0 in the high-
temperature paramagnet (Fig. 3 in [14]). The extra symmetry
breaking at β = π/4 should not affect its 2D Ising universality
class. Of course, at the Abelian β = π/2 point, it is in the 2D
XY universality class. The finite-temperature transitions at the
Abelian point β = π/2, the mirror symmetric point β = π/2,
and a given 0 < hx < 2 in Fig. 3 is shown in Fig. 4.
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T

3d XY hx

T

3d Ising h

T
KT

3d Ising β=π/2
x

(a) (b) (c)

0 0 0

KT 2d Ising
YX−x

X−FM X−FM
X−FM

2d Ising

Goldstone 

β=π/2 β=π/4 h =1x

YX−x

FIG. 4. Finite-temperature phase transitions. (a) At the Abelian
point β = π/2. The arrows stand for the RG flow. Due to the U(1)
symmetry breaking, there is a Goldstone mode and a 2D Kosterlitz-
Thouless (KT) transition at the low-T phase. (b) Tc reaches maximum
at the mirror symmetric non-Abelian point (β = π/4, hx = 0) (see
Fig. 3 in [14]). (c) At a fixed 0 < hx < 2. Shown is hx = 1.

III. TRANSVERSE FIELD hz

The RFHM in a transverse field along Sz direction is
described by

H = −J
∑

i

[SiRx(π )Si+x + SiRy(2β)Si+y] − Hz

∑
i

Sz
i ,

(30)

C-IC
C-C0

C-Cπ

Z-FM

YZ-x Canted

Y-x state

(0,π)

(0,0)

(π,0)

(π,0)

(π,0)

(π,0)

(π,0)

Sz

Sy

0 0.1 0.2 0.3 0.4 0.5
β/π

β1 β2

hz

1.0

2.0

3.0

4.0

FIG. 5. Phase diagram for RFHM with transverse field hz.
Boundaries between C-C0, C-Cπ , and C-IC are indicated by white
dashed lines. At hz = 0, the ground state is the Y -x state, which is
an exact without any quantum fluctuations. Any hz > 0 will transfer
it into the YZ-x canted state, which suffers quantum fluctuations. At
the critical field hcz(β), the YZ-x canted state undergoes a quantum
phase transition to the Z-FM state. It is in the 3D Ising university
class and always driven by the condensation of C-C0 magnons. The
C-IC magnons always lose to C-C0 magnons before hitting the phase
boundary. At the two Abelian points β = 0,π/2, it is in the 3D
XY class. At the Abelian point β = π/2, C-C0 and C-Cπ magnons
condense simultaneously and lead to a 3D XY class transition to the
X-FM. Due to the lack of generalized mirror symmetry as in the hx

case, the C-IC regime has a more complicated landscape than that
in Fig. 1. The detailed competition in the C-IC regime is shown in
Figs. 6 and 12. The five dots are explained in Appendix C. As shown
in [13,14], the dispersions of C-C0, C-Cπ , C-IC magnons can be
mapped out by the transverse spin structure factors.

where hz is applied along the z direction which is normal to
the Rashba (α,β) SOC in the XY plane.

By applying the U(1)soc symmetry operator U1(φ) =
eiφ

∑
i (−1)xSy

i [14] to Eq. (30) and setting φ = π/2, one can
show that the −hz

∑
i S

z
i can be mapped to the RFHM in a

staggered hx field along the x direction −hx

∑
i(−1)xSx

i . As
expected, the staggered hx could make dramatic difference
than the uniform case discussed in the last section. Similar to
the analysis below Eq. (2), one can see that the Hamiltonian
Eq. (30) has the translational symmetry and the Pz symmetry.
It also keeps T Px and T Py symmetry.

The main results to be achieved in this section is sum-
marized as follows: We show that any infinitesimal hz will
change the Y -x state into a canted YZ-x state shown in
Fig. 5. Unfortunately, the generalized mirror transformation
used in the hx case does not work in the hz case anymore.
This fact makes the landscapes of the C-IC magnons much
more complicated in the hz case than the hx case. Even so,
we are still able to map out the competing boundaries and
detailed structures of the C-C0, C-Cπ , and C-IC magnons
inside the YZ-x canted phase in Fig. 6. As hz increases,
the C-C0 magnons still win the competition and emerge as
the seeds to drive the transition from the YZ-x state to
the Z-FM state at a critical field hcz(β), which is shown
to be also in the universality class of 3D Ising model in
Fig. 5. Due to the enlarged U(1) symmetry mentioned at the

0 0.1 0.2 0.3 0.4 0.5
β/π

β1 β2

hz

1.0

2.0

3.0

4.0
Z-FM

YZ-x Canted

(βπ ,hπ)  

(β0 ,h0)  

ky
0=π/2

(β* ,h*)  hc(β)

h2

h‘3

h3

FIG. 6. Due to the lack of generalized mirror symmetry as in the
hx case in Fig. 2, one needs three separate backbone lines h′

3 and h2,h3

to describe the competitions of the three kinds of magnons and their
boundaries. The thick solid line is the phase boundary hcz. The h′

3

(red line) is the constant contour at k0
y = ±π/2. Along the solid line

parts of h2 (brown line) and h3 (blue line), C-C0 and C-Cπ become
degenerate ω(kx = 0,ky = 0) = ω(kx = 0,ky = π ). The dashed parts
of h2 and h3 are extraneous solutions. The h′

3 line is split into three
segments π/4 < β < βπ ; (0,k

y

0 = ±π/2) is the minimum position.
βπ < β < β0; C-Cπ becomes the minimum position. When β0 <

β < π/2, h′
3 rises above h2 and moves into the C-C0 regime. Details

are given in Appendix C.
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KT

KT

0 β=π/2
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0< h < 2x 2< h < 4x

YZ−xYZ−x

2d Ising
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FIG. 7. Finite-temperature phase transitions (a) at a fixed 0 <

hx < 2 and (b) at a fixed 2 < hx < 4.

Introduction, the transition at the two Abelian points β = 0
and β = π/2 point is driven by the condensation of C-C0

and the simultaneous condensations of the C-C0 and C-Cπ

magnons, respectively, and is in the universality class of the
3D XY model. In principle, all the thermodynamic quantities
such as the magnetization, specific heat, uniform and staggered
susceptibilities in the YZ-x canted phase, the Z-FM, and their
quantum critical scalings can be calculated. We also work out
the finite-temperature phase diagram in Fig. 7.

A. Z-FM state and excitations in the strong field

In a strong transverse field Hz � J , the system is in Z-FM
phase with spin classically fully polarized to the Sz direction
with quantum fluctuations shown in Fig. 5. Introducing
the HP bosons S+ = √

2S − a†aa, S− = a†√2S − a†a, and
Sz = S − a†a, the Hamiltonian Eq. (30) can be written in a
systematic 1/S expansion in terms of the HP bosons. Up to
the LSW order at 1/S, we get

H2 = E0 + 2JS
∑

k

[(hz − 2 sin2 β − cos2 β cos ky)a†
kak

+ (sin2 β cos ky − cos kx)(aka−k + a
†
ka

†
−k)/2], (31)

where the classical ground-state energy E0 = 2JNS2 sin2 β −
HzNS and the dimensionless field hz = Hz/(2JS). Now
the Hamiltonian can be diagonalized by a Bogoliubov
transformation,

H2 =E′
0 + 4JS

∑
k

ωkα
†
kαk, (32)

where E′
0 = E0 − 2JS

∑
k ωk is the ground-state energy at the

order of 1/S and the spin-wave dispersion takes the form

ωk =
√

(hz − 2 sin2 β − cos2 β cos ky)2 − (sin2 β cos ky − cos kx)2, (33)

where, for 0 < β < π/2, one can identify that there is a unique
minimum located at k0 = (kx,ky) = (π,0) with the gap

�π = ωk=k0 =
√

hz(hz − 3 + cos 2β) (34)

and the critical field strength is given by the gap vanishing
condition

hcz(β) = 3 − cos 2β = 2 + 2 sin2 β, (35)

which is shown in Fig. 5.
The excitation around the minimum (π,0) takes the rela-

tivistic form

ωq =
√

�2
π + v2

xq
2
x + v2

yq
2
y , k = k0 + q, (36)

where

v2
x = 1 + sin2 β,

(37)
v2

y = (h − 1) cos2 β + 2 sin4 β,

and the critical velocities are v2
x,c = v2

y,c = 1 + sin2 β. In
contrast to the hx case, here the vx,c and vy,c do not vanish even
at β = 0. The gap vanishing at k0 = (kx,ky) = (π,0) indicate
a quantum phase transition into a spin-orbital correlated state
with orbital order (π,0). It was known that at hz = 0, the
ground state Y -x state also has the (π,0) orbital order. That
indicates that there is only one phase transition and the state
below hcz could be just the YZ-x state with a canted angle.
As to be shown in the next section, we show that it is indeed
the YZ-x state with the orbital order (π,0). Near the QPT,
�π ∼ (hz − hcz)1/2.

Similar to Sec. II A, before starting the next section, we
discuss a little bit further the enlarged symmetry and its
consequences at the two Abelian points β = 0,π/2 in Fig. 5.

The U(1) symmetry at the two Abelian points β = 0,π/2
at a finite hz

At the two Abelian points β = 0,π/2 and hz = 0, the sys-
tem has a SU(2) symmetry in the rotated basis S̃U(2) with S̃i =
Rx(ixπ )Si or ˜̃SU(2) with ˜̃Si = Rx(ixπ )Ry(iyπ )Si , respec-
tively. So Eq. (30) can be mapped to a FM Heisenberg model
in −hz

∑
i(−1)ix S̃x

i [see Eq. (38)] and −hx

∑
i(−1)ix+iy ˜̃Sx

i

[see Eq. (45)], respectively. So at β = 0,π/2, taking the
result from [18], any hz will lead to a spin-flop transition
resulting into a U(1) symmetry breaking canted phase with
one Goldstone mode φ. Then there is another transition to the
Z-FM at a finite hc = 2,4 respectively. These results at the
two Abelian points fit into the general result Eq. (35) and are
shown in Fig. 5.

For (β = 0,hz = 0), transferring back from the S̃U(2)
basis to the original basis, the Hamiltonian Eq. (30) has the
SU(2) symmetry which is generated by

∑
i S

x
i ,

∑
i(−1)ix Sy

i ,
and

∑
i(−1)ix Sz

i . When hz > 0, only
∑

i(−1)ix Sz
i remains

as a conserved quantity. Obviously, the Z-FM state keeps
all symmetry from the Hamiltonian. Having the conserved
quantity eiφ

∑
i (−1)ix Sz

i carrying momentum (π,0) act on the
excitation in Eq. (36) at the minimum (π,0) will generate
another minimum at (0,0). So we conclude that at (β = 0hz >

0), the system has two minima located at (0,0) and (π,0), as
shown in Fig. 5.

For (β = π/2, hz = 0), transferring back from the ˜̃SU(2)
basis to the original basis, the Hamiltonian Eq. (30) has
the SU(2) symmetry which is generated by

∑
i(−1)iy Sx

i ,∑
i(−1)ix Sy

i , and
∑

i(−1)ix+iy Sz
i . When hz > 0, only∑

i(−1)ix+iy Sz
i remain as a conserved quantity. Having the

conserved quantity eiφ
∑

i (−1)ix+iy Sz
i which carries momentum
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(π,π ) act on the excitation in Eq. (36) at the minimum (π,0)
generates another minimum at (0,π ). So we conclude that at
(β = π, hz > 0), the system has two minima located at (π,0)
and (0,π ), as shown in Fig. 5.

Similar to Sec. II A, the U(1) symmetry
∑

i(−1)ix Sz
i or∑

i(−1)ix+iy Sz
i at the Abelian point β = 0 or β = π/2 at a

nonzero transverse field hz is different than the spin-orbital
coupled U(1)soc symmetry

∑
i(−1)ix Sy

i along the line (α =
π/2,β) at hz = 0 in the RFHM Eq. (1).

B. The coplanar Y Z-x canted state below hcz

1. Classical YZ-x canted phase at h < hcz

Here we first achieve the classical YZ-x canted state from
the two Abelian points.

a. Approaching to the right from the Abelian point β = 0.
At β = 0, in the S̃U(2) basis S̃i = Rx(ixπ )Si , the Hamiltonian
Eq. (30) takes the form

H = −J
∑
〈ij〉

S̃i · S̃j − Hz

∑
i

(−1)ix S̃z
i . (38)

When 0 < Hz < Hzc the classical state in the S̃U(2) basis is

S̃i = S(sinθ cos φ, sin θ sin φ,(−1)ix cos θ ). (39)

Reverting back to original basis leads to the classical state
in original basis,

Si = S(sinθ cos φ,(−1)ix sin θ sin φ, cos θ ), (40)

where φ is nothing but the Goldstone mode due to the U(1)
symmetry breaking.

Although we obtained Eqs. (39) and (40) at β = 0, the
same ansatz hold for 0 < β < π/2, whose classical ground
energy is

Ec = −2NJS2[1 − (1 + sin2 β) cos2 θ + hz cos θ

− sin2 β sin2 θ cos2 φ]. (41)

It is easy to see that any β > 0 explicitly breaks the U(1)
symmetry at β = 0, so picks up φ = π/2, opens the gap [34]

to the Goldstone mode φ and leads to the classical YZ-x canted
state,

Si = S(0,(−1)ix sin θ, cos θ ), (42)

with the corresponding classical ground-state energy

Ec = − 2NJS2[1 − (1 + sin2 β) cos2 θ + hz cos θ ]. (43)

Minimization of Eq. (43) leads to the canted angle,

cos θ = hz

2(1 + sin2 β)
< 1, when hz < hcz, (44)

which always has a solution as long as hz < hcz.
b. Approaching to the left from the Abelian point β =

π/2. In fact, one can reach the same results in Eqs. (42)
and (43) from the right at β = π/2. In the ˜̃SU(2) basis ˜̃Si =
Rx(ixπ )Ry(iyπ )Si , the Hamiltonian in Eq. (30) at β = π/2
takes the form

H = −J
∑
〈ij〉

˜̃Si · ˜̃Sj − Hz

∑
i

(−1)ix+iy ˜̃Sz
i . (45)

When 0 < Hz < Hcz, the classical ground state is

˜̃Si = S(sinθ cos φ, sin θ sin φ,(−1)ix+iy cos θ ). (46)

Reverting back to the original basis leading to the classical
ground state in the original basis,

Si = S((−1)iy sin θ cos φ,(−1)ix sin θ sin φ, cos θ ), (47)

with the classical ground-state energy

Ec = −2NJS2[1 − (1 + sin2 β) cos2 θ + hz cos θ

− cos2 β sin2 θ cos2 φ]. (48)

Obviously, any β < π/2 picks up φ = π/2. Then Eqs. (47)
and (48) reduce to Eqs. (42) and (43), respectively.

2. Spin-wave analysis in the Y Z-x canted state

Starting from the classical YZ-x state Eq. (42) and using
similar procedures to obtain Eq. (22), we obtain the spin-wave
dispersion,

ω±
k =

√
A2

k + B2
k + C ′2

k − C ′′2
k − D2

k ± 2
√(

A2
k − D2

k

)
B2

k + (AkC
′
k − C ′′

k Dk)2, (49)

where the expressions of Ak,Bk,Dk are listed in Eq. (20) and

C ′
k = sin2 θ cos kx,

(50)
C ′′

k = cos2 θ cos kx,

where one can see C ′
k + C ′′

k = Ck = cos kx listed in Eq. (20).
Of course, the θ in Eq. (44) in the Hz field is different from
that in Eq. (17) in the Hx field.

From Eq. (49), one can determine the minimum positions
inside the YZ-x state. The general structure of Fig. 5 is similar
to the hx case (Fig. 1). However, due to the lack of generalized
mirror symmetry as in the hx case, the detailed landscape of
the C-IC regime in Fig. 5 is much more complicated than that
in the hx case. In this section, we only outline the general

structure. In the next section and Appendix C, we describe
details of the shape of the C-IC regime in Fig. 5.

In Fig. 5, we still found there are three regimes inside
the YZ-x canted state: C-C0 regime, C-IC regime, and C-Cπ

regime which, at hx = 0, reduce to the three regimes identified
in [14]. Among the three magnons, only C-C0 wins the game
and drives the transition, so the transition from the YZ-x
state to the Z-FM is driven by the condensations of the C-C0

magnons only. The C-IC magnons still lose to the C-C0 in the
competition.

Now we can check the consistence of the orbital orders on
both sides of hcz. The YZ-x state has the orbital order (π,0);
the C-C0 has the orbital order (0,0) = (π,0) in the RBZ. So
its condensation on the top of YZ-x could lead to either of
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two orbital orders, (π,0) + (0,0) = (π,0) or (π,0) + (π,0) =
(0,0), in the EBZ. The (0,0) order is nothing but that of the
Z-FM in Fig. 5.

C. Evolution of the C-IC magnons inside the C-IC regime
in Fig. 5

As shown in Appendix C, the line h′
3 in Fig. 6 is determined

by setting the first derivative of dispersion vanishing at (0,k
y

0 =
π/2). The lines h2 and h3 are determined by the condition that
C-C0 and C-Cπ become degenerate. There is one crossing
point (β0,h0) between h′

3 and h2 in Fig. 6.
In the hx case discussed in Sec. II, both conditions are the

same, and so lead to just one single line with the three different
segments in Fig. 2 presented in Sec. II C. However, in the hz

case, there are two different conditions, which leads to three
different lines h′

3 and h2,h3, which make the detailed shape of
the C-IC regime more complicated than that in hx case.

Along the h′
3, the minimum at k

y

0 = π/2 stays as the (local)
minima until βflat ∼ 0.33π , where the second derivative of
the dispersion at (0,k

y

0 = π/2) vanishes, then it becomes a
maximum after β > βflat. [In fact, before getting to βflat ∼
0.33π , there is another point (let us call it βπ in Fig. 6)
where the (0,k

y

0 = π/2) is just a local minimum, while the
C-Cπ becomes the global minimum.] Then C-Cπ becomes the
minimum, while C-C0 becomes the maximum, then until C-Cπ

and C-C0 becomes degenerate at β0 ∼ 0.337 29π in Fig. 6.
After β > β0, it moves into the C-C0 regime, where C-C0

becomes the minimum. h′
3 rises above the h2 line. So β0 ∼

0.337 29π is determined by setting h2 = h′
3, as shown in Fig. 6.

So, in practice, the h′
3 can be split into two segments π/4 <

β < βπ , where (0,k
y

0 = π/2) is the minimum position, and
βπ < β < β0, where C-Cπ becomes the minimum position.
(So βflat is really not that important anymore.) Then when
β0 < β < π/2, h′

3 rises above h2 and moves into the C-C0

regime. Then we have to use the h2 line to delineate the C-C0

and C-Cπ boundaries.
So the C-IC boundary along (0,k

y

0 = π/2) happens at
(βπ,hπ ), where it turns into C-Cπ . In principle, one can
determine the whole C-IC boundary in the whole YZ-x phase.
Indeed, we determine the C-IC boundary along the line h2

and h3 in Fig. 11. Connecting all the special points along the
three lines h2,h3,h

′
3 in Figs. 6 and 11 in Appendix C and also

β1,β2 at hx = 0 lead to Fig. 5 and also the evolution around
(β0,h0) in Fig. 12. As shown in [13], the I-IC dispersion can
be mapped out by the transverse spin structure factors.

D. The transition from the Y Z-x canted state to the Z-FM at
T = 0 and finite T

1. The T = 0 transitions: Symmetry breaking and
order parameter

The transition from the YZ-x canted state to the Z-
FM at T = 0 is still characterized by the order parameter
My(T = 0) = 〈Sy〉. As said at the beginning of Sec. III, the
Hamiltonian Eq. (2) has has the translational symmetry and
the Pz symmetry: kx → −kx, Sx → −Sx, ky → −ky, Sy →
−Sy, Sz → Sz. The Z-FM respects both symmetries, so
My(T = 0) = 0, but the YZ-x states breaks both, but still
keeps the combinationPz × (x → x + 1), so My(T = 0) �= 0.

Due to the spin-orbital locking, destroying the My(T = 0) =
〈Sy〉 order will also restore the translational symmetry along
the x direction. Similar to the hx case, there are relativistic
gapped C-C0 magnons on both sides indicating the dynamic
exponent z = 1. So we conclude that the transition is also in
the 3D Ising universality class. The LSW expansion only leads
to the mean-field exponent βMF = 1/2, νMF = 1/2.

At the two Abelian points β = 0 (or β = π/2), starting
from h > hcz, as shown in [18], due to the enlarged U(1)
symmetry, the transition is driven by the simultaneous con-
densations of the two degenerate minima at (0,0) and (π,0)
[or (0,π ) and (π,0)] shown in Fig. 5 and is in the universality
class of 3D XY model. From below h < hcx , at β = 0, it
is just the condensation of C-C0 magnons, at β = π/2, it is
a simultaneous condensations of C-C0 and C-Cπ magnons,
so the transition is also in the 3D XY universality class. After
considering the above differences, the T = 0 RG flow diagram
is similar to Fig. 3.

2. The finite-temperature phase transitions

All the physical quantities at T � Tcz can be similarly
evaluated as in hx case.

Because inside the YZ-x phase in Fig. 5 the RG flows
to the fixed point (β = π/4, hz = 0), the finite-temperature
transition at Tcz from the YZ-x canted phase to the Z-FM is
in the same universality class as that at zero-field case shown
in Fig. 3 in [14]. As argued in Sec. II D 3, it is in the 2D
Ising universality class. Of course, at the two Abelian points
β = 0, π/2, it is in the 2D XY universality class. The finite-
temperature transitions at the two Abelian points β = 0,π/2
are similar to Fig. 4(a), at the mirror symmetric point β = π/2
is similar to Fig. 4(b). So we only show them at a given 0 <

hx < 4 in Fig. 7.

IV. COMPARISONS WITH EARLIER WORKS

The C-IC magnons in the zero-field RFHM along the line
(α = π/2,β) stand for short-ranged incommensurate orders.
However, they are extrinsic, not embedded in the ground
state due to the absence of quantum fluctuations in its exact
ground state Y -x state. They need to be excited by thermal
fluctuations or dragged out by various external probes which
introduce quantum fluctuations into the ground state. In order
to transfer the short-ranged incommensurate orders into long-
range ordered ones, one needs to drag out these C-IC first
and then drive them into condensations. However, as shown
in [18] and this work, these C-IC respond quite differently
to the hy and hx,hz fields. In the hy case which keeps the
spin-orbital coupled U(1)soc symmetry of the RFHM at a zero
field, any small hy < hc1 will drag out the C-IC magnons,
but the Y -x state stays as the exact ground state, so the C-IC
magnons remain extrinsic, detached form the exact ground
state and need to be thermally excited. As hy → h−

c1, the C-IC
magnons’ gap collapses to the ground state and become the
driving seeds to lead to various IC-SkX phase through a line of
fixed points at hy = h−

c1. As stressed in [18] and Appendix A,
from below h < hc1, the IC-SkX is due to the condensations of
nonrelativistic C-IC at a single minim (0,k0

y), so the transition
at hc1 has the dynamic exponent z = 2, and from above
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h > hc2, the IC-SkX is due to the simultaneous condensations
of nonrelativistic C-IC at two degenerate minima at (0,k0

y)
and (π,k0

y), so the transition at hc2 also has the dynamic
exponent z = 2. On the experimental side, the IC-SkX phase
matches rather naturally and precisely the incommensurate,
counter-rotating (in the A/B sublattice), noncoplanar magnetic
orders detected on iridates α,β,γ -Li2IrO3 [7]. Both hx and hz

explicitly break the spin-orbital coupled U(1) symmetry.
However, any small hx and hz will transfer Y -x state into the

YX-x or YZ-x phase, respectively, which support only gapped
magnons. Unfortunately, as shown in Figs. 1 and 5, as hx and
hz increase, the relativistic C-IC with at least two minima at
(0,±k0

y) always lose to C-C0, so cannot emerge to drive any
phase transitions. There is only one transition to the X-FM or
Z-FM which is driven by the condensation of C-C0 and is in the
3D Ising universality class with the dynamic exponent z = 1.
So there is no chance to get any incommensurate phases.

In the (β,hy) phase diagram, the IC-SkX phase is sur-
rounded by four other phases: the two commensurate coplanar
canted phases at the left and right in the SOC parameters
and two collinear phases Y -x and Y -FM in the low and high
field, respectively. The two canted phases and the IC-SkX
phases break the U(1) symmetry spontaneously, so support
a gapless excitation. The two canted phases in the hy case
are dramatically different than the YX-x and YZ-x canted
phases in the hx and hy cases. The former breaks the U(1)
symmetry spontaneously, does not support any C-IC magnons,
but supports the gapless Goldstone mode at the (π,0). There
is no direct transition from the Y -x state to the canted state,
there is always an IC-SkX phase sandwiched between the two.
There is a direct transition from the canted phase to the Y-FM
phase through a roton condensation at (0,0) and to the IC-SkX
phase through a bosonic Lifshitz transition.

However, both hx and hz explicitly break the spin-orbital
coupled U(1) symmetry. Any small hx and hz will transfer the
Y -x state into the YX-x or YZ-x canted phases, respectively,
which are essentially the same phase as the Y -x phase. So
naturally, they also support gapped C-C0, C-Cπ , and C-IC
magnons. In fact, one can also group hy and hx as an in-plane
field and hz in Eq. (30) as the perpendicular field. In the
in-plane case, there is a mirror symmetry or a generalized
mirror symmetry, respectively, to characterize the competition
among the magnons, while in the perpendicular field there is
no such mirror symmetry. Of course, the finite-temperature
transitions in hy and hx,hz cases shown in Figs. 4 and 7 are
also quite different.

In a recent preprint [13], we studied the rotated antiferro-
magnetic Heisenberg model (RAFHM), which is the fermionic
analog of the RFHM [14]. We found that the C-C0 and C-IC
magnons in the RAFHM are also intrinsic ones generated
by quantum fluctuations, take relativistic dispersion, and are
already embedded in the ground state. Their parameters such
as the minimum positions (0,±k0

y), gap, and velocities vx,vy

can be precisely measured by the peak positions, width, and
Lorentzian shape of the transverse structure factor at T = 0,
respectively. In this sense, the relativistic C-C0 and C-IC
magnons in the Y -y state in the RAFHM at zero field resemble
those in the YX-x and YZ-x canted states studied in this paper.

In this work, we only focus along (α = π/2,β) in a
transverse field hx or hz. Obviously, it is important to study

how these magnons respond when α �= π/2 (but at zero field),
which also explicitly breaks the spin-orbital coupled U(1)
symmetry at α = π/2. This investigation is complementary to
(α = π/2,β) in a nonzero field hx or hz studied in this paper.
It has been achieved in a very recent preprint [35], where we
showed that turning on α �= π/2 leads to new competitions
very different from the two Zeeman field cases studied here,
which, in turn, leads to different phases and phase transitions.

V. DISCUSSIONS AND CONCLUSIONS

It is easy to see why the transition from YX-x to X-FM in
Fig. 1 and YZ-x to Z-FM in Fig. 5 have to go through C-C0

instead of C-Cπ . This is because YX-x or YZ-x have the
orbital order (π,0) and the C-C0 has the orbital order (0,0) =
(π,0) in the RBZ. So its condensation on the top of YX-x or
YZ-x order could lead to two orbital orders, either (π,0) +
(0,0) = (π,0) or (π,0) + (π,0) = (0,0) in the EBZ. The (0,0)
order is nothing but that of the X-FM in Fig. 1 or Z-FM
in Fig. 5. However, the C-Cπ has the orbital order (0,π ) =
(π,π ) in the RBZ. So its condensation on the top of YX-x or
YZ-x order could lead to two orbital orders, either (π,0) +
(0,π ) = (π,π ) or (π,0) + (π,π ) = (0,π ), in the EBZ; none of
the two contains the (0,0) order. So C-Cπ alone cannot drive
the transition to X-FM or Z-FM.

We established our results at the LSW order. Following [13],
one can perform the 1/S corrections due to the magnon
interactions to the results at the LSW order. We expect that the
correction is very tiny even at s = 1/2, as found in [13], except
very close to the quantum phase transitions in Fig. 1 and 5.
So we expect that the competition boundaries among different
magnons in Figs. 2 and 6 suffer very little shift. As shown
in [13], the dispersions of the magnons, and therefore their
boundaries in Figs. 2 and 6, can be mapped out by structure
factors which can be detected by Bragg spectroscopy [32,33]
in the cold-atom experiments or magnetic inelastic x-ray
scattering in materials with strong SOC [22–24]. Of course,
different spin-orbital correlated magnetic orderings in Figs. 1
and 5 and the finite-temperature phase transitions between
them in Figs. 4 and 7 can be detected by similar experimental
techniques.

It is instructive to compare the C-IC magnons with
quantum fluctuations generated in multiple vortices in p/q

filling Boson Hubbard models [36–39], those in high-Tc

superconductors [40,41], and exciton superfluids in Bilayer or
trilayer quantum Hall systems [8,9]. The vortices are gapped
topological excitations inside a superfluid; there are at least
q degenerate minima in their dispersions which transform to
each other under the projective representation of the magnetic
space group (MSG). So the gap closing (or condensations)
of the q minima lead to various kinds of lattice symmetry-
breaking insulating states. So these quantum fluctuations
generated vortices are short-range translational symmetry-
breaking insulating orders embedded inside the translational
invariant superfluid states. Even inside the superfluid state,
they are the crucial ingredients of the superfluid ground state
and are generated by the intrinsic quantum fluctuations. Their
condensations tuned by interactions spark quantum phase
transitions into various neighboring insulating states, breaking
various translational symmetries of lattices. Of course, vortices
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FIG. 8. (Top) Phase diagram in the hx case. The dashed
line indicates the contour k0

y = ±π/2 inside the C-IC regime.
Colored dots stand for the five parameters [β,h(β)]—
(0.25π,0), (0.27π,0.531 115), (0.29π,0.788 082), (0.31π,1.003 63),
(0.33π,1.194 86)—used for the figure falling in the range π/2 <

β < β0 ≈ 0.330 458π . (Bottom) Spin-wave spectrum corresponding
to the four dots in the top figure. There are no other contours
crossing the k0

y = π/2 contour in this range. For example, the contour
k0

y = π/2 + 10−5 will hit the extension of the contour k0
y = π/2 in

the range β0 � β � β∗ (see Fig. 9). As hx increases, the gap at
k0

y = ±π/2 increases. Note that even at β = 0.33π, h = 1.194 86
the spectrum is dispersive instead of being a flat line.

are bosons and satisfy boson statistics. Here these C-C0, C-Cπ ,
and C-IC gapped magnons inside the YX-x or YZ-x state play
similar roles as the vortices inside a translational invariant
superfluid state. They are the crucial ingredients of the YX-x
or YZ-x state and are generated by the intrinsic quantum
fluctuations. Their condensations tuned by various Zeeman
fields spark quantum phase transitions into various neighbor-
ing spin-orbital correlated commensurate or incommensurate
phases. The salient feature of the C-IC magnons is that they
may condense at any incommensurate wave vector leading to
incommensurate spin-orbital correlated magnetic phases. This
is indeed what happens in the hy Zeeman field studied in [18].
However, in the hx,hz fields studied in this paper, they are
eliminated before their possible condensations.

The multiple local (metastable) or global minima structure
of the C-IC magnons shown in Figs. 8, 9, and 10 indicate
some short-ranged quantum fluctuations with multiple length
scales. The complex structure is intrinsic and embedded in
the quantum ground state, which may resemble the complex
multiple local minimum landscapes in quantum spin glass

FIG. 9. The spin-wave spectrum for several [β,h(β)] in the range
β0 � β � β∗ in the top part of Fig. 8. The arrow are guides to the
minima locations. Due to the generalized mirror symmetry, there are
four degenerate minima which are symmetric with respect to ky =
±π/2, respectively. Due to the ky → −ky symmetry, the four minima
are also symmetric with respect to ky = 0. As increasing β from β0

to β∗, the minima positions continuously shift from π/2 to either 0 or
π . For the red curve (β = 0.330 464π ), the four degenerate minima
are at k0

y = ±π/3,±2π/3. It also indicates that the fpour contours
will hit the extension of the contour k0

y = ±π/2 at β = 0.330 464π

shown in Fig. 2.

[42–45]. However, the former is SOC induced; the latter is
due to quenched disorders. So the SOC may induce some
similar complex phenomena as the disorders do.

One of the original goals of studying the SOC effects
in quantum spin systems is to look for possible spin-liquid
phases. It is generally assumed [46] that in the presence of
SOC, the spin rotation symmetry is completely broken, so
the Lieb-Schultz-Mattis-Oshikawa-Hastings (LSMOH) the-
orem [47–49] may not apply. However, Oshikawa’s argu-
ments [48] require only U(1) symmetry with the Sz conser-
vation instead of the full SU(2) symmetry. The quantum spin
Hall effect in the Kane-Mele model [50] in a honeycomb
lattice is an Abelian SOC case with the Sz conservation.
Of course, in the Kane-Mele model, the additional possible
Rashba or Dresselhaus SOC spoils the U(1) symmetry, but
the time-reversal symmetry T remains. The line (α = π/2,β)
at zero field is the first non-Abelian SOC case which still
owns a spin-orbital coupled U(1) symmetry. At filling factor
n = 1, there is also only one spin s = 1/2 per unit cell in the
original basis. In the U(1) basis [14], it becomes an explicit
U(1) symmetry with the expense of breaking the translational
symmetry of the Hamiltonian to two sites per unit cell. So
when trying to apply the Oshikawa’s argument in the U(1)
basis, one run into two spin-1/2’s per unit cell, so it still
does not apply. Then the possible new mechanisms [46] only
assuming T may apply to search for possible spin-liquid states
in the presence of SOC in some lattices. The longitudinal [18]
Zeeman field hy still keeps the U(1) symmetry, but breaks the
T symmetry. Here the two transverse fields break both the
U(1)soc symmetry and the time reversal explicitly, so it is not
surprising that we only find the symmetry-breaking ground
states shown in Figs. 1 and 5 instead of any spin-liquid ground
state in a square lattice. Note that in a previous study of a
frustrated Ising model in a transverse field [25,26], due to its
violation of both the LSMOH condition and the time-reversal
symmetry, no spin liquids were found either.
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In this work, we focus only on quantum phases with only
bosonic excitations and without topological orders. It can
be considered as incorporating possible dramatic effects of
SOC on a well-studied 2D Ising, anisotropic (or isotropic)
quantum XY model in a transverse field [5]. As said in the
Introduction, in fermionic systems [8–13], the quantum phase
supports both fermionic excitation and collective bosonic
excitations. The two sectors may compete to lead to various
other quantum phases under various external probes. In a
recent preprint [51], we studied the attractive Hubbard model
with Rashba or Dresselhaus spin-orbit coupling in a 2D square
lattice subject to a perpendicular hz field which is the weak-
coupling and negative-interaction cousin of Eq. (30). We find
it is the touching (or gap closing) of fermionic quasiparticle
excitations which signifies a topological transition from a
topological SF to a trivial one or to a band insulator. Obviously,
a fermionic quasiparticle cannot condense, but they could
change the topological winding numbers and therefore spark
topological transitions. It remains much more challenging to
study topological confinement and deconfinement transitions
driven by condensations of fractionized particles satisfying
Abelian or non-Abelian statistics [4,6]. Unfortunately, in
contrast to bosonic or fermionic excitations which are only
short-range entangled, one may not be able to treat these
fractionized particles as independent particles due to the long-
range entanglements meditated by Abelian or non-Abelian
Chern-Simon interactions [4,6,40,52,53].
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APPENDIX A: ENERGY SPECTRUM SYMMETRY
ANALYSIS OF THE Y X-x STATE IN THE hx CASE AND

THE Y Z-x STATE IN THE hz CASE

The zero-field RFHM studied in [14] has the translational
symmetry and the T ,Px, Py , andPz symmetry. Along the line
(α = π/2,β), it also has the spin-orbital coupled U(1) sym-

metry [H,
∑

i(−1)ix Sy

i ] = 0. Under the local rotation �̃Si =
Rx(π )Ry(iyπ )�Si and β → π/2 − β. At the middle point β =
π/4, the Hamiltonian is invariant under such a transformation.
The Y -x state breaks all these symmetries except the U(1)
symmetry and thePy symmetry: Sy → Sy, kx → −kx, Sx →
−Sx, Sz → −Sz. However, it still keeps Px × (x → x + 1)
and Pz × (x → x + 1) symmetry, so the excitation spectrum
must have the ky → −ky symmetry also, as indeed respected
by the LSW spectrum shown in [14]. At β = π/4, the Y -x

state also keeps the �̃Si = Rx(π )Ry(iyπ )�Si followed by the T ,
which is called the mirror symmetry M in [18].

The RFHM in the longitudinal hy field enjoys the trans-
lational symmetry and the Py symmetry, breaks Px,Py ,
of course, breaks Px × (x → x + 1) and Pz × (x → x + 1)
symmetry, but still keeps T Px and T Py . Along the line

(α = π/2,β), it keeps the spin-orbital coupled U(1) symmetry.
At β = π/4, it also keeps the M symmetry: The Y -x state
at h < hc1 keeps Py symmetry, but breaks the translational
symmetry by one lattice site (x → x + 1), so the excitation
spectrum may not have the ky → −ky symmetry anymore.
Indeed, the hy field just picks one of the two degenerate minima
±k0

y and condenses it at h = hc1, as shown in Fig. 1 in [18].
As said at the beginning of Sec. II, the RFHM in the hx trans-

verse field Eq. (2) enjoys the Px symmetry—Sx → Sx, ky →
−ky, Sy → −Sy, Sz → −Sz—and the translational symme-
try. The YX-x state breaks both thePx symmetry and the trans-
lational symmetry by one lattice site (x → x + 1), but keeps
the combination of the two Px × (x → x + 1). So the excita-
tion spectrum must have the ky → −ky symmetry. This is in-
deed respected by the LSW spectrum shown in Figs. 2, 8, and 9.

Very similarly, as said at the beginning of Sec. III,
the RFHM in the hz transverse field Eq. (30) enjoys
the translational symmetry and the Pz symmetry—kx →
−kx, Sx → −Sx, ky → −ky, Sy → −Sy, Sz → Sz—which
is also equivalent to a joint π rotation of both the spin and
the orbital around the ẑ axis. The YZ-x state breaks both
the Pz symmetry and the translational symmetry by one
lattice site (x → x + 1), but keeps the combination of the two
Pz × (x → x + 1). So the excitation spectrum must have the
ky → −ky symmetry also. This is indeed respected by the
LSW spectrum shown in Figs. 10 and 11.

Both hx and hz break the U(1) symmetry. There is also
no mirror transformation anymore. This leads to dramatic
different responses of the magnons under hx,hz studied in
this paper than those in the hy investigated in [18].

APPENDIX B: THE EVOLUTION OF C-IC IN hx CASE

As motivated in Sec. II C, we like to investigate possible
“generalized” mirror symmetry around ky = π/2. So we apply

FIG. 10. (Top) When β increases from π/4 to π/2 along h′
3,

the contour extreme at k0
y = ±π/2 goes through (I) concave, (II)

inflection point, and (III) convex (namely ∂2ωk

∂k2
y

|
k=(0,π/2)

> 0, = 0,

< 0), with the inflection point sitting at βf lat ≈ (0.328 ± 0.001)π .
(Bottom) The spin-wave dispersion along h′

3 for different β: (a)
0.30π , 0.31π , 0.32π falling in the range π/4 < β < βflat, k0

y = ±π/2
is at least a local minimum; (b) 0.33π , 0.34π , 0.35π falling in
the range βflat < β < π/2. k0

y = ±π/2 becomes at least a local
maximum.

024409-14



CLASSIFICATION OF MAGNONS IN ROTATED . . . PHYSICAL REVIEW B 94, 024409 (2016)

FIG. 11. (a) Along h2, the minimum location of the dispersion
is k = (0,0), then becomes k = (0,0 < k0

y < π ), and then becomes
either k = (0,0) or k = (0,π ), which are degenerate along h2.
(b) Along h3, the minimum location of the dispersion is k = (0,0 <

k0
y < π ) and then becomes k = (0,0).

a shift k = (0,π/2) + q to the dispersion Eqs. (22) and (20)
and get

Aq = 2 + (cos2 β − sin2 β sin2 θ ) sin qy,

Bq = sin 2β sin θ cos qy,
(B1)

Cq = cos qx,

Dq = − sin2 β cos2 θ sin qy.

It is easy to see that the only term which is not mirror symmetric
with respect to qy = 0 is contained in Aq . [Dq has no problem
because it is squared in Eq. (22).] Making the spectrum mirror
symmetric with respect to qy = 0 dictates

cos2 β − sin2 β sin2 θ = 0. (B2)

Plugging in the Eq. (17) leads to Eqs. (25) and (26).
Equation (26) is obtained demanding that the energy spec-

trum is symmetric with respect to k0
y = π/2, so it guarantees

it must be an extreme (either minimum or maximum) at k0
y =

π/2 and also the degeneracy condition ωk=(0,0) = ωk=(0,π).
This explains why Eq. (26) also contains the C-C0/C-Cπ

boundary Eq. (25).

APPENDIX C: THE EVOLUTION OF C-I C IN hz CASE

Following the procedures in the hx case, we first determine
the boundary between C-C0 and C-Cπ by setting ω−

k (0,0) =
ω−

k (0,π ). Using Eq. (49), we find it has four positive roots
h1,h2,h3,h4 and four negative roots. After comparing with
numerical results, we find only the two roots, h2 and h3, are
physical:

h2 =
√

2(3 − cos 2β)(1 − cos 2β),
(C1)

h3 = (3 − cos 2β)

√
−2 cos 2β

1 + cos 2β
.

Setting h2 = h3 leads to β = β∗ = 0.295 296π , as shown in
Fig. 6. When 0.25π < β < β∗, h = h3, when β∗ < β < π/2,
h = h2.

Next we determine the constant contour at k0
y = π/2; thus,

we need solve 0 = ∂ω−
k

∂ky
|
k=(0,π/2)

, which leads to a quartic

C-C0

C-Cπ

h3

h2

(β0 ,h0)

C-IC h’3

h

0.3

β/π

3.0

0.32

3.2

3.4

0.34 0.360.28

2.8

3.6

3.8

FIG. 12. Fine structure of C-C0, C-IC, and C-Cπ boundaries
around (β0,h0). It is reached by connecting those special points along
the three lines h2 (solid and dashed brown), h3 (solid and dashed
blue), and h′

3 (solid red) in Figs. 6 and 11. The thick solid black line
is the phase boundary hcz.

equation in h2,

c8h
8 + c6h

6 + c4h
4 + c2h

2 + c0 = 0, (C2)

where the coefficients c8,c6,c4,c2,c0 are functions of β. This
equation also has four positive roots h′

1,h
′
2,h

′
3,h

′
4 and four

negative roots; we find that only h′
3 is a physical solution.

Its analytic expression is complicated, so we only show its
numerical solution in Fig. 6. Setting h2 = h′

3 leads to β =
β0 = 0.333 729π ; the three lines h2,h3,h

′
3 and their crossings

are drawn in Fig. 6.
Since we set 0 = ∂ωk

∂ky
|
k=(0,π/2)

, the dispersion around ky =
±π/2 changes, as shown in Fig. 10.

We can summarize the evolution along the h′
3 line in the

following.
Along h′

3, when 0.25π < β < βflat, (0,π/2) is a local
minimum; when βflat < β < π/2, (0,π/2) is a local maximum.

Along h′
3, when 0.25π < β < βt2, (0,0) is a local maxi-

mum; when βt2 < β < π/2, (0,0) is a local minimum.
Along h′

3, when 0.25π < β < βt1, (0,π ) is a local maxi-
mum; when βt1 < β < π/2, (0,π ) is a local minimum.

The relation between these β are βt1 < βflat < βt2.
If 0.25π < β < βt1, (0,π/2) is a global minimum.
If βt1 < β < βflat, we need compare (0,π/2) with (0,π );

if βt1 < β < βtf , (0,π/2) is a global minimum;
if βtf < β < βflat, (0,π ) is a global minimum.

If βflat < β < βt2, (0,π ) is a global minimum.
If βt2 < β < π/2, we need compare (0,π ) with (0,0);

if βt2 < β < β0, (0,π ) is a global minimum;
if β0 < β < π/2, (0,0) is a global minimum.

As summarized in Sec. III C, if 0.25π < β < βtf , (0,π/2)
is a global minimum; if βtf < β < β0, (0,π ) is a global
minimum; if β0 < β < π/2, (0,0) is a global minimum. The
final result is shown in Fig. 6

The minimum structure along h2 and h3 are shown in
Fig. 11(a) and 11(b), respectively.

Combining all the special points along the three lines
h2,h3,h

′
3 in Figs. 6 and 11 and also β1,β2 at hx = 0 leads

to Fig. 5 and the evolution around (β0,h0) in Fig. 12.
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