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in an external magnetic field

Wu-Ming Liu
Department of Physics, The University of Texas, Austin, Texas 78712;
Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100 08d, China;
and Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032

Wu-Shou Zhang and Fu-Cho Pu
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-99, Beijing 100 080, China

Xin Zhou
Department of Mathematics, Duke University, Durham, North Carolina 27706

(Received 6 April 1998; revised manuscript received 17 September 1998

By using a stereographic projection of the unit sphere of magnetization vector onto a complex plane for the
equations of motion, the effect of an external magnetic field for integrability of the system is discussed. The
properties of the Jost solutions and the scattering data are then investigated through introducing transforma-
tions other than the Riemann surface in order to avoid double-valued functions of the usual spectral parameter.
The exact multisoliton solutions are investigated by means of the Binet-Cauchy formula. The results showed
that under the action of an external magnetic field nonlinear magnetization depends essentially on two param-
eters: its center moves with a constant velocity, while its shape changes with another constant velocity; its
amplitude and width vary periodically with time, while its shape is also dependent on time and is unsymmetric
with respect to its center. The orientation of the nonlinear magnetization in the plane orthogonal to the
anisotropy axis changes with an external magnetic field. The total magnetic momentum and the integral of the
motion coincident with itg component depend on time. The mean number of spins derivated from the ground
state in a localized magnetic excitations is dependent on time. The asymptotic behavior of multisoliton solu-
tions, the total displacement of center, and the phase shift oftthpeak are also analyzed.
[S0163-18209)07121-0

I. INTRODUCTION for a ferromagnet with an easy plane. Long and Bighop
proposed another solution which does not tend to the well-
Nonlinear magnetization dynamics of the classical ferroknown solution of an isotropic ferromagnet when an anisot-
magnet with two single-ion anisotropies in an external magropy parameter vanishes. Zakharov and Takhfdjaund the
netic field can provide an approximative description of vari-equivalence of a nonlinear Schrodinger equation and
ous kinds of behavior of magnetic materials as well as thé_andau-Lifschitz equation of an anisotropic ferromagnet.
natural starting point for analyzing the anomalous hydrody{vanov, Kosevich, and Babillobtained a solution by taking
namical behavior of low-dimensional magnetic systemsinto account only the first-order approximation. Using the
Such fascinating nonlinear dynamic problem exhibits bothHirota method, Bogdan and Kovaf@attempted to construct
coherent and chaotic structures depending on the nature ekact multisoliton solutions of an anisotropic ferromagnet.
the magnetic interactions, and it is of considerable interesBvendsen and FogedByderived the complete spectrum of
from the point of view of condensed-matter physics, statistithe Landau-Lifshitz equation by the Hirota method. Using
cal physics, and soliton theory. the variation method, Nakumura and Sasadatained a so-
Nonlinear magnetization dynamics of the classical ferrodution which does not satisfy the equation if it is substituted
magnet can be described by the Landau-Lifschitz equationjnto the equation of motiolt By separating variables in
special solutions of which have been derived by many aumoving coordinates, Quispel and Cdfelbtained a solution
thors: Makamura and Sas&daund analytic expressions for of the Landau-Lifschitz equation of a ferromagnet with an
the permanent profile solitary waves and periodic waveeasy plane. Potemiffaand Kivshat® elaborated on the per-
trains; Laksmanan, Ruijgrok, and Thomp3afiscussed the turbation theory for the Landau-Lifschitz equation describing
spin-wave spectrum and derived also the solitary wave solua biaxial anisotropic ferromagnet.
tion. Tjon and Wright found that a single-solitary wave is The general solution of Landau-Lifschitz equation for the
stable with respect to small perturbations and that two colspecial initial condition has been considered by several in-
liding ones preserve their identity, thus providing evidencevestigators. Lakshmanhshown that the energy and current
that the solitary wave is a bona fide soliton. Kosevich,densities are given by the solutions of a completely inte-
lvanov, and Kovale¥found a solution by reducing the equa- grable nonlinear Schrodinger equation. TakhtHjacon-
tion to an appropriate form. Mikeskabtained a solution by cluded that the Landau-Lifschitz equation admits a Lax rep-
reducing the equation of motion to a sine-Gordon equatiomesentation and, consequently, falls within the scope of an
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inverse scattering transformation. Fogettbyeviewed the  single-ion anisotropies in an external magnetic field. This is
permanent profile solutions of a continuous classical Heiseran important problem which has been treated to a large ex-
berg ferromagnet and expounded on the application of atent for the vanishing magnetic field by Sklyanin in a fa-
inverse scattering transformation. Sklyaflimnd Borisog® ~ mous, but unpublished preprint, cited in Ref. 20. For mag-
found the Lax pair of Landau-Lifschitz equations for a com-netic fields with rotational symmetrjan easy-plane or an
plete anisotropic ferromagnet, respectively. Mikhaffoand ~ €asy-axis cagethe analysis of Ref. 20 can be generalized by
Rodirf reduced the problem to the Riemann boundary-valuér?”Sfprmation toa rotat?ng.coordinate frame._ For the general
problem on a torus, then obtained some results which ar_gwectlpn of the magneth field the results will be gfenerally
expressed by the elliptic functions. Borovik and Kulifiéfe ~ investigated in the following content. The plan of this paper
derivated the Marchenko equation by an inverse scatterinfj @S follows. In Sec. Il by using stereographic projection of

transformation. Pu, Zhou, and®ireported the multisoliton Ie un]|ct S%Tere of ';_he ma?netlt_zatlo?hvecéor ton;o a complt_ex
solutions of the Landau-Lifschitz equation in an isotropicpane or the equations of motion, the etfect of a magnetic

ferromagnet in a magnetic field. Chen, Huang, and?Liu I'rfld f?]rllrlte%rapnltytof thfe sysigm W'Itlhbe ?ASCUtSﬁedé.Then,
obtained soliton solutions of the Landau-Lifschitz equation ough ntroducing transformations other than the Riemann

for a spin chain with an easy axis. Yue, Chen, and Hang surface, the properties of the Jost solutions and the scattering

investigated solitons of the Landau-Lifschitz equation for g0f data will be investigated in detail. In Sec. il will be de-

spin chain with an easy plane. By means of the Darbou)pved the Gel'fand-Levitan-Marchenko equation to construct
transformation, Huang, Chen ;';md P3ufound the soliton solutions from the scattering data. The exact multisoliton so-
solutions of the Landau-Lifschitz equation for a spin Chain:‘gtrlr%r:ﬁaw#getoltr;\llen?ggﬁgﬁc %’Omgﬁpusmoggzjgge;;:ﬁfhy
with an easy plane. Liet al*° studi litons in a uniaxial " - : ; .

y plane. Liet al. ™ studied solitons in & uniax will be obtained. Section IV will be devoted to the

Heisenberg spin chain with Gilbert damping in an external : : L .
g sb ping asymptotic behavior of multisoliton solutions as well as the

magnetic field. Using the method of the Riemann proble . . "
with zeros, Yue and Huarginvestigated solitons for a spinm[otal dls_placement of gentgr and the phage shift of]
peak. Finally, Sec. V will given our concluding remarks.

chain with an easy plane.
There are some difficulties in the study of nonlinear mag-
netization dynamics of a ferromagnet with an anisotropy in Il. THE EQUATIONS OF MOTION

an external magnetic field. Its equations of motion, which h ic d ition. d .
differ from those of an isotropic ferromagnet, could not be _ When we use a macroscopic description, dynamics of the

solved by the method of separating variables in mc)Vmgclassical ferromagnet is determined by giving at each point
coordinated. Then, this equation could also not solved by an®f the magnetization vectdvl =(M,,My,M,). The energy
usual form of inverse scattering transformation since the®f @ ferromagnet in this approach called, generally, micro-
double-valued function of the spectral parameter is require@gnetism, is written as the magnetization function. The
to introduce a Riemann surface. The reflection coefficient af?@gnetic energye of the classical ferromagnet with two
the edges of cuts in the complex plane could not be neglecteﬂngle"on anisotropies in an external mggnenc field, includ-
even in the case of nonreflection. Thirdly, it is impossible to/"d &N €xchange enerdye,, an anisotropic energl,, and
use Darboux transformation to include the contribution dug® £€€man energlg; can be written as

to the continuous spectrum of the spectral parameter. If we

consider the exact solutions of the Landau-Lifschitz equation E=Eext Eant Ez

under various external actions such as an external field in the 1 IM OM 1

present paper, a general theory with terms of the continuous :_af 2 L d3x— —ﬂxJ’ M 2d3x
spectrum as a starting point is necessary. Finally, an external 2 K OXg Xk 2 X

magnetic field will affect the integrability of the system. This 1
field vylll change the initial con.d|t|on of t.he Landau-Lifschitz _ —,Bzf M§d3X—Maf M -Bd3x, (1)
equation of a ferromagnet with an anisotropy. It would be 2
instructive if the effect of a magnetic field is discussed. In-
troducing the coherent-state ansatz, the time-dependekthereus is the Bohn magneton. Equati¢h) has an integral
variational principle, and the method of multiple scales, Liuof motion (M2)=M3=const. In the ground state, the quan-
and Zhou investigated the equation of motion and obtainedity M, coincides with a so-called spontaneous magnetiza-
multisolitons in the pur® and the biaxiaf anisotropic anti-  tion My=(2ugS)/a®, whereSis the atomic spin and is the
ferromagnets in an external field. Up to date, the effect of arinteratomic spacing. In the limg,=0, a biaxial anisotropic
external magnetic field for magnetic systems with anisotropyerromagnet reduces into an uniaxial anisotropic ferromagnet
is treated as various perturbations. The exact solutions of th&ith an anisotropy axis coincident with thzeaxis: wheng,
Landau-Lifschitz equation of the classical ferromagnet with>0, an anisotropy is of an easy-axis type and its magnetiza-
two single-ion anisotropies in an external field have not beetion vector in the ground state is directed along thexis;
obtained yet. On the experimental sife® a ferromagnet when3,<0 it is of an easy-plane type, its vecthr in the
with an easy plane in a symmetry-breaking external transground state lies in the easy plane in the absence of an ex-
verse field has received continuing interest, though most thgernal magnetic field and can be directed arbitrarily in this
oretical treatments have been based on the approximafgane. IfE,,=0, a crystal is called an isotropic ferromagnet.
mapping to a sine-Gordon equation. As a function of space coordinates and time, the magne-
This paper focuses on the integrability and nonlinear magtization vector of the classical ferromagrd{x,t) is a solu-
netization dynamics of the classical ferromagnet with twotion of the Landau-Lifschitz equation
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oM 2ug SE where i=x,y,z, AJ=J,—-J,, AJ=3—J,, AJ,=J
T MY (2 -J,, respectively.
The consistency of Eq(6) implies ®;(P,P*)=0 and
If we measure the space coordinat@nd timet in unit of & (P,P*)=0, therefore the evolution equation for the ste-
lo=(a/B) 2 andwy=(2usB,M)/#, respectively, then ac- reographic projectiorP(x,t) in the presence of the general
cording to Egs.(1) and (2), we can obtain the following direction of an external magnetic field becomes
equation of motion:

y

I*M
— +IM+pugB
ax

M
——=Mx

ot ’ ®

_ , 9P ,aP [P)|*

, , , : +2A3,P(1—|P|®) + ug(1+|P|?
where the matrixJ=diagJy,Jy ,J,) is related to the aniso- PA=[PI9) +pa(1+[P)

tropic constants. Equatigl) with B=0 is exactly integrable 1 5 1 )

by Sklyanin in a famous, but unpublished pap2é]. The X EBX(l—P )+ §|By(1+P )—BZP}ZO- (7
additional terms on the right-hand side of E§) describes

various external actions, e.g., a magnetic field in the prese'ﬂccording to Eq(7), we can analyze the effect of an exter-

paper, magnetic impurities, dissipative loses, etc. When 0s;5 magnetic field on the integrability of the system. When
cillations of the magnetization vectdt are localized near an g, external field is directed along an anisotropic axis, e.g.

easy planeg/z, Eq.(3) with B=0 could be transformed into a B=[0,0B%1)], the magnetic field term in Eq7) can be
sine-Gordon equation in the limit.<J,<J,. Similarly, this . . =

; o . . removed by the following gauge transformatidh— P
equat!on \.N'thB_Q ?"50 becomes a nonllr_lea_r SChrOdmger:Pex;{i,udetBZ(t)] and the system becomes integrable.
equation in the limit,~J,<J, when oscillations of the However. if the ;'nagnetic field is transverse, e.@
magnetization vectoM are localized in the vicinity of the =[0 By(tj 0], the magnetic field term is not rem(;vat;.)le,by

;iﬁgg?r]os?gtgr(éﬁ%:rggf?}?ﬂ;%.(algtgr]r?alsrr)ne:ileﬁﬁ:sf?élz ?s als (g)revious gauge transformation and none of the magnetization
pic géﬁ magnet components remain conserved quantities. Consequently, the
?;nsslstix/;?éﬁ?;ib; .n:)/\rﬁ;ﬁgaarl rSncﬁggﬁf gflg Ija%%r'r%hsEq combined Galilean plus gauge invariance of the Landau-
9 ) ger eq : lrifschitz equation is broken, no Lax pairs seem to exist, and
Eq. (3) is the most general equation describing the classmathe system appears to be nonintegrable
ferromagnet with two single-ion anisotropies in an external The influence of the magnetic field on. the classical ferro-

magnetic field, but its exact solutions have not been obtaine%&1 net with an easy axis amounts to a change of the preces-
so far because the additional terms such as an external ma&bg frequency of th}é magnetization vecMrbygw —u BIO
B— MBP-

netic field in the present paper on the right-hand side of Eq_.l_ . . L
(3) are determined by various perturbatidAs. herefpre, if we can mt_roduce an angulgr varialle ¢
We first consider the effect of an external magnetic field~ st in the polar coordinatesé{¢), then in terms of the

on integrability of the system. For magnetic fields with rota-angular variable® and ¢ Eq. (3) will not depend orB.

tional symmetry(an easy-plane or an easy-axis Qashe However, the magnetization dynamics of the classical fer-

analysis of Ref. 20 can be generalized by going over to @omagnet with an easy plane is very sensitive to an external

rotating coordinate frame. For the general direction of themagnetic field. Even a weak magnetic field alters the char-

magnetic field, we first use a stereographic projection of thecter of the ground state and therefore the form of localized

unit sphere of magnetization vector onto a complex piaffe  solutions. When an external magnetic field is perpendicular
to an easy plane, it does not alter the axial symmetry asso-

M,+iM, ciated with thez axis, and the form of the ground state de-
P(x,t)= 1M, (4) pends on the strength of an external field. The critical value
is B.=[(Jy—J,)M]/ug. When an external magnetic field
Substituting Eq(4) into Eq. (3), we can find BZ< B, the magnetization vectdvl in the ground state de-
viates from an easy plane, and it is characterized by an in-
(1=P*?)d,(P,P*)~(1-P?)®} (P,P*)=0, clination #= 6, to thez axis, wheref,=arccosB?B.). The

angle remains arbitrary. For brevity, such a ground state is
—i(1+P*?)®(P,P*)—i(1+ PZ)CD;‘(P,P*)=O, (5) referred to as an easy cone. As an external magnetic field
increases, the angular opening of the easy cone becomes

P*®,(P,P*)— P®*(P,P*)=0, smaller, especially in the case Bf>B., and the magneti-
zation vectorM in a nonexcited ferromagnet with an easy
where®, , &, and®, can be written as plane lies along the axis.
) In the context of the experiment$3®the situation where
o , 9P 5 9°P . 9°P an external magnetic field lies in an easy plane, €.,
®i(P,P*)=i(1+[P[*)—-+(1+|P| )E_ZP o =[BX(t),0,0], orB=[0,B¥(t),0], seems quite topical. In ex-

periments on samples of a ferromagnet with an easy plane,
+2A3;P(1—|P|?)+ ug(1+]|P|?) CsNiF; and (GH1;NH3)CuBr;, an external field is applied
1 1 as a rule in an easy plane. The presence of an external field,
| ZBX(1—P2)+ ZiBY(1+ P?)— BZ which lies in an easy plane, makes flndl_ng soliton sqll_,ltlons
ZB (1=P%) 2IB (1+P5-B P}' © of the Landau-Lifschitz equation essentially more difficult.
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The magnetic-field term in Eq7) is not removable by pre- AW (X,t; w,\)
vious gauge transformation. Thus, we can conclude that a ax
ferromagnet with a uniaxial anisotropy in a transverse mag-
netic field is, in general, nonintegrable and becomes inte-
grable only in the absence of either an anisotropic interaction W (Xt 1w, \)
or an external field.

Equation(3) may be represented as a compatibility con-
dition o,L —9,A+[L,A]=0 of two equations for X2 ma-
tricesW(x,t; w,\): while

=L(u, NP (X,tu,N),

g =A(u )P (X, p,)), ®

L(Iu’i)\): _|Pns(lum)\)Mx0-x_Ipds(ﬂa)\)Myo'y_|pcs(ﬂy)\)Mzo'z,

A(u,N)=12p%ds(,\)CS(, N )My +i2p"ns(u,N)es(,N)Myay+i2p?ns(,\)ds( 4, N )Mo, —ipns(u,\)

» M, M, My, q \ My IM, ol M M, M IM 9

Y ox X oy—ipds(u,\)| M, X X oy Oy ipcs(u,N) X% Y ox o, (9

|

where  o(i=X,Y,2) are the Pauli metrics, If one of two parameters in E¢ll) is taken as an indepen-
ns(u,N),ds(u,\), and cs(u,\) are elliptical functions, dent parameter, then another is the double-value function of
while u and p are defined asu=(JyM—J MYY%2p p  the first, therefore it is necessary to introduce a Riemann
=1/2(9,M — I ,M)*2 The coeff|C|ents in the Lax pairs in- surface. In order to avoid the complexity brought about a
clude two parameterg. and p instead of the threel;(i Riemann surface, introducing another paramktealled the

=1,2,3), because adding a constant to all Jhaloes not affine parameter, we will considex(k) and u(k) as a
change Eq.3). Since the coefficients are double-periodic single-valued function ok,
functions of the parametex, it is sufficient to considen

insi < <2K' 2p(k?+1 4pk
inside the rectanglﬁ?e?\|<2K, [Im )\|<'2K ,.whereK’(,u,) p( ) , p for an easy plane,
is a complete elliptic integral of the first kind an€l’ (u) K2—1 K2—
=K[(1_M2)l/2]- A= 2_ 2 M=Y 2, 2
. . . . . k — k +
For an uniaxial anisotropic ferromagnet in an external p P~ toran easy axis.
magnetic field, the Lax pairs can be written as k k

(13

There are two different types of physical boundary condi-
tions in Eq.(3). The boundary condition of the first type

L(u,N)=—iuM,o—iuMyoy,—iAM,o;,

A(u,N) =i 2uXMyo +i2uNMyoy +i2u°M 0, corresponds to a breatherlike solution, which is usually
called a magnetic soliton. For the classical ferromagnet with

_ M, oM _ IM, o e : . ¢ | ol

i My M =Y o= | M — two single-ion anisotropies in an external magnetic field, in

terms of analysis for integrability of Eq7), we will study
oM, aM FIV soliton solutions of possessing as_ymptotdé—>M_o
MZW) oy— (MZW_ ZW) 0z, =(0,0My), as x— *=. The corresponding Jost solutions

Vi« (x,k) of Eq. (8) may be chosen a¥ . (x,k) —E(x,k)
(10 asx— * o, whereE(x,k) =exd —ipcqk)Mgxo], while

where the spectral parametersand u satisfy the followin . 2pns(k)ds(k)
relation: P P K fy g \Ifo(x,k)=exp[ —|pcs(k)Mo[x— Wt g,
24,2 < for Imk=0,2K’. There are two independent solutions
\eo | # 4”2’ for B;<0(aneasyplane = E (xk) andE,(xK) in E(x,K), with every solution having
u—4pc, for B,>0 (an easy axis two components,
and wherep is defined as Eq1(x,k) Elz(x k)
1(X,k) = Eax(x,k
Ezi(x,k) /)’ Ea(x,k))
Z[(JX—JZ)M]”Z, for B,<0 (an easy plane Yo, (x,K), ¥o_(x,k), andW¥y(x,k) have also two indepen-
P=9 4 dent solutions¥ . (x,k) and ¥, »(x,k), ¥o_41(x,k) and
< _ w2 ~0 Wo_s(X,K), Woi(X,K) and ¥ o(x,k), respectively.
4[(‘]Z JIMIY, - for - B,=0 (an easy axis Under an external magnetic field the magnetization vector

(12 M in the ground state of a ferromagnet with an easy plane
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deviates from an easy plane, and it is characterized by awhile

inclination 6, to the z axis andg¢, to the x axis, where the
asymptotic magnetization vectdt lies on the surface of an
easy cone. The simplest solution of Eg) can be written as
M—Mg = (Mg Sin6f,coSsdy,MqSsin 6, sin ¢g,Mycosb,), as
x— * oo, the corresponding Jost solutioi&. (x,k) of Eq.
(8) may be chosen adf. (x,k)—EP(x,k) as x— *co,
where

. 2pk .
EP(x,k)=exg —i 1 M Sin pX COSpyoy

. 2pk . .
—i k2_1M05|n00xsm¢ooy
p(K*+1)
—ITMOCOSQOXUZ s
while
. 2pk .
Wh(x,k)=exp —i 2 M Sin 6y cosey
2p(k?+1)
T e ™
. 2pk . _ 2p(k?+1)
=1 k2_1M05m005|n¢0 X—= Wt oy
p(k?+1) 8pk?
—ITMOCOSHO X— e tlo,.

When an external magnetic field increases, magnetization

will be far from an easy plane, and in the caseB3#B,,
magnetization will lie along the axis. When a magnetic

fields vanishes, magnetization will lie on an easy plane and

can be written adM = (M cos¢y,MgsSinpg,0). There are
two independent solutiors)(x,k) andES(x,k) in EP(x,k),
with every solution having two components,

Egl(x!k)
EE(X’k):(E‘z’l(x,k))’

EPo(x,k)
Eg(x’k):( E22<x,k>) |

The solutions¥§_ (x,k), W5_(x,k) andW¥§(x,k) have also
two independent solutionsVf, ;(x,k) and ¥, ,(x,k),

Wh_1(x,k) and ¥§_,(x,k), ¥hi(x,k) and ¥E,(x,k), re-
spectively.

Since thez axis is an easy axis in a ferromagnet, the

boundary condition is chosen &— My=(0,0M,) asx—
*=, and the corresponding Jost solutioh§.. (x,k) of Eq.
(8) may be chosen asVi. (x,k)—E3x,k) as x— =,
where

2 2

T MoXo,

Ea(x,k)zexp{—i

12 897
k2_p2 (k2+p2)2
a — 1 N —
\Po(x,k)—exp{ I Mo{x k(= ?) oy -

Similarly, E®(x,k) also has two independent solutions
Ef(x,k) andE3(x,k), with every solution having two com-
ponents,

Ei1<x,k>) . (Ei‘2<x,k>)
2( =

El(x'k):<E31(X,k) ! B ES(x,K) /)

Wi, (x,K), ¥5_(x,k) and¥§(x,k) have also two indepen-
dent solutions¥§, ;(x,k) and ¥§, ,(x,k), ¥2,(x,k) and
Wi_,(x,k), Tii(x,k) and¥d,(x,k), respectively.

By means of the standard procedures of characteristic
theory, we can obtain the following integral representation:

W00 =Bk +A [ ayK, (B,
X
(14
X
\I’f(x,k)=E(X,k)+7\f dyK_(x,y)E(y,k),
where the kernel&  (x,y) andK_(x,y) depend function-
ally on magnetizatiorM (x) but are independent of the ei-
genvaluen, andK . (x,+%)=0.

For a ferromagnet with an easy plane in an external mag-
netic field, we can also obtain

WP (x,k)=EP(x,k)+ —) f dyK24(x,y)EP(y,k)

(x,y)EP(y.k),

WP (x,k)=EP(x k)+—)f dyKP9(x,y)EP(y,k)

ZpKJX
+ dyKP(x,y)EP(Y,K),
1) YK GYERY k)

whereKP® (x,+«)=0, the superscriptd andnd denote the
diagonal and nondiagonal parts of the matrix, respectively.
While for a ferromagnet with an easy axis in an external
magnetic field,

(15

P2 (x,k)=E¥(x,k)+

2
-P * a,d a
5K fx dyK3%(x,y)E3(y,k)

k2+
N p

f dyK3"(x,y)E¥(y,k),

W2 (x,k)=E3(x,k)+

_p2 X
J dyK>%(x,y)E3(y,k)

2 X
2kp fﬁxdyK%"d(x,y)Ea(y,k), (16)

whereK& (x, +«©)=0.
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I1l. SOLITONS

By means of the results obtained in the previous section, Ko (x D)= defl +N"(x,h)M'(x,1)]
we will investigate soliton solutions. The reconstruction of n(xH =i defl+N"(x, )N’ (x,1)]
magnetization, i.e., the “potentialM(x,t), from the time-
dependent scattering data is called the “inverse scattering def! +N”(x,t)N’(x,t)+WTM]
problem” and is achieved by means of a linear integral equa- K(x,t)= -1,
tion, the Gel'fand-Levitan-Marchenko equation. It is well def!+N"(x,t)N"(x,t)]
known that the pure soliton solutions correspond to the re- (18

flectionless case. In the reflectionless case, the reflectiongjnere M’(x,t)=N’(x,t)+iH(X)Tm, while N’(x,t)
coefficient r(k,t)=0, the Gelfand-Levitan-Marchenko 4nq N”(x,t) areNx N matrices.

equation can be written as In order to obtainK,4(x,t) andK,,(x,t), we will calcu-
late defl +N"(x,t)N’(x,t)], defl+N"(x,t)M’(x,t)] and
K11(X,t) + KX, t)N"(x,t) =0, defl +N"(x,t) M’ (x,t)+H(X) 'G(x,t)] by the Binet-
(17) Cauchy formula, respectively.
Setting
Kio(X,1) — G(x,t) — K1(X,1)N’(x,t) =0,

I'p=defl +N"N’), (19

whereK4(X,t) andK5(x,t) can be expressed by and using the Binet-Cauchy formula, we can obtain

Fo:1+ 2
r

=1 1sn<ny<---<n;sN  Ismp<myp<..-<m;<N
X yo(Ng,Ny, .. N My, My, ... M,). (20

For a ferromagnet with two single-ion anisotropies in an external magnetic field,

—  p?les(ky) —cs(kn) 17 eS(kp) — sk ) ]?

N{,No, ... N My,My, ... M)=(—1)" ff o . (21
Yo(N1,Nz ro Mg, M )= )]'_n'[ ].;.[ o m].;.!n/ nIm&ndm [CS(km)—CS(km)]2 (21
where
CS(kn)—CS(km)
an= ’
m#n p[cs(Km) —cS(km) [ cS(Kn) —CS(Kp) ]
N
Cs(kl) 2
=L coont

For an uniaxial anisotropic ferromagnet in an external magnetic field, we can find
Yo(Ny, Ny, oo N ;M My, .. M,)

( 21, (1 4 2 T 2_ 1 2\2/12 22

— — 4p“Km(Kn" = 1) (K™= 1) (K “=kp®) “(k7, —K7)
(_1)TH H H H fnfmanam— 2 _2 2 _2 2 2 ;1 2 n_2 1
N M n<n’ m<m’ Km(kf+ 1) (Kn" = 1)7(Kn “—= 1) “(Kpy == 1) “(k5 = Kp)
< for an easy plane;
, — — ApZy(Kkpt DKy (K ? = 1) Ky 2(kn? = 1) 12 Key(KE, = 1) — Ky (K= 1)1
(1) H H H H fofmanam —> — 2 —> 2 ,
N M pn<p’ m<m’ I(m(kn +1)[kn(km_1)_km(kn _1)]
| for an easy axis.
(22)

where
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(k2= 1)(kp2— 1) (k2= 1) (K3 —K2)
min - 2p(kE—1)(ke2—K2) (k2 — K2)
(k2=1) (k2= 1) (k2= 1)[Kn(k3— 1) —kp(kE—1)]
m#n 4p(kZ—1)[Kn(kn?—1) —kp2(k2— 1) [ kn(kn?—1) —ky(k2—1)]

N (kE+1)(k 2+ 1)

— " p.H2, foran easy plane;
- 1)(k2—1) " " yP

fo= _ (23

Tk(E-y _

—=———b,H;,, for an easy axis.
=1 ky(k*=1)
Setting
I';=de(l+N"M"), (24)
thenT'; can be written as

r=1+>, > > y1(N1,Ny, oo N My, My, .o my). (25)

r=1 1snm<ny<-.-<n,sN 1lsmp<my<..-<m;<N

For the classical ferromagnet with two single-ion anisotropies in an external magnetic field,

m)=C-OIT T I TT fofmana pPeskn)[Cstkn) — cstky) JLeS(kn) — cs(km )]

NN, -, N My, My,
y1(N1,n, LTS L cs(kp)[cs(kn) —cs(ky) 1>

(26)
For an uniaxial anisotropic ferromagnet in an external magnetic field,

71(nlin2!' s, N TMg, My, - '.mr)

p%Kkin(Kn2— 1) (K 2= kp2)2(K2, —K2)?
' fof —,
( b H H EI mgn méne "n(k2— 1) (K 2= 1) (K2, — 1) (k3 —k,?)?

for an easy plane;

— 16p2(KGH 1) (Ke? — 1)[Kn(Kn 2= 1) = Ky (kg2 = 1) 12 K(KE, = 1) = Ky (K= 1)1
(— 1)rHH H H nfmanan )

hen mem (k2= 1) (kn2+ 1)[ Kn(K2— 1) — kip(kn2—1)]2

| for an easy axis.

(27)

Third, in order to obtain dgt+ N"(x,t)N’(x,t) + H(x)"G(x,t)]in Eq.(18), we will introduce aNx (N+1) matrixQ" and
a (N+1)xXN matrix Q', Qp=Nhm, Qro=—iHn Qim=Nim, Qro=iG,, n,m=1,2,... N, then det{+Q"Q’) can be
written as

de(l +Q"Q") =1+ >,
r=1 1sn;<ny,<.-.--<n,sN 0Osm;<myp<...-<m;<N
XQ"(Ny,Ny, ... N My, My, ... M)Q (Mg, My, ... M, ;N¢,Ny, ... ,N,), (28

where the sum is decomposed into two parts: one is extendag=t®, the other tan,;=1. Except for the same extended to
m;=0, Eq.(298) is just Eq.(19), therefore,

de(1+Q"Q’)—defl +N"N")= >,

r=1 1sn;<npy<---<n,sN 1sm<my<...<m,<N

Setting
I',=dei(l+Q"Q’")—deil+N"N"), (30
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we can obtain
I‘2=2 vo(N1,Ny, o0 ;0My, Lo my). (3D
r=1 1sm<ny,<---<n, =N 1lsm<my<.--<m,<N
For the classical ferromagnet with two single-ion anisotropies in an external magnetic field,
yo(Ny, Ny, ... N ;0 My, Lo my)
— p2es(kp)[es(kn) — cS(Kn) 1 CS(Km) — CS(Kmyr) ]2
1)”11_[ H H H f fmana’mp s(km)[cs(kn) —cs(ky/) 7 es( . S(km) ] . 32)
M n<n’ m<m’ CS(kn)[CS(k) Cs(km)]
For an uniaxial anisotropic ferromagnet in an external magnetic field,
72(”11”21 R nr;OmZI =t m )
2 (k 2-1V2(k 21 2\2(12 242
pKm(Kn®—1)%(kn *—kn?) (K5, — ki)
( 1)'”1_[ H T I f.foan —_—, for an easy plane,
n<n’ m<m’ nmnSmi n(k2 1)(knr_1)2(kr2nr—l)2(k2m_kn2)2
=< (— 1)r+11_[ H H H fnfma’nam (33
n<n’ m<m’
16p2(k2+1)(k 2— 1)[Kn(kn 2= 1) = Koo (ky2 = 1) T Ken(Keyr 2= 1) = Ky (KE = 1) ]2 .
> = > = 5 , for an easy axis,
(k2= 1) (ko2 + D[ kn(k3— 1) —kny(kn—1)]

wheref,, can also be written af,=exp(—®,,+iD,,).

Substituting Eqs(19), (24), and (30) into Eq. (18), we

can obtainK; andK,. Using the following relations:

M, t)=[iK(x,x,t)— o, ]o,[IK(X,x,t)—0o,] L, (34
we can obtain the multisoliton solutions in the classical fer-

Ta|*= [Tl
Mocosty— ——>——. for an easy plane,
(M), = [T ]2+
nJz—
Uil L for an easy axis
07 15 12 w12 '
T4 |?+|T5l?

romagnet with two single-ion anisotropies in an externalThen taking thez axis as the polar axis in the polar coordi-

magnetic field,

lr2
M H
(M= e(|r1|2+|r 2

(Mp)y=im| —22L2 ) (35)
= m e e—————
e IT4/2+|T5|2
742,
(Mp),=Mg— ———— 2
i T2+ T2

For an uniaxial anisotropic ferromagnet in an external mag-

netic field, the multisoliton solutions can be written as

'M 00 coss Re( 2T, )
Sin ({015 — —_—,
A N A e
(Mn)x:
2r, I,
R 2 2/’
L |T4]+ T
’M 80 sinbo— | —2L1L2
Sin Sin —m|——-7:|,
e R T T -
Y 2r, T,
M )
L |T|“+|Ty

nates, we can obtain the multisoliton solutions of the classi-
cal ferromagnet with two single-ion anisotropies in an exter-
nal magnetic field,

2|12
cosd ,
T4 |2 +]T|?
(37)
¢=—argl’',—argl’;.

For an uniaxial anisotropic ferromagnet in an external mag-
netic field, the multisoliton solutions can be written as
2|T,)?
742+,
2|T,f?
T 4|2+ T,/

C0Sfy—

cosf=

—argl',—argl';, foran easy plane,

o= (38

—argl',—argl'y, foran easy axis,

wherel'; andI', are expressed by Eg&5) and (31), re-
spectively.

Whenn=1, the single-soliton solutions of the classical
ferromagnet with two single-ion anisotropies in an external
magnetic field can be written as
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ns(k;)"? sinh®; sin®,+ns(k;)'? coshd,cosd,

M = 1
(Ma)x 4ns(ky)'? coslit @+ 4ds(k;)"? sintf &+ cs(k;)"?
(M) ds(ky)"? sinh®cos®,—ds(k;)'? coshd, sind, 39
YY" 4ns(ky)'2 cosk @+ 4ds(ky)"? sint? @, +cs(ky)"?
ZCS(kl)HZ
(Ml)Z:MO_ 12 "2 i n2’
4ns(ky)'? coslt @, +4ds(k,)"? sint? &, +cs(k;)
where
®1=2pcs(ky)"(X=Vit—x19), Po=2pcs(Ky)’(X—Vat—X), (40)
and
2(cs(ky)"?—cs(ky)"?+4p?
Vi=dcs(ky), Vy= (cs(ky) (k1) p ). (41)

pcs(ky)’
The single-soliton solutions of a uniaxial anisotropic ferromagnet in an external magnetic field can be written as
2Kk52[ 4Ky 2+ [KE— 1|2 sir? @]
|k2—1|%[k;? cos @, + K2 sir? d,]°

(M1)y=Mgsinf,cos¢y—

2k K[ 4k} K] sinhd, cos®,+ (|k,|*— 1) coshd, sin®d,]
|k2—1|%[k;? cosit @, + K2 sir? ®,]

(Ml)y:Mosinaosin¢0_ y
4k K [K{([kq|?+ 1) sinh® 4 sind,— k] (|k,|2— 1) coshd, cosd,]

M),=Mgcosfy—
(Ma);=Mo cosfy |k2—1|2[ k2 cosRd, + K2 sir? ]

, foraneasyplane, (42

and
My 16k;2K;2 sinhd, sind,+ (|kq|*—1)2 coshd, cos®,
X (kg4 = 1)2 costt &, + 16k 2K[2 sint? @, + 4K[2( |k 2+ 1)2
M) 16k;2K;2 sinh®, cos®,— (|k,|*—1)? cosh®, sin®,
Y (k4= 1)2 cost @+ 16K/ 2K,2 sint @ + 4K2(|ky |2+ 1)2]
(M7),=My— 2k’1’2(|k1|2+1)2 for an easy axis (43
V20 (k4= 1)2 cosi @ + 16k 2K)2 sint? @4 + 4K 2(|ky |2+ 1)2] '
where

8pki([ky|?+1)

(X=Vit—=Xy9),
) k-1
=
8pk1([ky|?+1)
— 5 (X=Vit—=Xy9),
ki—1/?

8pki([ky/*—1)
|ki—1J?

CI)Z: , P (44)

8pky(|ki|*—1)

|ki—1[2

(Xx—V,t—x,0), foran easy plane,

(x—=V,t—X,g), foran easy axis,

and
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FIG. 1. Some graphical illustrations of the
motion of the center and the change of shape of
the z component of the nonlinear magnetization
(M), expressed by Eq42) in a ferromagnet
with an easy plane, wheré,=3®, p=0.1, k;
=0.1, k]=0.2, x;0=0, andx,,=0.

2p[(|kq|*—1)+4k12([ke[?—1)]
[ki—1?
16pk; (|ke|*—1)
ki—1/?

2p[(|kq|?=1)2=4KT?(|Kkq |2+ 1)]
(Ike[2=D)KF-1/?
Vo= 2 2 2 "2 2 2 4 (45
2p[ 4k ([kq|?—1)% = 4K1*(|ke|“+ 1) *+ [k — 1]7]

ki(|kq|?—1)|ki-1|2

, for an easy plane,

, foran easy axis.

These results show that under the action of an external magnetic field, the nonlinear magnetization of the classical ferromagnet
with an anisotropy depends essentially on two parameters, namely, two veldgitgslV, in Egs.(41) and(45); the center

of nonlinear magnetization moves with a constant veloZitywhile its shape also changes with another velo@ijy Figures

1-4 give some graphical illustrations of the motion of the center and the change of shapez@bthponent of nonlinear
magnetization¥1,),, expressed by E¢42) in a ferromagnet with an easy plane and by &®) in a ferromagnet with an easy

FIG. 2. Some graphical illustrations of the
motion of the center and the change of shape of
the z component of the nonlinear magnetization
(M), expressed by Eq43) in a ferromagnet
with an easy axis, wher@=0.1, k;=0.1, kj
=0.2, X10=0, andx,,=0.
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FIG. 3. Some graphical illustrations of the
motion of the center and the change of shape of
the z component of the nonlinear magnetization
(M), expressed by Eq42) in a ferromagnet
with an easy plane, wheré,=30°, p=0.3, k]
:O]., kz=02, X]_O:O, andX20=O.

axis, as an anisotropic parameter. Also, there is an external magnetic field increage=ffbinin Figs. 1 and 2 tp=0.3 in
Figs. 3 and 4, wherk;=0.1, k]=0.2, X;0=0, X,0=0, 6,=30".

If we take thez axis as the polar axis in the polar coordinates, the single-soliton solutions of the classical ferromagnet with
two single-ion anisotropies in an external magnetic field can be written as

2CS(k1)"2
ans(k,)'2 cosi @, +4ds(k;)"2 sint? &, +cs(k;)"?’

cosf=1—

ds(k;)"? sinh®, cos®,—ds(k;)’? cosh®; sin®,
ns(k,)"2 sinh®, sin®,+ns(k;)’2 cosh®, cosd,

tang= (46)

The single-soliton solutions of an uniaxial anisotropic ferromagnet in an external magnetic field can be written as

2[K}(|kq|?+1) sinhd, sin®,+k(|k;|?— 1) coshd, cosd,]
[ki—1|2[k;? coslf @+ k]2 sir? ®,] ’

Cosf= cosfy—

sin 6 sin ¢po— 8Kk 1k sinhd®, cos®,—2(|kq|*— 1) coshd, sind,
sin 6y cosgho— 2K} 2[ 4k} 2+ [k2—1|? sir? d,]

tane= , for an easy plane, 47

and

FIG. 4. Some graphical illustrations of the
motion of the center and the change of shape of
the z component of the nonlinear magnetization
(M), expressed by Eq43) in a ferromagnet
with an easy axis, wher@=0.3, k;=0.1, kj
=0.2, X10=0, andx,,=0.




12 904 WU-MING LIU, WU-SHOU ZHANG, FU-CHO PU, AND XIN ZHOU PRB 60

2K72([ky|?+1)?
(|kq|*—1)2 cost &, + 16k} 2K} 2 sint? &, + 4K} 2( |k, |2+ 1)2

cosf=1—

16k} %k} % sinhd, cos®,— (|k,|*—1)2 coshd, sin®, .
tanep= 5 - 2 5 , for an easy axis. (48
16k;°k7“ sinh® 4 sin®,+ (|k4|*—1)“ cosh®, cosd,

We can find the following property:
cog —x,—t)= cogx,t). (49

It means that under the action of an external magnetic fieldzthemponent of nonlinear magnetization is a symmetric
function of space and time, while the orientation of the nonlinear magnetization in the plane orthogonal to the anisotropic axis
changes with an external field, and it will be constant when an external field vanishes.

In order to analyze the feature of the previous soliton solutions, setting the preliminary values as zero in the moving
coordinates of the soliton, for the classical ferromagnet with two single-ion anisotropies in an external magnetic field, we can
obtain

2CS( kl)UZ
ans(ky)'2 cosR[ 2pcs(ky)”x] +4ds(k,)"2 sint[2pcs(ky)"x] + cs(ky)"2’

cosf=1—

ds(ky)"?sin 2pcs(ky)"x] cog 2pes(ky) ' (x—V,t)]—ds(ky) > costi2pes(ky)"x] sin 2pes(ky) ' (x—V,t)]

tan = ]
¢ ns(ky)"? sini 2pcs(ky)"x] sif 2pcs(ky)’ (x—V,t)]+ns(ky)'? costi2pes(k,)"x] cog 2pes(ky)’ (X—V,t) ]
(50
and
cosf= cosby
2k ([ke|?+1) | 8pki(|ky|?+1) 8pki(|ky|?—1) 2k1(|kq|*~1) 8pki(|ky|*+1)
4 2_ 112 a 2 gz (X Vab) 4 212
k[t |ki—1] ki—1 kq|*—1 |ki—1]
8pKi(|ke|*+1) 8pki(lky[*—1) ’
k?—1|2{ k2 costf| ——————x | +K!2 sinf| —————(x—V,t)
a '(1 [ k212 ' T T
o akiky | 8pki([ke|?+1) 8pki([ky|*+1) 8pki([kq[*—1)
Sin 6y singg— sin > X|— cos > X[t > (Xx—=Voyt)
|kql*—1 [ki—1[? |ki—1[? ki—1[?
tang= , 2 ’
8pki(|kq|—1)
S cos¢0—2k'l’2{4k12+ k2—1|2sir? p—ﬁ(z%(x—vzt)“
2
for an easy plane, (51
and
AR+ 1)
(|ky]*=1)?
cosf=1-— ,
8pki([ky|?+1) 16ki%K2 1 8pky(lke®—1) | 4K(A(Jky|?+1)?
it 5 sin 5
ki—1]? (Jkq|*=1)? k-1 (Jkq|*=1)2
8pKi(|ke|*+1) 8pKi(|ky|*+1) 8pki(|ky|?—1)
16k} %k”? sinf ————————x | —(|k4|*—1)?cos ta x—V,t
11 { g )70y Ke=17 R
ane= 8oki([kiP+1) | | 8pki(lki*—1) 8pki(kalP+1) |
16K/ 2K!2 sinff ——— Y T (x=Vot) |+ ([ky 4= 1) cosh ———

for an easy axis. (52
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FIG. 5. Some graphical illustrations of the
change of amplitude and width of tteecompo-
nent of the nonlinear magnetizatioMg), ex-
pressed by Eq51) in a ferromagnet with an easy
plane, where 6,=30, p=0.2, k;=0.1, Kk}
=0.2, X10=0, andx,,=0.

We can also find that under the action of an external magnetic field the amplitudes and widths of the nonlinear magnetization
are not constants but vary periodically with time. According to E§%) and(52), Fig. 5 shows that the amplitude and shape
of thez component of the nonlinear magnetizatiovi (), in a ferromagnet with an easy plane also changes with a veldgity
and it is not symmetrical with respect to the center. Its shape in a ferromagnet with an easy axis is symmetrical with respect
to the center by means of Fig. 6, where=0.2, k;=0.1, k] =0.2, X;0=0, X,0=0, andf,=30".

Obviously, when an anisotropic parameter-0, these soliton solutions in an uniaxial anisotropic ferromagnet reduce to
those in an isotropic ferromagnet, for example, the single-soliton solu#®sand (43) are transformed to

"
1

(Ml) =
 kyf?

"2
secﬁ[k{(x—4k1t—xm)][ k7 sini k] (x—4kit—x10)] sir{ ki( X— 2( ki— k_l’) t—xzo)

o

kr/2
+kj coshik] (x—4kjt—X10)] co{ ki( x—2( ki— k—l,)t—xzo)
1

FIG. 6. Some graphical illustrations of the
change of amplitude and width of tteecompo-
nent of the nonlinear magnetizatioMg), ex-
pressed by Eq52) in a ferromagnet with an easy
axis, wherep=0.2, k;=0.1, k{=0.2, X4,=0,
andx,,=0.
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"
1

M=l

n2
— K} cosH K} (x— 4k}t —xX;0)] sin[ ki( x—2( K- —
1

sech[ K] (x—4k;t— xlo)][ K] sin K] (x—4kjt—

t—
X
| 20

FIG. 7. Some graphical illustrations of the
motion of the center and the change of shape of
the z component of the nonlinear magnetization
(M), expressed by Eq53) in an isotropic fer-
romagnet, whereo=0, k;=0.1, k1=0.2, Xy
:O, andX20=0.

Kj2
X10)] cosg kj| x—2 ki—? t— Xy
1

n2

(M1),=Mo— @secﬁ[k’ﬂx—zlk;t—xm)]. (53
1

These results are equal to EG7a obtained by the method
of an inverse scattering transformation in Ref. 26. We also
find that under the action of an external magnetic field the
center and shape of ttecomponent of nonlinear magneti-
zation do not move with the two velocitieg, andV, as
showed by Fig. 7. While taking theaxis as the polar axis in
the polar coordinates, we can obtain

n2

cosf=1— ﬁsecl‘f[k’l’(x— 4kit—x10)],
1

"2
x—2ki( 1- f2>t—x20
kl

9= otk

n

k
+tan1[ﬁtanﬂ Z(x—4k1t—xlo)]]. (54)
1

FIG. 8. Some graphical illustrations of the
amplitude and width of the component of the
nonlinear magnetizationM,), expressed by Eq.
(54) in an isotropic ferromagnet, which do not
change periodically with time, wherg=0, k;
=0.1, k7=0.2, x;0=0, andx,,=0.
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FIG. 9. Some graphical illustrations of the
change of the component of the total magnetic
momentumP, expressed by Eq56) in a ferro-
magnet with an easy plane, whetg=30, p
:01, ki=01, k/l’=02, X]_O:O, andX20:0.

. " L " €
0 500 1000 1500 2000

It means that the amplitudes and widths of theomponent we took the following parameterk;=0.1, k]=0.2, X4
of the nonlinear magnetization do not also vary periodically=0, x,,=0, p=0.10, andd,= 30 for an easy plane, respec-
with time. Figure 8 give some graphical illustrations of thetjvely. We find that under the action of an external magnetic
amplitudes and width of the component of the nonlinear fje|q, p, depends periodically on time for a ferromagnet with
magnetization i1,), expressed by Eq54) in an isotropic g easy plane, whil®, in a ferromagnet with an easy axis
ferromagnet, wherep=0, k;=0.1, k1=0.2, X;0=0, and | decrease as time increases, whBrehas the sense of the
X20=0. Whent—0, these results are equivalent to E22)  mean number of spins deviated from the ground state in
obtained by means of the method of separating variables ip,calized magnetic excitations. This feature did not appear in
moving coordmates'shown in Ref. 4. the study of all other nonlinear problems in magnetism.
The total magnetic momentum When an anisotropic parameter vanishes, the ground state of
the isotropic ferromagnet has a constant spin pointing in the
P= MOJ dx(1— cosh) Ve (55  zdirection and the fixed boundary conditidt— (0,0M,)
whenx— . When an external magnetic field vanishes, the
depends on time and it is not a constant under the action afamiltonianH, the total magnetic momentu®, and thez
an external magnetic field. The integral of the motion COin'component of the total magnetic momentu®y, i.e., the
cident with thez component of the total magnetic momentum three constants of motion associated with the global symme-
tries of the time translation, space translation, and spin rota-
P,= MOJ' dx(1— cos6) (56) tion, respectively, are in the action angle representation
given by the diagonal expressions. In terms of soliton solu-
is also not a constant. Figures 9 and 10 have given somiéons (56), we find that only in the case of an isotropic fer-
graphical illustrations of the component of the total mag- romagnet are the Hamiltonian, the total magnetic momentum
netic momentunP, expressed by Eq56) varying periodi- P, and thez component of the total magnetic momentén
cally with time in an anisotropic ferromagnet with an easyconstants of motion,E=4JM3k;+4IMB(K{/|kq|?), P
plane and with an easy axis, respectively. In the two figures= 4Mgsin 1(K{/|k,[), and P,=4My(K]/|k.|?). Tjon and

Pz

FIG. 10. Some graphical illustrations of the
change of the component of the total magnetic
momentumP, expressed by Eq56) in a ferro-
magnet with an easy axis, whee=0.1, k;
=0.1, k]=0.2, X;0=0, andx,;=0.

100
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Wright* took advantage of this feature in solving the equa- Io~yy(1,2,...§:01,2...,j—1).
tion of motion. These properties are important for the classi- o o . .
cal ferromagnet with an anisotropy in an external magneticubstituting the explicit expressions into E¢9), (24), and

field, but they have never been obtained by all the othef30), for the classical ferromagnet with two single-ion
methods. anisotropies in an external magnetic field, we can obtain the

following relations:

IV. THE ASYMPTOTIC BEHAVIOR OF MULTISOLITON

SOLUTIONS cs(kj)ns(k;) ns(k;)
Fo~1+ —————=|Fj|2, T;~1+ |F;l2,
Supposing allk;>0 andk;>k;>--- >k, the vicinity cs(kj)ns(k;) ns(k;)
of x=x;,+ V;,t(i=1,2) is denoted by ,. In the extreme by
large t, these vicinities are separated from left to right as 2cs(kj)"—
On,ON-1, .. .,04. Inthe vicinity ®;, there are the follow- Iy~ jr
ing limits: (X—Vipt —Xino) — —, |fol—o, if n<j; (x ns(k;)
—Vimt = Ximo) — %, |fml—0, if m>j, while where
Fo~vo(1,2,...j-1;12,...j—1 .
o olh2 T Y 11N (k) — ostie) Les(ky) — cs(kn)]
+7y9(1,2,...4;1,2,...)), Fj f.

_n:l m=j+1 [Cs(kj)—cs(kn)][CS(kj)_Cs(km)] g

Similarly, for an uniaxial anisotropic ferromagnet in an ex-
+y1(1,2,...5;1,2,...)), ternal magnetic field, we can also find

Fi~yi(1,2,...)-1;12,...j—-1)

(k2 +1) |
ki(kK*+1)
kikP 1)
ki(kj>+1)’

1+F|?
FON
1+|F;?

(K= 1)(k*+1)
(K+1)(k2—1)

1+F|?
1+F|?

K1)

b oklke—1)?
f4k;'(k12—1)(|kj|2+1)_
Dok DKz

I N (K= 1) (k2= 1) (k2= k2) (k2= k) .
fjH > — ———————,, foran easy axis,
n=1m=j+1 (kj—1)(kn"—1)(ky _kj)(km_kj)

LN (e Dk D (1) k(1) Tk (k1) k(KP 1)

f: —— — — , for an easy axis.
JUI (k2= 1) (k2= 1) K; (kn?— 1) = kn(k2— 1) T[k; (k2 — 1) = k(K2 — 1) g

'I'I
Il

(57)

It can be concluded from the results given above that the classical ferromagnet with two single-ion anisotropies in an
external magnetic field has multisoliton solutions in a strict sense. Whet o, nonlinear magnetization appear to be the
trains of N separating single solitons. The trainstat —o turn out to be trains at—oo after the collision in the duration of
time with the number and shape of solitons unchanged, and the position of center the of mass displaced in the traveling
coordinates. The total displacement of the center ofjthgeak in the course from— —« to t—o is determined by

1 171 es(ki) —cs(k N
X;= [mH M —In H
cs(k)” | n=1

cs(kj)—cs(ky)|  m=iti

(58)

cs(kj) —cs(ky) ]
cs(k;)—cs(kn)| |
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However, even in the traveling coordinates the angleptamarctan1,/M,) contains a linear term in time This shows that
M, andM, manifest themselves as solitons. The total phase shift oftthpeak can be written as

171 es(k;) —cs(k, N Kj) — (K
n=1 cs(kj)—cs(kp) m=i+1 cs(kj) —cs(km)

For a uniaxial anisotropic ferromagnet in an external magnetic field, the total displacement of the center and the total phase
shift of the jth peak in the course from— —« to t—oo are

Ie-12 G-k (21| | (ke =KD (kG- 1)
i |nH ~In AN .
20Kk | 171 | (RR=1)(k2— kD) meirt | (k2= k) (Kl — 1)
Xi 2_ 412 -1 2_ 2 2 N Y 2_ L2y 2_
|kf-1] (k= DG D koKD (k= D[ kj (k5 — 1)~ kn(KF = 1)
2pK/ (Jkj[2+1) [ a1 | (K2=1)[K;(kn2— 1) —kn(k?— D1 meje (kfn—1)[kj(k_mz—1)—k_m(kj2—1)]\ '

=1 212\ ( 2 N 20 12y (2
(kn_kj)(kn -1) (Km _kj)(km_l) .
Z{ar{rgl(kﬁ—l)(k_nz—ka)l % ﬂl(kz ka)(k_mz—l)“' for an easy plane;

171 (k2= 1)K (K2 1) — k(K 1)]) od T Gt D (G D) k(1))
1= (k= 1)k (ke 1) —kn(kf = 1)] m=1 (k= DKk = 1) = k(K= 1)]

(I)j:

2| ar

, for an easy axis.

(60)

When an anisotropic parameter0, the displacement of the center and the phase shift oftth@eak of an isotropic
ferromagnet in an external magnetic field are

1 N

Xj= (InH

kn—K; Ko —k;

_),

K=k,
-1 N
K,(k,—k:) Kn(Km—Ki)
arg(n L_J)_arg( 1 —_) | o1
n=1 kn_kj m=j+1 km_ k].

These results are equal to E¢883 and (28b) obtained by the method of an inverse scattering transformation in Ref. 26.

k” k —k

m=j+1

(I).:

i=2

V. CONCLUSION

In this section we will compare the present results with those obtained by other methods, then give some concluding
remarks. According to Eq€39), (42), and (43), we can find that under the action of an external magnetic field nonlinear
magnetization in a ferromagnet with an anisotropy depends essentially on two parafmetadd/, in Egs.(41) and(45). The
center of the nonlinear magnetization moves with a constant velggityvhile its shape also changes with another velocity
V,; the depths and widths of a surface of nonlinear magnetization vary periodically with time, and its shape is unsymmetrical
with respect to the center. By means of these features, we find that the soliton solutions in a ferromagnet with an anisotropy
in the external magnetic field are not expressed in the form of the product of separated variables in moving cobfithates.
when an anisotropic parametgr-0, these soliton solutions in an anisotropic ferromagnet reduce to those in an isotropic
ferromagnet, for example, the single-soliton soluti@4g) in the polar coordinates are equivalent to E2R2) obtained by
means of the method of separating variables in the moving coordinates in Ref. 4. Therefore, it is very difficult to investigate
the exact soliton solutions in a ferromagnet with an anisotropy in an external magnetic field by means of the method of
separating variables.

Reducing the Landau-Lifschitz equations to an appropriate form, Kosevich, Ivanov, and Kdwaies a solution. In terms
of Eq. (47) in the polar coordinates, there exist

8pk/(1k{|?+1)
k;2{|k§—1|2sin2 e |i<(2| 1|1|2 (X— V1t —X30) +4k12]
0 —
tanz(z)= - kf(“( ey . (62)
k;zl |ki—1|*cost ’)|Lz—11|2(x—v2t—xlo) —4k'1'2]
2_
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If we compared Eq(62) with an approximate solution given u==*p (or A=0). In the complex. plane, these two points

by Ref. 5, we find that the previous properties of the solitonare the edges of the cuts. This is important to ensure that the
solutions remain even in the approximation of the order oflost solution generated satisfies the corresponding Lax equa-
p?. The solutions of Ref. 5 did not satisfy the Landau-tions. It indicates that the edges of the cuts in the complex
Lifschitz equation for a ferromagnet with an anisotropy evenplane in an inverse scattering transformation must give a
in the first order of anisotropy, and there is no reason taontribution even in the case of nonreflection. Unfortunately,
consider it as an approximate solution, since all attempts iBorovik and Kulinicl{*2° did not apparently consider these

this approximation were not successful.
Using the Hirota method, Bogdan and Kovafésought

the soliton solutions of the Landau-Lifschitz equation in a

ferromagnet with an anisotropy in the form

2fg f>~1g|?
M, +iM, = . M,= , (63)
S T N T
where
IN/2]
f=2 2 aliy, ... ixmexpp +-+p; ),
n=0 Cyn
[(N=1)/2]
g*= E alj1, -+ - Joms1)
m=0  Coms1
Xexp(pj +---+pj, ) (64)
(n)
. . > a(iy.i), for n=2;
a(iqg, ... in=9 k<l
1, for n=0,1.

where[N/2] is the maximum integer in addition t§/2, C,,
represents the summation over all combinationdNoéle-
ments inn, andp; = (k; + wit+p?). According to the expres-
sion of the single-soliton solutiong?2) and (43) in this pa-

effects. Evidently, they did not obtain any expression of the
solution.

In the present paper we have used the stereographic pro-
jection of the unit sphere of the magnetization vector onto a
complex plane for the equations of motion in the classical
ferromagnet with two single-ion anisotropies in an external
magnetic field, and the effect of a magnetic field for integra-
bility of the system is discussed. Then, introducing some
transformations instead of the Riemann surface in order to
avoid the double-valued function of the usual spectral pa-
rameter, the properties of the Jost solutions and the scattering
data in detail are obtained. The Gel'fand-Levitan-Marchenko
equation is derived. In the case of no reflection the exact
multisoliton solutions are investigated. This method is more
effective than the Darboux transformation. The asymptotic
behavior of multisoliton solutions in the long-time limit as
well as the total displacement of the center and the phase
shift of the jth peak are also given. The total magnetic mo-
mentum and itz component are obtained. The present in-
verse scattering transformation method includes the contri-
butions due to the continuous spectrum of the spectral
parameter. They may be useful for further theoretical re-
search and practical application.
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