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Magnetic phenomena in itinerant electron systems have been at the forefront of materials science. Here
we show that the Weyl spin-orbit coupling (SOC) in three-dimensional repulsively interacting itinerant Fermi
systems opens up a platform to host new itinerant magnetic phases, excitations, and phase transitions. A putative
ferromagnetic state (FM) is always unstable against a stripe spiral spin density wave (S-SDW) or a stripe
longitudinal SDW (LSDW) at small or large SOC strengths, respectively. The stripe-ordering wave vector is
given by the nesting momentum of the two SOC-split Fermi surfaces with the same or opposite helicities at
small or large SOC strengths, respectively. The LSDW is accompanied by a charge density wave (CDW) with
half of its pitch. The transition from the paramagnet to the SSDW or LSDW+CDW is described by quantum
Lifshitz-type actions, in sharp contrast to the Hertz-Millis types for itinerant electron systems without SOC. The
collective excitations and Fermi surface reconstructions inside the SSDW and LSDW+CDW are also studied.
The effects of a harmonic trap in cold-atom experiments are briefly discussed. In view of recent ground-breaking
experimental advances in generating two-dimensional SOC in cold atoms, these phenomena can be observed in
current or near-future cold-atom experiments even at very weak interactions. They may also be relevant to some
itinerant magnetic materials with a strong SOC.
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I. INTRODUCTION

The investigation and control of spin-orbit coupling (SOC)
[1] have become subjects of intensive research in condensed
matter and cold atoms since the discovery of the topological
insulators [2,3]. It was found to be a critical factor leading to
a whole new class of electronic states in correlated electron
materials [4]. In cold-atom systems, since the experimental
realizations of one-dimensional (1d) SOC 6 years ago [5,6],
there have been recent ground-breaking experimental advances
in generating 2d Rashba SOC in both 40K Fermi gas [7–9]
and 87Rb spinor BECs [10]. The possible heating issues in
these experiments are well under control, and many-body
phenomena due to the interplay between SOC and interactions
are being investigated. Generating the 2d SOC is a tremendous
advance over the 1d SOC generated in previous experiments
(for a review, see [5]), while generalizing 2d SOC to 3d SOC
in these experiments is straightforward. So the 3d isotropic
(Weyl) SOC is expected to be implemented in very near future
experiments. So far, there have been extensive theoretical
investigations on various effects of SOC on the pairing physics
of attractively interacting Fermi gases [11,12]. However, there
are still relatively few works on the repulsive side. In view
of the tunability of weak to strong repulsive interaction in the
current experiments [7–10], it becomes topical and important
to investigate possible new many-body phenomena due to
the interplay between the SOC and the repulsive interactions
[13–18].

On the other forefront, magnetic phases and phase transi-
tions in itinerant electron systems has been a vigorous research
field in materials science. It dates back to Stoner’s ferro-
magnetic (FM) instability [19], Hertz-Millis theory [20,21] to

describe magnetic transition in itinerant Fermi systems without
SOC, up to recent doping-dependent charge and spin orderings
in high-temperature superconductors [22,23]. In cold-atom
systems, there has been both experimental [24] and theoretical
work [25] on possible itinerant FM in a purely repulsively
interacting two-component Fermi system. But so far, possible
dramatic effects of the SOC on the magnetic orders and
transitions in the itinerant fermionic systems have not been
discussed.

In this paper, we address this outstanding problem by
studying repulsively interacting Fermi gas with the Weyl
SOC. We show that the SOC leads to new classes of
itinerant magnetic phases, excitations, and phase transitions.
We classify the symmetries of the SOC Hamiltonian and find
their exact constraints on the density-spin response functions.
On the paramagnet (PM) side, we identify one gapless mode
and three gapped modes (one longitudinal and two transverse
modes). The SOC leads to the splitting of two transverse
modes at any finite momentum. A putative ferromagnetic state
(FM) is always unstable against a stripe coplanar spiral spin
density wave (S-SDW) or a stripe collinear longitudinal SDW
(LSDW) at small or large SOC strengths, respectively. Their
stripe-ordering wave vector is given by the nesting momentum
of the two Fermi surfaces split by the SOC with the same
helicity or opposite helicities at small or large SOC strengths,
respectively. There is an accompanying charge density wave
(CDW) to the LSDW with half of its pitch. We also construct
a unified quantum Ginzburg-Landau action to study the
PM to the putative FM, SSDW, or LSDW+CDW transition
and find it is of quantum Lifshitz type which is in sharp
contrast to Hertz-Millis type for itinerant electron systems
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without SOC. The collective excitations and Fermi surface
(FS) reconstructions inside the SSDW and LSDW+CDW are
also studied. At a relatively large SOC (or dilute Fermi gas),
even a very weak interaction can drive the system into the
SSDW or LSDW+CDW due to the nearly flat band structure
near the bottom (Weyl shell) of the spectrum. This salient
feature makes these novel itinerant magnetic phases easily
experimentally accessible even at weak interactions. Near
the end of the paper, we briefly discuss the effects of the
harmonic trap in observing these phenomena. In view of
recent ground-breaking experimental realizations of a 2d SOC
[7–10], these new phenomena could be probed [5,26–31] in
near-future cold-atom experiments and may also be relevant
to some materials with SOC [4,17].

The Hamiltonian for a repulsively interacting two-
component Fermi gas with the isotropic Weyl SOC VSO =
λ�k · �σ is

H =
∫

d3�r
[
�†

(−�
2∇2

2m
− μ + VSO

)
�

+ g

∫
d3�r�†

↑(�r)�†
↓(�r)�↓(�r)�↑(�r)

]
, (1)

where the SOC strength λ = gF μB∇B

3m�
can be tuned by the

magnetic field gradient ∇B in the scheme [32,33], gF is the
Landé factor, μB is the Bohr magneton, and g = 4π�

2as/m

with as the s-wave scattering length. The chemical potential
μ is determined by the density of atoms. In the cold-atom
experiments [7–10], the density is fixed, so it is convenient
to take kR = mλ as the momentum unit and ER = k2

R/2m

as the energy unit. We characterize the SOC strength by the
dimensionless ratio γ = kR/kF where kF = (6π2n)1/3 is the
Fermi momentum of the system without SOC at the same
density n. We set � = kB = 1.

The rest of the paper is organized as follows. Before
performing any analytical or numerical calculations, it is
important to investigate the symmetries of the Hamiltonian
and find their exact constraints on experimentally observable
physical quantities. This will be achieved in Sec. II. In
Sec. III, we will calculate the collective modes and the
particle-hole (P-H) excitations in the paramagnet state. There
is one gapless density-longitudinal spin mode, one gapped
density-longitudinal spin mode, and two gapped transverse
modes. We also analyze why it is the SOC which leads to the
splittings of the two transverse modes at any nonzero wave
vector. The lower branch of the two split transverse modes
indicates a transition into a transverse spiral spin density wave
(SSDW) as the interaction strength increases. In Sec. IV,
assuming the ferromagnetic (FM) state is a possible ground
state when the interaction is above a critical strength, we
construct a Hertz-Millis-type action to describe the transition
from the paramagnet to the putative FM state. However, we
identify a nonpositive definite transverse propagator which
indicates that the putative FM state is always pre-emptied by
a transverse SSDW. Then in Sec. V, we construct an effective
action to describe the paramagnet to the SSDW at a small SOC
and show that the transition is of bosonic quantum Lifshitz type
with the instability happening at a finite momentum [34,35].
So it is a first-order one, in sharp contrast to the second-order
one in itinerant Fermi systems without SOC. This maybe the

FIG. 1. (a) The helicity basis shows one longitudinal mode
along the q̂ = �q

q
direction and two transverse modes along the two

transverse directions T̂1,T̂2. (b) The collective modes in the normal
state at γ = 0.21. The pink (green) regime represents the intraband
(interband) particle-hole excitation. The split T± modes indicate
possible SSDW at �q = ±QT ẑ.

first quantum Lifshitz transition in any itinerant Fermi system.
Similar types of bosonic Lifshitz transitions exist in various
condensed matter systems such as the superfluid 4He [38],
exciton superfluids in bilayer quantum Hall or electron-hole
bilayers [39], and superconductors in a Zeeman field [36,40].
We analyze the symmetry-breaking pattern of the SSDW and
work out its one gapless spin-lattice coupled Goldstone mode.
In Sec. VI, we construct the quantum Lifshitz-type action to
describe the paramagnet to the LSDW at a large SOC and show
that there is always an accompanying charge density wave with
half of its pitch. We analyze the symmetry-breaking pattern of
the LSDW+CDW and work out its one gapless lattice phonon
mode. Combining the results achieved in Secs. IV–VI, we
reach the zero-temperature phase diagram in the interaction
versus the SOC strength and also the finite-temperature phase
diagrams in the SSDW and LSDW+CDW phase. In Sec. VII,
we show that it is the FS nestings at a small and large SOC with
the opposite or the same helicities which lead to the SSDW
and LSDW+CDW at a small and large SOC, respectively.
This is in sharp contrast to continuous itinerant Fermi systems
without SOC where there are no FS nestings at 3d, so the
FM becomes a valid instability. In Sec. VIII, we work out
the corresponding FS reconstructions inside the SSDW and
LSDW+CDW and also stress their different structures within
the Brillouin zone (BZ). In the final conclusion, Sec. IX, we
contrast the results achieved in the continuum with those on
lattice systems at a half filling. We also argue that the dominant
roles played by the SOC may make the magnetic transitions
in itinerant Fermi systems with the SOC simpler than its
counterpart without it. We discuss the experimental detections
of the itinerant magnetic phases and phase transitions in the
cold-atom systems and also briefly outline the effects of a
harmonic trap. The novel phenomena may also be observed in
some itinerant magnetic materials with a strong SOC. Several
technical details are left to the three Appendices.

II. SYMMETRY ANALYSIS OF THE SOC HAMILTONIAN
AND EXACT RELATIONS OF DENSITY-SPIN

SUSCEPTIBILITIES

In the presence of Weyl SOC, it is convenient to define a
helical basis [Fig. 1(a)] with respect to the momentum where
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we can define two transverse spin modes (T̂1 · �S, T̂2 · �S) and
one longitudinal L spin mode (q̂ · �S). The Hamiltonian Eq. (1)
has the following symmetries: (1) the translational symmetry
and the [SU(2)spin × SO(3)orbit]D symmetry where the D

means the simultaneous (diagonal) rotation in spin and orbit
space; (2) time-reversal symmetry T : T c�k,↑T −1 = c−�k,↓,

T c�k,↓T −1 = −c−�k,↑; (3) three spin-orbital-coupled reflection
symmetries: (a) Px : σx → σx,ky → −ky,σy → −σy,kz → −
kz,σz → −σz, (b) Py : σy → σy,kx → −kx,σx → −σx,kz →
−kz,σz → −σz, (c) Pz: σz → σz,kx → −kx,σx →
−σx,ky → −ky,σy → −σy . The Pz symmetry is equivalent to
a joint π rotation of orbital and spin around the ẑ axis. The Py

can also be taken as Px combined with [U(1)spin × U(1)orbit]D
around the ẑ axis by an angle π/2. These symmetries can be
used to establish exact relations on the spin-density correlation
functions.

In the helicity basis Fig. 1(a), pick up �q as the ẑ axis,
then qx = qy = 0,qz > 0,�q = qzẑ in this helicity basis. The
[SU(2)spin × SO(3)orbit]D symmetry along this ẑ axis dictates
that

RT
z χμνRz = χμν, (2)

which dictates that the dynamical 4 × 4 density-spin response
function χμν(�q,ω) can be split into two 2 × 2 subspaces: (i)
the density-longitudinal n-L subspace, (ii) the two transverse
T1-T2 subspace with χxx = χyy,χxy = −χyx .

A. In the T1-T2 subspace

After a unitary transformation, it can be shown that in the
T1-T2 subspace,

χ =
(

χ+− 0

0 χ−+

)
, (3)

where χ+− = 2(χxx − iχxy),χ−+ = 2(χxx + iχxy), χ++ =
χ−− = 0.

The Px (or Py) symmetry dictates

χ+−(�q,ω) = χ−+(−�q,ω). (4)

The T symmetry also leads to Eq. (4). Equation (4) leads to
χxx = χyy as an even function of qz, χxy = −χyx as an odd
function of qz.

Directly taking the complex conjugate leads to

[χ+−(�q,ω)]∗ = χ−+(−�q,−ω), (5)

which, combining with Eq. (4), leads to

Re χ+−(�q,ω) = Re χ+−(�q,−ω),

Im χ+−(�q,ω) = −Im χ+−(�q,−ω). (6)

(a) Outside the particle-hole (P-H) continuum. The
χ+−,χ−+ are real, so Eq. (6) leads to the fact that χxx = χyy

and χxy = −χyx are all even function of ω. The poles of
χ+−,χ−+ lead to the two gapped transverse modes T±,
respectively.

(b) Inside the P-H continuum. The χ+−,χ−+ have both real
and imaginary parts. Equation (6) leads to Re χ+−(�q,ω) as an
even function of ω, while Im χ+−(�q,ω) as an odd function
of ω. Im χ+−(�q,ω) �= 0 leads to the particle hole excitation
spectrum in the T1-T2 subspace.

B. In the n-L subspace

The Px (or Py) symmetry dictates

χii(�q,ω) = χii(−�q,ω), i = n,L,

χij (�q,ω) = −χij (−�q), i �= j, (7)

which shows χnn,χLL are even functions of qz, while χnL,χnL

are odd functions of qz.
The T symmetry leads to

χii(�q,ω) = χii(−�q,ω), i = n,L,

χij (�q,ω) = −χji(−�q,ω), i �= j. (8)

Note that Px and T leads to two different equations in the
nL component only. Combining Eq. (7) and Eq. (8) leads to
χnL(�q,ω) = χLn(�q,ω).

Directly taking the complex conjugate leads to

[χij (�q,ω)]∗ = χij (−�q, − ω), i,j = n,L, (9)

which combining with Eq. (7) leads to

Re χii(�q,ω) = Re χii(�q,−ω), i = n,L,

Im χii(�q,ω) = −Im χii(�q,−ω), (10)

and

Re χnL(�q,ω) = −Re χnL(�q,−ω),

Im χnL(�q,ω) = Im χnL(�q,−ω). (11)

(a) Outside the P-H continuum. The χnn,χLL,χnL are real.
Equation (10) leads to χnn(�q,ω),χLL(�q,ω) as even functions
of ω. However, Eq. (11) leads to χnL(�q,ω) as an odd function
of ω, therefore χnL(�q,0) = 0. The poles of the 2 × 2 matrix
determinant lead to one gapless sound mode and a gapped L

mode.
(b) Inside the P-H continuum. The χnn,χLL,χnL have both

real and imaginary parts. Equations (10) and (11) lead to
Re χii(�q,ω), i = n,L [Re χnL(�q,ω)] as an even [odd] function
of ω, while Im χii(�q,ω) [Im χnL(�q,ω)] is an odd [even]
function of ω. Im χnL(�q,ω) �= 0 leads to the particle-hole
excitation spectrum in the n-L subspace.

These exact relations can be used to simplify considerably
the following analytical and numerical calculations to find the
4 collective modes and the P-H excitations. Any approxima-
tions such as the random phase approximation (RPA) should
respect these exact relations.

III. COLLECTIVE MODES AND THE P-H EXCITATIONS
IN THE PARAMAGNET STATE

In this section, we will perform a concrete calculation on
all the response functions at the RPA level whose poles lead to
the collective modes. We also ensure that they all satisfy the
exact relations established in the last section.

The interaction term in Eq. (1) can be divided into the
density and spin channel HI = g

8

∫
d�r[ρ(�r)2 − �S(�r)2], where

ρ(�r) = �†�(�r) and �S(�r) = �† �σ�(�r). In the presence of SOC,
the density fluctuation is coupled with the spin fluctuation
[14]. We introduce the density-spin order parameter φμ,μ =
n,x,y,z to decouple the interaction term via a Hubbard-
Stratonovich transformation. Integrating out the fermionic
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fields leads to the effective action for φμ:

S =
∫

d3�r
∫ 1/T

0
dτ

1

2g
φ2

μ − Tr ln
(−G−1

0 + M
)
, (12)

where G−1
0 = −∂τ − H0 + μ, M = i

2φnσ
0 + 1

2
�φ · �σ .

Now we can expand Eq. (12) S[φμ] = S (0) + S (2) + · · · in
terms of φμ. The density channel φn has a nonzero imaginary
saddle-point value due to the finite particle density of the
fermions which could be eliminated by redefining φn as the
deviation from its saddle-point value. To the second order of
φμ, we obtain

S (2) = 1

2

∫
d3�k

(2π )3
T

∑
n

(
1

g
δμν − 1

4
χ̄μν(�k,iωn)

)

×φμ(�k,iωn)φν(−�k,−iωn), (13)

where χ̄μν is related to the density-spin susceptibil-
ity χμν(q,iωn) = 〈sμ(q,iωn)sν(−q,−iωn)〉 via χ̄00 = −χ00,
χ̄0i = iχ0i , χ̄ i0 = iχ i0, χ̄ ij = χij , with i,j = x,y,z. The
noninteracting density-spin susceptibility is given by

χ
μν

0 (�q,iωn) = 1

V

∑
k,sr

F μν
sr (k + q,k)

nF (ξk+q,s) − nF (ξk,r )

iωn − (ξk+q,s − ξk,r )
,

(14)
where ξk,s is the fermion spectrum with s the helicity
p̂ · �σ |ps〉 = s|ps〉; nF (ξk,s) is the Fermi distribution function;
ξk+q,s − ξk,r is the particle-hole excitation energy; and the
overlap factor F

μν
sr (p,q) = 〈ps|σμ|qr〉〈qr|σ ν |ps〉.

We check that Eq. (13) satisfies all the exact relations
derived in the last section. One can extract collective modes
through the poles of density-spin response functions at the
RPA level. In the n-L subspace, the mixing of density and
longitudinal modes leads to one gapless sound (black) mode
ωs

�q = vsq and one gapped (called L) (green) mode ωL(�q) =
� + αq2 where α < 0 in Fig. 1(b). In the T1-T2 subspace,
there are two split transverse modes ωT+/− (�q) = � ± βqz in
Fig. 1(b). The T+ mode (red) is the pole of χ+−, while T−
(blue) is the pole of χ−+. The exact symmetry Eq. (3) indicates
T+ and T− exchanges under qz → −qz. The restored SU(2)spin

symmetry at �q = 0 dictates that the three gapped modes must
have the same gap � at q = 0. The level repulsion in the
n-L space pushes the sound mode quite close to the intraband
P-H continuum [Fig. 1(b)]. Similarly, the level repulsion in
the (T1,T2) space will also split the two transverse modes T±.
So at finite but small q, the three modes split with the order
ωT+ > ωL > ωT− .

In principle, Im χ+−(�q,ω) �= 0 need not to happen at the
same time as Im χnL(�q,ω) �= 0. However, at the RPA level
Eq. (14) employed here, they happen at the same time. So the
P-H excitation spectrum in the (T1,T2) space is the same as
that in (n,L) space at the RPA level. Very similarly, the P-H
excitation spectrum in the density channel is the same as that
in the spin channel at the RPA level in the conventional Fermi
gas discussed in Appendix A 2.

We find that � vanishes when g > gs = 24π2kR/m(k2
F2 −

k2
F1), where kF2 > kF1 are the two Fermi momenta split due

to the SOC. This corresponds to an instability driven by the
collective modes at q = 0. However, Fig. 1(b) indicates that
ωT+/− (�q) = � ± βqz may become negative simultaneously at

±QT ẑ before � = 0 at q = 0. This indicates a transverse
(spiral, chiral, and coplanar) SDW transition at ±QT ẑ with
the order parameter �φT = φ0(cos Qz, sin Qz,0). Such an
instability is confirmed further in the P-H channel to be
discussed in the following section.

The mechanism for why T+ and T− splits

In fact, in order to guarantee the two T+,T− modes to
be degenerate, one need to have both T symmetry and the
inversion symmetry I : �q → −�q. The I symmetry dictates that

χ+−(�q,ω) = χ+−(−�q,ω),χ−+(�q,ω) = χ−+(−�q,ω). (15)

Combining Eq. (4) with Eq. (15) leads to

χ+−(�q,ω) = χ−+(�q,ω). (16)

Alternatively, if assuming Sx symmetry, σx → σx,σy,z →
−σy,z, one also find Eq. (16). Here, it is the SOC which breaks
the inversion symmetry, so χ+−(�q,ω) �= χ−+(�q,ω) for �q �= 0
which leads to the splitting of the two transverse modes even
in the normal phase at any �q �= 0. Only at �q = 0, the SOC
vanishes, and the three modes have the same gap.

Similar mechanisms happens in the 3d Dirac fermions [4].
If keeping both the TR and inversion symmetry, one gets the
4-component Dirac fermions. When breaking only one of the
two symmetries, the 4-component Dirac fermion splits into
2 two-component Weyl fermions. The splitting in the bulk
also generates the corresponding Fermi-arc states on the 2d
surfaces.

IV. INSTABILITY OF THE FERROMAGNETIC STATE

There is a Stoner FM instability when δ = 1
gc

− χ0

4 =
0, where χ0(�q → 0,ω = 0) = m

6π2 ( k2
F1+k2

F2
K

+ k2
F2−k2

F1
kR

),K =√
k2
R + 2mμ is the static spin susceptibility of 3d noninter-

acting Fermi gas with the Weyl SOC. We obtain the critical
value of dimensionless interaction strength kF ac

s (black dashed
line) shown in Fig. 2(a). As γ increases, F (γ ) has a maximum
at γ � 0.63 corresponding to the chemical potential μ ∼ 0,
after which, kF ac

s decreases quickly. At a strong SOC, the
μ approaches the bottom of the spectrum (the Weyl shell at
|�k| = kR), where the density of states diverges as 1√

ε
[see

Fig. 7(a)]. The effects of an interaction are dramatically
enhanced; even a weak interaction may drive the system into
the putative itinerant FM state. Indeed, in the strong SOC
limit μ → −1, the critical interaction strength to reach the
putative FM gc = 12π2√1 + μ + O((1 + μ)3/2) reduces to
zero. Because gc < gs calculated in the last section, the FM
instability happens before that driven by the q = 0 instability
of the collective modes.

Following Hertz-Millis [20,21] to study the FM onset
transition in itinerant Fermi systems without SOC, taking the
�q → 0,ω/vF q → 0 limit and integrating out the noncritical
density mode, we obtain the effective action in terms of the
spin fluctuation order parameters �φ (see Appendix B):

S =
∫

d3 �q
(2π )3

T
∑

n

1

2
G−1

s P̂ ij
s φiφj + u

∫
d3�rdτ ( �φ2)2, (17)
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FIG. 2. The zero-temperature phase diagram achieved by the RPA
calculations. (a) The critical interaction strength from the PM Fermi
liquid to SSDW [blue line; Fig. 3(a)], LSDW+CDW (red dash-dotted
line; Fig. 3(b)], or a putative FM (black dashed line) transition. The
FM is always unstable against the SSDW. (b) The ordering wave
vector QT (blue circles) of the SSDW and QL (red squares) of the
LSDW as a function of SOC strength γ . The green dot-dashed line
represents the kF2 − kF1. When γ < 0.5, QT ∼ kF2 − kF1 = 2kR is
dominated by the nearly FS nesting between outer FS and inner FS
with the opposite helicity. When 0.5 < γ < 1.5, QT is determined
by multiple momentum transfer processes. The phase in this regime
could be some SSDW with multimomenta orderings. When γ > 1.5,
QL ∼ kF2 − kF1 is dominated by the nearly FS nesting between outer
FS and inner FS with the same helicity [43]. See Fig. 3 for the
spin-orbital configurations of SSDW and LSDW+CDW, Fig. 4 for
the finite-temperature phase transitions, and Fig. 6 for the Fermi
surface reconstructions in the SSDW and LSDW+CDW.

where P̂
ij
s = n̂i

s n̂
j
s (n̂s = T̂+,T̂−,L̂) is the projection operator

into the helical basis, and G−1
T± = δ + γ 0

T |y| ± βT q + αT q2

and G−1
L = δ + γ 0

Ly2 + αLq2, where y = ωn/vF q are the
propagators of the helical spin modes. Note that the SU(2)spin

symmetry at �q = 0 dictates that there is only one tuning
parameter δ from the PM to the putative FM transition. When
δ > 0 (δ < 0), it is in the PM (FM) phase. However, we observe
that the ±q terms in the transverse propagators are dictated by
the exact symmetry Eqs. (3) and (4). They indicate that the
putative FM is pre-emptied by the spiral spin density wave
(SSDW) [Fig. 3(a)] at a finite q determined by the divergence
of the static transverse susceptibility χ+−(QT ẑ,ω = 0) [41].

2π/QT

(a)  SSDW (b)  LSDW+CDW

2π/QL

FIG. 3. The spin-orbital configurations along the stripe direction
z of (a) itinerant spiral spin density wave (SSDW) with a uniform
density and (b) itinerant longitudinal spin density wave (LSDW)
with the accompanying charge density wave (CDW). In (b), the
background with varying colors shows the CDW background induced
by the LSDW order, whose spatial period is half that of the LSDW.
Yellow (blue) means high (low) density. Fermionic degrees of
freedom are not shown.

V. QUANTUM LIFSHITZ TRANSITION FROM THE
PARAMAGNET TO SSDW TRANSITION AT A SMALL SOC

Due to the exact relation Eq. (3), one also gets the pole
at χ−+(−QT ẑ,ω = 0) due to the T− mode. So ±QT has to
appear in pairs, indicating the SSDW 〈S+〉 = ei(QT z+θ),〈S−〉 =
e−i(QT z+θ) shown in Fig. 3(a). The critical interaction strength
kF ac

s and its orbital momentum QT are shown in Figs. 2(a)
and 2(b), respectively.

In Eq. (17), when γ < 1.5, near the PM to the SSDW
transition, the critical T− propagator is given by

G−1
T− = δT− + γT |ωn| + αT (q − QT )2, (18)

where δT− = δ − β2
T

4αT
, γT = γ 0

T /vF QT ,QT = βT

2αT
= kF2 −

kF1 = 2kR . The propagator plus the interaction u term in
Eq. (17) leads to the quantum version of the classical Lifshitz
type of action to describe the transition from a paramagnet
state to a modulated state [34,35]. It was shown in [36] that
the interaction u term favors a stripe state, which is confirmed
here by the calculations at the RPA level. When δT− > 0,
it is in the PM state where 〈φ−〉 = 0. When δT− < 0, it is
in the stripe SSDW state where 〈φ−〉 = φ0e

−i(QT z+θ). It is
a first-order quantum Lifshitz type of transition [36–40],
so the dynamic exponent z cannot be defined. This is in
sharp contrast to the second-order transition with the z = 3
(FM) or z = 2 (AFM) in the Hertz-Millis action Eq. (B1)
to describe magnetic phase transitions in itinerant electron
systems without SOC.

The symmetry breaking from the PM to the
SSDW is [SU(2)spin × SO(3)orbit]D × Tran → [U(1)zspin ×
U(1)orbit]αD × (z → z + α/QT ), where α is the rotation angle.
Of course, when α = 2π , the order parameter gets back
to itself, and it reduces to just a translation by a lattice
constant z → z + a. It leads to one gapless Goldstone mode
θ in �φT = φ0( cos(Qz + θ ), sin(Qz + θ ),0). By a symmetry
analysis, we get the effective action of the Goldstone mode

LT [θ ] = (∂τ θ )2 + aT (∂zθ )2 + bT (∂⊥θ )2. (19)

There is a finite-temperature 3d XY transition driven by the
vortex unbinding in the phase of the Goldstone mode θ where
the SSDW also melts simultaneously [Fig. 4(a)].

PM SSDW

3d  XY
T

0 k  a sF 0

T

PM

k  aF s

Algebraic
LSDW+CDW

(a) (b)

Melting
xyT Tm

γ < 1.5 γ > 1.5

FIG. 4. Finite-temperature phase diagram of itinerant Fermi gas
with Weyl SOC. Blue (red) dot stands for the first-order bosonic
Lifshitz transition to the SSDW (LSDW+CDW). (a) The SSDW will
survive up to a 3d XY transition temperature Txy driven by the phase
fluctuations. (b) Any T > 0 will transfer the LSDW+CDW into an
algebraic one which, in turn, will melt through a melting transition at
Tm driven by lattice dislocations.
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VI. QUANTUM LIFSHITZ TRANSITION
FROM THE PARAMAGNET TO LSDW+CDW

TRANSITION AT A LARGE SOC

When γ > 1.5, the chemical potential approaches the
bottom of the Weyl shell, and the divergence of the static longi-
tudinal susceptibility χLL(±QLẑ,ω = 0) happens first before
that of the transverse one, indicating the LSDW in Fig. 3(b):
�φL = φ0(0,0, cos(QLz + θ )) where the QL = kF2 − kF1 is the
FS nesting ordering wave vector to be shown in the next
section. The critical interaction strength kF ac

s and its orbital
momentum QL are shown in Figs. 2(a) and 2(b), respectively.

In Eq. (17), near the PM to the LSDW+CDW transition,
αL < 0 in the L propagator, so one need to expand it to the
q4 order. We also find a damping term emerges at larger
momenta due to the coupling to the gapless PH excitations:
G−1

L = δ + αLq2 + uLq4 + γ 0
Ly2 + γ 1

L|y| + · · · where uL >

0, the critical L propagator becomes:

G−1
L = δL + γL|ωn| + uL(q2 − Q2

L)2, (20)

where δL = δ − α2
L

4uL
,γL = γ 1

L/vF QL,QL = ( |αL|
2uL

)1/2 = kF2 −
kF1. It was shown [36] that the interaction u term in
Eq. (17) favors a stripe state, which is confirmed here by the
calculations at the RPA level. When δL > 0, it is in the PM state
where 〈φL〉 = 0. When δL < 0, it is in the stripe [36] LSDW
state where 〈φL〉 = φ0 cos(QLz + θ ). This is also a first-order
quantum Lifshitz type of transition [37]. There is also a cubic
coupling [42] between the charge and spin S3 = λ3δφnφ

2
L

which leads to an accompanying CDW with Qc = 2QL inside
the LSDW: δφn = φ2

0 cos(2QLz + 2θ ) inside the LSDW,
consistent with the numerical calculations shown in Fig. 3(b).

The symmetry breaking from the PM to the LSDW+
CDW [SU(2)spin × SO(3)orbit]D × Tran → [U(1)zspin ×
U(1)orbit]D × (z → z + 2π/QL) leads to one gapless lattice
phonon mode θ . By symmetry analysis and drawing the
analogy from the smectic liquid crystal [35], we get the
effective action of the lattice phonon mode:

LL[θ ] = (∂τ θ )2 + aL(∂zθ )2 + bL(∂2
⊥θ )2. (21)

At any finite temperatures, it becomes an algebraic ordered
spin nematic state [Fig. 4(b)]; its longitudinal spin structure
factor [16] shows a power-law rather than a δ-function
singularity at �q = ±QLẑ:

SLL(�q ± QLẑ) ∼
{

φ2
0(qz ± QL)−2+ηL, if q⊥ = 0,

φ2
0q

−4+2ηL

⊥ , if qz = 0,

(22)

where ηL = T
8π(aLbL)1/2 . There is also an associated power-law

singularity for the density structure factor at �q = ±2QLẑ.
In the γ → ∞ limit, or equivalently the zero-density limit,

the system may become a Wigner crystal. In this limit, the
RPA approach, which in principle works for the high-density
limit only, breaks down. A strong-coupling approach to treat
the interaction nonperturbatively may be needed to work out
the true ground state in such a zero-density limit.

Figure 4 is dramatically different than the corresponding
phase diagrams without SOC studied by Hertz, Millis, and
others [20,21] in all the physical quantities such as the
quantum phases, excitations spectra, and universality classes

kz

kx

θ

kz

kx

θ

Q

(a) (b)

Q=kF2-kF1 Q=kF2-kF1

(c)    (d)

Q

Tips: the angles                  in c/d refer to θ shown in a/b.

FIG. 5. Fermi surface nesting and overlap factor. (a) The Fermi
surfaces shown by the solid circles for small SOC (γ � 1), where
the two Fermi surfaces have different helicities (different colors).
The dashed circles are the ones after translation with the nesting
momentum Q = kF2 − kF1 = 2kR with kF1,2 the Fermi momenta.
The angle θ shows the position at the Fermi surface. The Fermi
surfaces inside the shaded regime around θ = 0,π are well nested;
i.e., the translated Fermi surfaces nearly overlap with the original
ones. (b) The Fermi surfaces shown by the solid circles for large SOC
(γ � 1), where the two Fermi surfaces have the same helicities (blue
colors). The conventions are the same as above. (c) The overlap factor
as a function of θ [denoting the position on the Fermi surface shown
in (a)] in the transverse (F −+

s;−s with s = ±1) and longitudinal (F LL
s;−s

with s = ±1) channels for small SOC in (a), where the length of the
three arrow lines ending at the red dashed line, black dotted line, and
the blue solid line correspond to the value of overlap factors as labeled
nearby. The angles between the three arrows and Q correspond to the
position on the Fermi surface shown by (a). (d) The overlap factor in
the transverse (F −+

−1;−1) and longitudinal (F LL
−1;−1) channels for large

SOC in (b). All the conventions are the same as in (c).

of quantum and classical phase transitions. It is easy to see
that both SSDW and LSDW+CDW carry the density current
�jT/L = λ �φT/L which is absent in the PM, putative FM, or any
itinerant states without SOC. This feature maybe useful in their
experimental detections.

VII. NEARLY FERMI SURFACE NESTING CONDITIONS
BETWEEN OUTER AND INNER FERMI SURFACE

AT SMALL AND LARGE SOC

As we have shown above, the SSDW order turns into the
LSDW order as the SOC strength γ > 1.5, which is a spin-
flop transition. This change of the favorite SDW patterns for
different SOC strengths can be understood by the different
helicity of Fermi surfaces in two limiting cases with small and
large SOC, where the helicity is defined as the eigenvalue of the
SOC term �s · �k/|�k|. In both cases, the two Fermi surfaces are
nearly nested with the nesting wave vector �Q = (kF2 − kF1)êz

(actually the direction of wave vector �Q is arbitrary). And this
nesting condition is best satisfied near θ = 0,π where θ is the
angle between the Fermi wave vector �kF and �Q [schematically
shown in Figs. 5(a) and 5(b)]. With SOC, the density and spin
susceptibility are anisotropic due to the overlap factor F

μν
sr
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defined in Eq. (14). For small SOC γ � 1, the two Fermi
surfaces have different helicities (±1). We find the overlap
factor for the transverse susceptibility is F−+

1;−1 = cos4(θ/2),
F−+

−1;1 = sin4(θ/2) which takes its maximum at θ = 0,π , i.e.,
the place where the nesting condition is best satisfied; the
overlap factor for the longitudinal susceptibility is FLL

−1;1 =
FLL

1;−1 = sin2 θ which is suppressed at θ = 0,π [see Fig. 5(c)].
As a result, the susceptibility is significantly enhanced in the
transverse channel at the wave vector | �Q| = kF2 − kF1, but
suppressed in the longitudinal channel.

For large SOC γ � 1, the inner Fermi surface changes
its helicity from 1 to −1, the overlap factor for transverse
susceptibility is F−+

−1;−1 = 1
4 sin2 θ , and that for the longitudinal

susceptibility is FLL
−1;−1 = cos2 θ [see Fig. 5(d)]. In this case,

the susceptibility is significantly enhanced in the longitudinal
channel at the wave vector | �Q| = kF2 − kF1 but suppressed in
the transverse channel. This is consistent with the numerical
calculations of the static susceptibility for different SOC
strengths: the transverse susceptibility χ−+ reaches the maxi-
mum at | �Q| = kF2 − kF1 for small SOC while the longitudinal
susceptibility χLL reaches the maximum at | �Q| = kF2 − kF1

for large SOC.
The nearly FS nesting conditions due to 3d SOC is a new

feature of the SOC. It is the SOC which splits one FS into
two with the Fermi momentum kF2 and kF1 [see Fig. 7(a)],
which, in turn, leads to 4 possible FS nesting momenta kF2 −
kF1,kF2 + kF1,2kF1,2kF2. Here, we find that in a 3d Weyl
SOC system, the stripe SSDW and LSDW+CDW takes the FS
nesting momentum kF2 − kF1 as their ordering wave vector at
a small or large SOC where the two Fermi surfaces have the
same or opposite helicities, respectively (Fig. 5). In a sharp
contrast, there could only be a 2kF SDW due to FS nesting
in some one- or quasi-one-dimensional metals without SOC
[43]. There are no phenomena due to FS nestings in 2d or
3d itinerant systems without SOC. We expect that due to the
FS nesting mechanism, the existences of the stripe SSDW and
LSDW+CDW at small and large SOC strengths are robust and
independent of the RPA approximations.

However, in the intermediate SOC strengths 0.5 < γ < 1.5
in Fig. 2, the χ+−(�q,ω = 0) is relatively flat in a finite-
momentum regime due to the competitions from the multimo-
menta transfer processes, so it may lead to a coplanar SSDW
with multimomenta ordering wave vectors. If so, the residual
symmetry [U(1)zspin × U(1)orbit]αD × (z → z + α/QT ) left in
the one-momentum SSDW at γ < 0.5 discussed in Sec. V
is also broken. Then the symmetry-breaking pattern from the
PM to this kind of multimomentum SSDW is [SU(2)spin ×
SO(3)orbit]D × Tran → 1, so there are two Goldstone modes
in this kind of SSDW state: one due to the symmetry breaking
of [U(1)zspin × U(1)orbit] and the other due to the translational
symmetry breaking along the ẑ axis.

VIII. FERMI SURFACE RECONSTRUCTIONS
IN THE SSDW AND LSDW+CDW

From Eq. (12), if ignoring the Goldstone mode, one can see
that the static SSDW 〈 �φT 〉 = φ0(cos QT z, sin QT z,0) provides
a periodic potential with a reciprocal lattice vector QT ẑ to
the fermions. Figure 6(a) shows the evolution of the FS

−2 −1 0 1
−0.5

0
0.5

−2 −1 0 1
−0.5

0
0.5

−2 −1 0 1
−0.5

0
0.5

kx

kz

kz

kz

−2 −1 0 1
−0.5

0
0.5

−2 −1 0 1
−0.5

0
0.5

−2 −1 0 1
−0.5

0
0.5

kx

(a)                                                (b)

FIG. 6. The Fermi surface at γ = 0.82 and Q = 1.8 inside (a)
the SSDW and (b) LSDW+CDW [44]. Due to the rotation symmetry
about the kz axis, we only show the ky = 0 cross sections. From
up to down, the order parameter is increasing as φ = 0,1,2. The
fermion occupation number in the red, yellow, white regime are 2,
1, 0 respectively. The intersections of FS at the BZ boundary split
inside the SSDW, but not inside the LSDW+CDW. The intersections
between large and small FS inside the BZ boundary split in both
phases.

as the SSDW turns on near the PM-to-SSDW transition.
There is a gap �T

BZ opening at the BZ boundary. First-order
degenerate perturbation shows that �T

BZ = φ0 cos2 θ
2 where

θ is the polar angle of the crossing point between the FS
and the first BZ boundary. There is also a gap �T

I opening
at the crossing between the outer FS and the inner FS inside
the BZ. First-order degenerate perturbation shows that �T

I =
φ0| cos θ1

2 cos θ2
2 | where the θ1,2 are the two polar angles of

the two crossing FS momenta �kF1,�kF2, respectively, satisfying
�kF2 − �kF1 = QT ẑ.

Similarly, Fig. 6(b) shows the evolution of the FS as the
LSDW turns on near the PM-to-LSDW transition. However,
in sharp contrast to the SSDW, there is no gap opening at
the BZ boundary �L

BZ = 0 which is also confirmed by the
numerical calculations. There is still a gap �T

I opening at
the crossing between the outer FS and the inner FS inside
the BZ. First-order degenerate perturbation shows that �L

I =
φ0

2 | sin θ1−θ2
2 | where �kF2 − �kF1 = QLẑ. The gap opening at

Qc = 2QL due to the CDW can be similarly evaluated by
degenerate perturbations and numerical calculations.

IX. SUMMARY AND DISCUSSION

In a recent work [18], we studied interacting fermions at
a half filling in a 2d square lattice subject to Rashba SOC
interaction (α = β). In the strong-coupling limit, we find a
collinear Y-y state [with ordering wave vector (0,π )] at a large
SOC near α = β = π/2, and a series of stripe commensurate
coplanar spiral phases at a small SOC. The former may
be the analog of the LSDW+CDW in the continuum limit
at γ > 1.5. The latter may be the analog of the SSDW
in the continuum limit at γ < 0.5. We also found there
are multimomenta incommensurate coplanar spiral phases
intervening between the commensurate coplanar spiral phases.
As briefly discussed at the end of Sec. VII, they may be the
analog of the multimomenta SSDW in the continuum limit at
0.5 < γ < 1.5. In addition to the above collinear and coplanar
phases in a 2d square lattice at the half filling, we also find some
noncoplanar commensurate or incommensurate Skyrmion
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crystals (IC-SkX) in the neighborhood of the collinear Y-y
state. There are quantum commensurate-to-incommensurate
(C-IC) Lifshitz transitions between the Y-y and the IC-SkX.
However, these quantum Lifshitz transitions are driven by the
touchdowns of the C-IC magnons at isolated ordering wave
vectors, in contrast to the continuous manifold in Eqs. (18)
and (20). In the weak-coupling limit, one gets a mixed phase
of a spin-orbital-correlated magnetic ordering coexisting with
gapless Dirac fermions. So there must be some quantum phase
transitions from the weak to the strong coupling limit. Here, in
the continuum limit, due to the FS nesting conditions at small
and large SOC, we established that it is the coplanar SSDW at
small SOC γ < 0.5 and the collinear LSDW+CDW at large
SOC γ > 1.5. There could be some multimomenta coplanar
SSDW sandwiched between the two phases.

Note that the quantum critical theory from the normal
to FM (or AFM) transition even without SOC is still not
completely understood. There are alternative scenarios in
itinerant Fermi systems without SOC [45–47]. A more refined
Ginzburg-Landau theory than Hertz-Millis theory should treat
both the order parameter fluctuations and the gapless fermions
[48,49] on the same footing and remains to be constructed.
However, we expect that the dramatic SOC effects discovered
in this work, especially due to the FS nesting effects at small
or large SOC, dominate over all the subtle effects discussed
in [45,46], so the quantum Lifshitz theory and associated
Fermi-surface reconstructions remain robust against all these
subtle effects. This is to say, the dominant roles played by
the SOC may make the magnetic transitions in itinerant Fermi
systems with the SOC simpler than its counterpart without it.

We achieved the global phase diagram Fig. 2 by exact
symmetry statements, followed by the RPA calculations. How-
ever, we neglect possible competition from nonmagnetic states
or even possible fractionalized Fermi liquid FL∗ or SDW∗

states [45,46]. In Fermi systems without SOC, nonmagnetic
states with strong local correlations have been constructed to
suppress the exchange energy [50]. These nonmagnetic states
may compete with the FM, SSDW, or LSDW+CDW state. In
the presence of SOC, it remains interesting to construct suitable
nonmagnetic states incorporating the short-range correlations
to compete with all the states studied in this paper. We expect
the new mechanism, some exact statements, and appealing
physical picture discussed here to realize the itinerant SSDW or
LSDW+CDW maybe robust against these possible nonmag-
netic states. We expect the dramatic SOC effects to dominate
over possible nonmagnetic states, especially at the small and
large SOC strengths leading to the LSDW+CDW phase.
However, the SSDW with multiple-momenta orderings in the
intermediate SOC 0.5 < γ < 1.5 may be more vulnerable
to these nonmagnetic or even fractionalized FL∗ or SDW∗

states. Different methods or approaches are needed to confirm
or dispute the expectations. Unfortunately, the SOC makes
the sign problem in the QMC much more serious than that
without SOC.

In view of very recent experimental realizations of the 2d
Rashba SOC [7–10], the 3d Weyl SOC can be straightfor-
wardly realized in near-future experiments. In a 6Li system, the
two hyperfine sublevels |1/2,−1/2〉 and |1/2,1/2〉 can be cho-
sen as two pseudo-spin-1/2 states. With N ∼ 104 6Li atoms
inside an isotropic trap with a trap frequency 2π × 10 Hz, and

a typical magnetic field gradient strength ∇B = 0.09 G/μm
(within practical range [51]), we estimate γ ∼ 1.82. It falls
into the LSDW regime [Fig. 2(b)] with the orbital momentum
QL ∼ 0.13kR . The critical interaction strength kF ac ∼ 0.12 is
an order of magnitude smaller than the value π [Fig. 2(a) at
γ = 0] for a possible FM at the same density without the SOC
[20,25].

Finally, it is simple to incorporate the effects of a harmonic
trap. Taking the local density approximation, the chemical
potential (or equivalently the local density) will decrease from
the trap center to zero to the boundary, so the γ = kR/kF will
also decreases from the center to the edge. Assuming γ = 1.82
at the center, then one will observe the shell structures of
LSDW+CDW near the trap center surrounded by SSDW near
the edge. So experiments could reach SSDW or LSDW+CDW
at weak interactions which can make heating issues [7–10]
under even better control. This fact may be important for the
experimental observation of the phenomena discussed here in
the future.

In short, the SOC leads to dramatic changes in essentially all
the physical quantities such as the quantum phases, excitation
spectra, and universality classes of quantum and classical
phase transitions. All the novel phenomena can be probed by
various established experimental techniques [5,26–31]. For ex-
ample, the collective excitations in the PM [Fig. 1(b)], SSDW,
and LSDW+CDW can be detected by the angle-resolved
Bragg spectroscopy [30,31], the order parameters �φT/L in
Fig. 3 may be directly measured by time-of-flight experiments,
and the evolution of the FS topology in Fig. 6 can be monitored
by spin-injection radio frequency spectroscopy [5].
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APPENDICES

In Appendix A, we contrast the collective modes in the
paramagnet with the SOC which breaks inversion symmetry
and those in the conventional FM state without SOC which
break time-reversal symmetry. In Appendix B, we contrast the
Hertz-Millis type of action to describe magnetic transitions
in itinerant Fermi systems without SOC with that in the
itinerant Fermi systems with SOC to describe the magnetic
transition from the paramagnet to a putative FM. We identify
the mechanism to lead to the quantum Lifshitz action to
describe the transition from the paramagnet to the SSDW
discussed in the main text. In Appendix C, we contrast the
Fermi surface reconstruction inside the SSDW with that in the
LSDW+CDW.
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FIG. 7. (a) The density of states ρ(ε) (per volume) in units of
2mkR at the chemical potential μ. The green dashed line denotes
μ = 0 (equivalent to γ = 0.63) as shown by the inset. (b) Collective
modes for 3d Fermi gas with Weyl-type SOC in the normal side.
The parameters here are μ/ER = 20 (equivalent to γ = 0.21) which
corresponds to case iii in Fig. 8 and as = 0.9ac

s . The green (yellow)
region is the intraband (interband) particle-hole excitation continuum.
ωmin denotes the lower edge of the interband particle-hole continuum,
which is taken as the unit in Fig. 8(d). In fact, (b) is a redrawing of
Fig. 1(b) in the helicity basis. Namely, folding Fig. 1(b) left qz < 0
back to the right qz > 0 and changing the qz axis to the q axis leads
to (b). Alternatively, picking �q along the ẑ axis and inverting with
respect to the origin gives back Fig. 1(b).

APPENDIX A: COLLECTIVE MODES AND P-H
EXCITATIONS FOR 3D FERMI GAS WITH
AND WITHOUT SOC AT THE RPA LEVEL

In this Appendix, we apply the RPA formalism to calculate
the collective modes in the paramagnet side with the Weyl SOC
and also those in the FM side of Fermi gas without SOC. It is
instructive to compare the two cases: the former has explicit
inversion-symmetry breaking, the latter the spontaneous time-
reversal-symmetry breaking. It is also shown in the main
text that the FM state is always superseded by SSDW or
LSDW+CDW, so never a ground state in the former system,
but it maybe a ground state in the latter.

1. Collective modes in the paramagnet side with SOC:
Inversion-symmetry breaking

As shown in Sec. II, the [SU(2)spin × SO(3)orbit]D symmetry
[12,16] dictates that the dynamical 4 × 4 density-spin suscep-
tibility Eq. (14) can be split into two 2 × 2 subspaces: (i) n-L
subspace formed by the density and the longitudinal spin mode,
and (ii) T1-T2 subspace formed by the two transverse modes.
This exact decomposition simplifies the following analytical
and numerical calculations considerably.

The gapless sound mode in the n-L subspace, ωs = vsq

in Fig. 7(b), is determined by the pole of 2 × 2 density-spin
susceptibility: det(1 + g

4 σzχnL) = 0 with

χnL
0 (�q,ω) = m

(
k2

1 + k2
2

)
2π2κ

×
(

F (y) βyF (y)

βyF (y) 1
3 +

√
k2
R+2mμ

3kR
β + y2F (y)

)
,

(A1)

where k2 > k1 are the two Fermi momenta in Fig. 8(a),

2κ = k1 + k2 (k2 − k1) for μ > 0 (μ < 0), β = k2
2−k2

1

k2
2+k2

1
and

(a) (b)

(c) (d)

FIG. 8. (a) Two split Fermi surfaces due to the Weyl SOC at
the noninteracting limit. Shown are different filling cases by the
dashed lines i, ii, and iii. (b) The ratio vs/vF of gapless sound mode.
(c) The �/ER and (d) �/ωmin show the energy gap at q = 0 for
the three gapped modes. The three different colors represent different
interaction strengths, i.e., black (critical interaction strength gc for the
putative FM phase transition), red (g = 4/5gc), and blue (g = 2/3gc).

y = ω/vF q, vF the Fermi velocity, F (y) = 1 − y arccoth y.
It is easy to see that Eq. (A1) indeed satisfies the constraints
Eq. (10) and (11). We numerically determined the velocity
vs of this gapless sound mode at μ/ER = 20 shown in
Fig. 8(b). This sound mode corresponds to a coupled density-
longitudinal spin fluctuation.

At the RPA level, from Eq. (3), the two transverse modes
are determined by

1 − g

2
χ+−

0 (�q,ω) = 0, 1 − g

2
χ−+

0 (�q,ω) = 0, (A2)

where χ+−
0 (�q,ω) = 2(χxx − iχxy) is given by Eq. (14).

Equation (A2) lead to the T± mode in Fig. 7(b).
In all, there are three branches of the gapped mode, one L

mode within the n-L subspace and the other two T± modes
within the T1-T2 subspace. Due to the SU(2)spin symmetry
at �q = 0, the three gapped modes are degenerate at �q = 0
where the gap � is determined by det[1 − g

4 χspin(ω,�q = 0)] =
0, with

χij
spin(ω,�q = 0) = m

6π2kR

×
(
k2

2 − k2
1 + m2ω2

4k2
R

ln

[
4k2

Rk2
2 − m2ω2

4k2
Rk2

1 − m2ω2

])

× δij ,i,j = x,y,z. (A3)

The numerical result of this energy gap � at different μ/ER is
shown in Fig. 8(c) (in units of the recoil energy ER = k2

R/2m)
and Fig. 8(d) [in units of the lower edge of interband particle-
hole excitation energy ωmin shown in Fig. 7(b)].

In Fig. 8(a), we plot three typical filling cases shown by
the dashed lines: (i) the dilute-density case with μ < 0; (ii)
μ > 0 but close to the Dirac point (μ = 0); (iii) the dense-
density case. Figure 7(b) belongs to case iii. In Fig. 8(b), as
the filling tends to the Dirac point from above μ > 0, the
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FIG. 9. The particle-hole continuum and collective modes in
traditional Fermi gas without SOC. (a) Zero sound in the normal
side and (b) only the T+ mode is shown in the FM side.

vs/vF decreases close to 1. After passing the Dirac point,
the ratio increases. In Fig. 8(c), the �/ER decreases close to
zero around the Dirac point [note that at the Dirac point, the
blank regime between the interband and intraband particle-
hole excitation shown in Fig. 7(b), which is the regime free of
PH excitations, shrinks to zero]. After passing the Dirac point,
the ratio increases also. To show the relationship between the
energy gap � and the P-H excitation, in Fig. 8(d) we show
�/ωmin with ωmin the lower edge of the interband particle-hole
excitation energy shown in Fig. 7(b). We find as the chemical
potential decreases from iii to i, the ratio approaches 1 from
below, namely, the gapped collective modes move more closer
to the edge of interband particle-hole excitation continuum
in Fig. 7(b). Indeed, in the strong-SOC limit μ → −1, the
sound velocity saturates vs/vF � 1.102, the energy gap �

increases and moves close to the P-H continuum �/ER �
4(1 − √

1 + μ).

2. Collective modes in the FM without SOC:
Time-reversal-symmetry breaking

As analyzed in Sec. III, in the normal phase of SOC, it
is the I -symmetry breaking in the SOC Hamiltonian which
leads to the T± split shown in Fig. 7(b). However, in the
FM of conventional system, it is the spontaneous T -symmetry
breaking which leads to the split T± in Fig. 3(b) where only T+
is shown. So the two splitting mechanisms are complementary
to each other. Here it is instructive to perform a detailed
calculation on the T± mode in the FM of conventional system.
Very surprisingly, to the best of the authors’ knowledge, there
is no previous literature to discuss this important and tricky
physical picture.

On the normal side, due to the SU(2)spin × SO(3)orbit

symmetry, the density and spin are decoupled; the density and
spin susceptibility are χμν = χ0δ

μν where μ,ν = n,sx,sy,sz.
Since the interaction is repulsive (attractive) in the density
(spin) channel, there is only one gapless density mode with
linear dispersion ωq = vsq, i.e., zero sound in the density
channel, no stable collective modes in the spin channel
[Fig. 9(a)].

On the FM side, there is a spin polarization �M along ẑ; the
symmetry-breaking pattern is SU(2)spin → U(1)z which leads
to Eq. (3) for any �q. One still has inversion symmetry I which
leads to Eq. (15). The fermion propagator takes the form

G(iωn,�k) = 1

2

∑
s=±1

σ0 + sσz

iωn − �k2/2m + sgM/4
. (A4)

As said above, the remaining symmetry U(1)z dictates that
the density-spin susceptibility χμν,μ,ν = n,sx,sy,sz, can be
decoupled to two 2 × 2 matrices: one for the density and lon-
gitudinal spin mode L̂ = �M/M , another for the two transverse
spin modes T̂1 · �M = T̂2 · �M = 0. In the density-longitudinal
subspace, the density fluctuation is strongly coupled with the
longitudinal spin fluctuation, and the 2 × 2 susceptibility takes
the form

χnL = χ0

(
1 −1

−1 1

)
, (A5)

where χ0 = mk2
F

4π2 (2 + y ln y−1
y+1 ) with y = mω/kF q. Due to the

absence of any poles in det[1 + g

4 σzχ
nL] = 0, there are no

collective modes in the n-L subspace.
However, in the transverse (T1,T2) subspace, Eq. (3) still

holds, and there is only one low-energy collective mode: the
T+ mode ωq = Dq2 at small �q from the pole of χ+−, which
couples only to the interband P-H excitations at higher q

[Fig. 9(b)], while the T− mode from the pole of χ−+ has
higher energy and also higher threshold momentum, and can
be dropped [not shown in Fig. 9(b)].

In short, in the paramagnetic phase with the SOC, it is the
explicit I -symmetry breaking of the SOC Hamiltonian which
leads to the T± split shown in Fig. 7(b). However, in the FM
of the conventional system, it is the spontaneous T -symmetry
breaking which leads to the T± split in Fig. 3(b). So the two
splitting mechanisms are complementary to each other.

APPENDIX B: CONTRAST OF HERTZ-MILLIS THEORY
WITHOUT SOC WITH THE QUANTUM LIFSHITZ

TRANSITIONS WITH SOC

In this section, we first review the Hertz-Millis theory with
the symmetry group SU(2)spin × O(3)orbit to describe the mag-
netic transitions in itinerant electron systems without SOC.
Then we construct the quantum bosonic Lifshitz theory with
SOC and the reduced symmetry group [SU(2)spin × O(3)orbit]D
to describe the paramagnet to the putative FM transition which
is dramatically different from the Hertz-Millis theory.

1. Hertz-Millis theory to describe magnetic
phase transition without SOC

The possible ferromagnetism (FM) in an itinerant fermion
system with a repulsive interaction is a long-standing problem
in condensed matter physics dating back to Stoner’s FM
instability. Hertz [20] constructed a quantum Ginzburg-Landau
theory to study magnetic fluctuations near the itinerant
paramagnet to itinerant FM transition. The quadratic term in
Hertz’s action reproduces Stoner’s FM instability. Millis [21]
performed RG calculations on the Hertz theory at finite T and
mapped out rich quantum-classical crossover regimes on the
T -δ phase diagram where δ is the tuning parameter of the
transition.

In Fermi systems without SOC, the density and spin
channels are decoupled. There are collective excitations in
the density channel only, but none in the spin channel. So
in discussing possible magnetic orders, one only need focus
on the possible instability in the P-H channel; this is what
Hertz and Millis did in [20,21]. So when looking at the long-
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wavelength, long-energy limit, Hertz and Millis studied the
�q → 0 limit, then ω/qvF → 0. This limit is justified, because
it captures the dominant spin-spin correlation spectral weights
near the magnetic transition. In this �q → 0,ω/qvF → 0, Hertz
derived the following action in terms of the spin fluctuation
order parameter �φ:

S[ �φ] = 1

2β

∑
n

∫
d�k

(2π )2
(δ + γy + αq2) �φ2

+u

∫
d�rdτ ( �φ2)2, (B1)

where y = |ωn|/vF q for FM and y = c|ωn| for the (π,π ) AFM
where all the momenta are measured relative to (π,π ); the δ =
1/g − χspin(�q → 0,ω/qvF → 0) is the controlling parameter
tuning the paramagnet to the ferromagnet transition. When
δs > 0, it is in the paramagnet side; when δs < 0, it is in the
ferromagnetic side.

Under the scaling transformation q → q ′/b,T → T ′/bz

where the dynamic exponent z = 3 for the FM and z = 2
for the AFM, it is easy to see that at the tree level, δ′ =
δb2,γ ′

T = γT ,u′ = ub4−d−z. Because 4 − (d + z) < 0 in 3d,
so d = 3 is above the upper critical dimension, the u is

always (dangerously) irrelevant, which may lead to violations
of scalings near a quantum critical point [52]. However,
it is the dangerously irrelevant coupling u which leads to
interesting quantum-classical crossover regimes on the T -δ
phase diagram.

2. The effective action to describe the PM
to the putative FM transition Eq. (17)

However, as stated in the main text, the above Hertz-Millis
theory completely breaks down in the presence of SOC.
Indeed, in the effective Hertz-Millis action Eq. (B1), all three
spin components are the same due to the SU(2)spin × O(3)orbit

symmetry in the paramagnet side. However, as shown in the
main text, the symmetry with the Weyl SOC is reduced to
[SU(2)spin × O(3)orbit]D , so one has to distinguish not only the
longitudinal mode, but also the two split transverse modes T+
and T−.

As stated in the main text, in constructing a quantum
Ginzburg-Landau action to describe the paramagnet to the
putative FM transition, one needs to take the q → 0,ω/vF q →
0 limit to capture the dominant critical spin-fluctuation spectral
weights. Taking this limit in the n-L space in Eq. (A1) leads
to

χnL
0 (�q,iωn) = m

(
k2

1 + k2
2

)
2π2κ

(
1 − π

2 |yn| − αnq
2 −iβyn

−iβyn
1
3 +

√
k2
R+2mμ

3kR
β − y2

n − αLq2

)
, (B2)

where all the parameters are listed below Eq. (A1). Because the density fluctuation is noncritical across the phase transition point,
integrating it out leads to

S (2)
L = 1

2

∫
d3 �q

(2π )3
T

∑
n

(
δ + γLy2

n + αLq2
)|φL(�q,iωn)|2, (B3)

where δ = 1
g

− χ0

4 is the tuning parameter of the transition, and γL = m(k2
1+k2

2 )
8π2κ

(1 − η) with η = gm(k2
1+k2

2 )
8π2κ+gm(k2

1+k2
2 )

β2 < 1 as the

modification from the density fluctuations. One can extract the longitudinal propagator G−1
L = δ + γLy2

n + αLq2.
In the q → 0,ω/vF q → 0 limit, the action in the transverse spin subspace is reduced to

S (2)
T = 1

2

∫
d3 �q

(2π )3
T

∑
n

(φ∗
+,φ∗

−)

(
δ + γ 0

T |yn| + βT q + αT q2 0

0 δ + γ 0
T |yn| − βT q + αT q2

)(
φ+
φ−

)
, (B4)

where γ 0
T = m(k2

1+k2
2 )

32πκ
and one can extract the transverse

propagators G−1
T± = δ + γ 0

T |y| ± βT q + αT q2.
Note that the SU(2)spin symmetry at �q = 0 dictates that there

is only one tuning parameter δ from the PM to the putative FM
transition in the actions Eqs. (B3) and (B4). When δ > 0, it is
in the PM phase. When δ < 0, it is in the putative FM phase.
Equations (B3) and (B4) reached at the RPA level satisfy the
exact relations Eqs. (3), (4) and Eqs. (7), (8), respectively. The
combination of Eq. (B3) and Eq. (B4) leads to the quadratic
part of the effective action Eq. (17) in the main text. As argued
in the main text, it is the −βT q term in the φ− propagator
which leads to the instability of the putative FM state and the
quantum Lifshitz-type transition from the PM to the SSDW.

The most relevant interaction is the fourth-order term with
the general form Uijklφ

iφjφkφl . We expect that the leading

relevant coupling among all the possible fourth-order terms
should be momentum and frequency independent ( �φ2)2 which
has a larger symmetry SU(2)spin × O(3)orbit than the kinetic
terms. We checked this expectation through direct calculations
of the coefficient Uijkl , which are found to be given by linear
combinations of factors such as δij δkl , δikδjl , and δilδkj . All of
these factors lead to the SU(2)spin × O(3)orbit invariant fourth-
order term u

∫
d3�r[ �φ2(�r)]2 in Eq. (17).

APPENDIX C: FERMI SURFACE RECONSTRUCTIONS
IN THE PRESENCE OF SDW ORDER

In this Appendix, we first analyze the symmetries of the
SSDW and the LSDW+CDW states and their implications for
the degeneracy at both the BZ boundary and the Dirac point
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�k = 0 in Fig. 8(a). Then we will evaluate the gap openings at
the BZ boundary by degenerate perturbation theory.

1. Symmetry analysis at the BZ boundaries and the Dirac point

We first summarize the remaining symmetries of two
types of SDW orders. Both the SSDW and LSDW order are
invariant under a combined transformation of (1) [U(1)zspin ×
U(1)orbit]D; (2)Px,Py ,Pz; (3) the time-reversal symmetry with
a translation Tr(a) where a is a suitably chosen distance along
the ẑ.

For the SSDW �φT = φ0(cos Qz, sin Qz,0), the [U(1)zspin ×
U(1)orbit]αD × (z → z + α/QT ) symmetry dictates that the
spectrum is rotational symmetric about the kz axis. So we
can set ky = 0. The SSDW order preserves the Px and the
P ′

y = Py + Tr ( π
Q

) symmetry where the prime in the subscript

indicates an combined translation. Under Px (P ′
y), the single-

particle eigenstates with a given momentum �k belonging to
the first Brillouin zone (BZ) are mapped to the same �k only
when kz = −Q/2 (BZ boundary) or kz = 0. Any eigenwave
function at the BZ boundary can be written as

|�〉BZ =
∑
n,σ

anσ |(n + 1/2)Q,σ 〉, (C1)

where (n + 1/2)Q represents the kz component of �k, σ = 1,2
the index of spin component. Here and after, we drop the
kx,ky = 0 component in |�k,σ 〉 unless it is specialized. By the
same convention, the wave function at kz = 0 can be written
as

|�〉0 =
∑
n,σ

bnσ |nQ,σ 〉. (C2)

Since the Hamiltonian is real, the coefficients anσ and bnσ can
be chosen to be real values. Applying Px to |�〉BZ and |�〉0

twice leads to P2
x |�〉BZ = |�〉BZ and P2

x |�〉0 = |�〉0. This
property is not sufficient to guarantee the twofold degeneracy
at both the BZ boundary and �k = 0. When applying P ′

y , we
also set kx = 0 (namely at the center of the BZ boundary and
�k = �0) and find P ′2

y |�〉BZ = |�〉BZ and P ′2
y |�〉0 = −|�〉0.

The later relation ensure the twofold degeneracy of the energy
spectrum at �k = 0. So the Dirac cone at �k = 0 remains inside
the SSDW.

The LSDW with �φL = φ0(0,0, cos Qz) preserves the P ′
x =

Px + Tr ( π
Q

) and P ′
y = Py + Tr ( π

Q
) symmetry. Any eigenwave

functions at the BZ boundary and �k = 0 are also given by
Eqs. (C1) and (C2), respectively. Since the Hamiltonian is
real, all of coefficients anσ and bnσ can be chosen to be
real. Applying theP ′

x symmetry leads toP ′2
x |�〉BZ = −|�〉BZ

and P ′2
x |�〉0 = |�〉0. The former relation ensures the twofold

degeneracy of the energy spectrum at the BZ boundary.
Similarly to the case for the SSDW discussed above, applying

the P ′
y symmetry ensures the twofold degeneracy at �k = 0. So

the Dirac cone at �k = 0 remains inside the LSDW.
As we have shown in the main text, the LSDW order would

induce a CDW order with the orbital momentum 2QL. Because
the density order is invariant under the above symmetry
operations, all of these results would not change.

2. Gap opening at the BZ boundary and inside
the BZ by the degenerate perturbation theory

(1) At the BZ boundaries. At the BZ boundary, the |(n +
1
2 )Q,s〉 and | − (n + 1

2 )Q,s〉 with the same helicity s form a
degenerate pair. For the SSDW, the 2 × 2 matrix in the two
lowest bands with n = 0,s = −1 is given by

HSSDW =
(

μ −φ0

2 sin2 θ
2 e−iϕ

−φ0

2 sin2 θ
2 eiϕ μ

)
, (C3)

where μ = ξQ/2,−, θ,ϕ is the azimuthal angle of k =
(kx,0,Q/2) with θ < π/2. The spectrum is given by

ξs = ξQ/2,− + s
φ0

2
sin2 θ

2
, (C4)

with the band gap � = φ0 sin2 θ
2 ,θ < π/2.

Similarly for k = (kx,0,−Q/2) with θ > π/2, we obtain
the band gap � = φ0 cos2 θ

2 ,θ > π/2. By contrast, for the
LSDW order, there is no matrix element between |(n +
1
2 )Q,s〉, and | − (n + 1

2 )Q,s〉 is always zero. So there is no
band gap opening to this order. In fact, the above exact
symmetry dictates there is no gap opening to any order of
perturbations.

(2) At the intersections between the large and small FS
inside the BZ. The SOC leads to the splitting of the FS into two
with opposite helicities. When there is an intersection between
them inside the BZ, the states |k + nQ,r〉 and |k + mQ,s〉 are
coupled together. If m − n = ±1, the 2 × 2 matrix in the two
degenerate levels is

HT/L−SDW =
(

μ φ0M

φ0M
∗ μ

)
, (C5)

where μ is the Fermi energy, M = 1
2 〈k1,s|σ+|k2,r〉 for the

SSDW, while M = 1
4 〈k1,s|σ z|k2,r〉 for the LSDW. The band

gap is given by � = 2φ0|M|.
At small γ , the two intersecting FS have opposite helicities

s = −r = 1. For the SSDW order, M = − 1
2 cos θ1

2 cos θ2
2 eiϕ2 ,

where θ1,2,ϕ1 = ϕ2 are the polar and azimuth angles of
k1,2, while for LSDW, M = 1

4 (cos θ1
2 sin θ2

2 − sin θ1
2 cos θ2

2 ) =
− 1

4 sin θ1−θ2
2 .

At large γ , the two intersecting FS have the same helic-
ities s = r = −1. For the SSDW, M = − 1

2 sin θ1
2 cos θ2

2 eiϕ2 ,
while for the LSDW, M = 1

4 (sin θ1
2 sin θ2

2 − cos θ1
2 cos θ2

2 ) =
− 1

4 cos θ1+θ2
2 .
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