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Interacting domain walls in an easy-plane ferromagnet
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The Landau-Lifshitz equation for an anisotrogigasy-plang ferromagnet is formulated as a Riemann-
Hilbert problem on a Riemann surface of the spectral parameter. Exact multiple domain wall solutions can be
obtained in a systematic and exhaustive manner by considering all possible pole arrangements on the Riemann
surface. Explicit calculations for up to four poles have been carried out, yielding all possible double wall
solutions, including states of colliding walls, breather modes of bound walls, and a set of solutions correspond-
ing to marginally bound walls.
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I. INTRODUCTION representations have been found in Refs. 7,8. The scattering
states of colliding walls have been found by the Hirota
Over the past three decades, an enormous amount of litmethod® Two-parameter compact soliton solutions have also
erature has established the importance throughout physics been constructed by an ansdtand Darboux matrix! The
solitons and the underlying completely integrable modelsinverse scattering problem of biaxial ferromagnet was con-
Although such models are idealizations, they provide othersidered on the ground of the Riemann-Hilbert problem on a
wise unobtainable analytic insight into nonlinear dynamics,‘torus:"'4 For any uniaxial limit caséan easy axial or easy-
new states about which to perturb, and exact results againptang, the torus became degenerate and the standard Rie-
which to benchmark approximate and numerical methodsnann surface appears. In this paper, we formulate the
While a variety of techniques for studying integrable modelsRiemann-Hilbert problem on a standard Riemann surface,
and for discovering soliton solutions exists now, the study ofwhich can be easily solved to yield multiple parameter fami-
Riemann-Hilbert problems, initially introduced in the 1970’s lies of solitons in a systematic manner.
as a reformulation of the inverse scattering probfehas
proved especially fruitful in the fields of integrable differen- Il. THE RIEMANN-HILBERT METHOD
tial equations and integrable statistical modefsin this pa-
per, we show that the Riemann-Hilbert approach is the suf- The Riemann-Hilbert method works for general initial
ficiently more simple and elegant way to construct thevalue problems of integrable equations, and reduces into a
multidomain wall states of an anisotrofigasy-plangferro-  system of linear algebraic equations for pure soliton solu-
magnet. The important point is that these solutions are quitions which can be solved in closed foffir. Following stan-
nontrivial, for example, includes moving domain walls. dard technique$,we introduce the “lax pair” whose com-
The dynamics of a ferromagnet can be described by thgatibility equation reproduces E):
Landau-Lifshitz equation

oW =LT, §¥=NV, 2)
oM 52 . .
i M X F+JM , 1 whereL andN are 2X2 matrices defined by
X
whereM(x,t)=(M,,M,,M,) is magnetization vector, and L=—iAM o —ipuM,oy—iuMyo,

J=diag(Jy,Jy,J,) describes the magnetic anisotropy. For

the most general biaxial ferromagnet wilh+#J,#J,, the N=i2,u2l\/lz<fx+i2,u7\chry+i2,u)\Mycrz—i)\(MXr?XMy
multisoliton solutions including ones describing bound states .

and the collision of domain walls has been discussed in Ref. ~MyaxMy) oy =i m(MydM,=M;0My) oy

6. All solutions of uniaxial ani;otropic ferromagn_et widly —i (M,a,M— M, 3,M,) . (3)
=J,#J, can be found as a limit casg— J, of solutions for

the biaxial ferromagnet in Ref. 6. There is a twofold degen-The ¢’s are Pauli matrices. The spectral paramekeesd u
eracy in the ground state for the easy axis case WjthJ,  satisfyhN®=u2+4p?, wherep=3(J—J,)"2

<J,. Here we consider the easy-plane case wihJ, Our Riemann-Hilbert method begins by “rationalizing”
>J,, where the ground state has a continuum of degeneracthe constraint between the spectral parameters by wrking
This applies to materials such as CsNiFand =z+p?z ! andu=z—p?z %, wherez can be regarded as
(CgH14N Hz)Cu Brs. the independent(i.e., unconstrained spectral parameter.

In the easy-plane case, the construction of soliton soluNote that the operatoils andN are analytic functions of the
tions of Eq.(1) has been discussed in many papétéax independent parameterexcept at the singularities=0 and
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z=x, Furthermore, the operators have the following symme- a b 7z
tries with respect to discrete transformations in the complex G ZN
z plane Pl .
A0 A
L(2)=-L"(2)=-TiL(2), K// \\é/
2z <
— wZe
_ -1 _ .
L(2)=0.L(p"2 7)o, =ToL(2), 4) Single Domain Wall Bound State
whereL" and L indicate Hermitian and complex conjuga- c d

tions ofL, respectively. The same symmetries are also satis-
fied by the operatoN. These properties imply the solvability

of the Riemann-Hilbert problem and associated integral and <

algebraic equation®.
Let us consider the easy-plane ferromagnet with the
ground stateM,=(0,1,0). The corresponding Jost solution
of the scattering problem may be chosen &5, Marginally-bound State Unbound State
=e '#(x=2\)7z and the solution of compatibility Eq2) is
written asW =2 (x,t;z)e '“*~2\09z where E is a 2x2
matrix. Soliton solutions can be generated by studying th
Riemann-Hilbert problem foE, which requires the follow-

>
E=2
wk N
m//\w
X
N

FIG. 1. Poles for different domain wall solutions.

%(x,t) independent ofz Thus we can proceed with the

ings. unique solutioné(x,t;z) which satisfies(i), (i), (iii), and a
(i) 2 and= ~! must be analytic iz everywhere including normalization conditio(x,t; p) =1. Once such & has been
 and 0 except for some polds;}. found, we can apply conditiofiv) to determine the multi-
(i) E must satisfy the symmetrieST,==1 and T,=  Plier [(xt) to obtain==T'¢. o
= to ensure the symmetries farandN. Such symmetries !N the following, we show how the multiplief” and the
require that the set of poldg;} be invariant under reflection final solutions for the magnetization can be expressed in
about the real axis and inversion about the cifele- p. terms of¢ at particular values df. First, the symmetries for
(iii) EU; must be analytic at=z; for some 22 matrix ~ P0th = and & imply that I'=e'“*07x with w(x,t) being a
of the form real scalar function. Then the Jost function can be written as
P =glooxge #(X=2\)7z gnd thel operator can be obtained
Uj(x,t;z):e*iﬂ(xfZM)UZUJ.em(X*ZM)«rz, (5)  from the first of Eqs(2) as
whereu; is rational inz with a pole atz; and dev; is ana- L=e'“"%(g & *—ipéo,é +idwo,)e 2% (6)

lytic and nonvanishing at=z; . . .
(iv) L obtained throughE must have the formi=zL, Becausét is analytic everywhere except for some poles, the

+271L,, as in the original Lax pair. first two terms inside the bracket in the above expression
Some explanations are in order. First, the matriceand =~ MuSt be analytic everywhere except &0 andz=¢, and

the pointsz; define the discrete part of scattering data and™!St have the following analytic form:

thus are naturally associated with solitons. We will consider -1 1 1

the case of two poles corresponding to a single domain wall & T IpEozE "=Qot 2 Q1+ ZQy, @)

and the case of four poles or two double poles correspondinghere the coefficients); are matrices independent af

to double domain walls explicitly. Second, the unitary They can be expressed in termséoét particular values of

“twist” in Eq. (5) ensures that any Jost solutidh satisfies by comparing the two sides of the last equality. By taking
the Lax pair(2) for someL andN rational inzwith poles at 7% and z—0, we find Q,= —i&(®) 0, () and Q,

0 and« of the correct order. Third, one can readily show thatzig(o)gzgfl(o), respectively. Similarly, by takingz=p
condition (ii) remains invariant ifv; is replaced byv;  and z=-p, we obtain Qu=1a,&(—p)é Y(—p). Finally,
=v;w; for somew;=w;(z) analytic with nonvanishing de- the lack ofz° term in theL operator as specified in condition
terminant atz=z;. We use this invariance to define an (iv) demands thatid,w o+ Qy=0. Utilizing the above
equivalence relation “~" which we write asv’~v. Then  result for Q,, this equation can be easily solved to yield
the symmetry conditioriii) requires thaflv,~v,*, Tiv, e 129%=¢(—p).

~vl_1, Tovj~v; . Finally, the conditior(iv) is necessary be-

cause a general solution of the first three conditions can yield Il. SINGLE DOMAIN WALL
a L that has a° term which does not exist in the original _ ]
definition (3). In the absence of any pol& must be independent af

We now outline the procedure for the solution of our and the solution is the ground state. The case of a single pole
Riemann-Hilbert problem. We first choose a certain numbefOr any odd number of polgss ruled out because it is im-
of poles and the scattering matriagsaccording to the sym- Possible to satisfy both symmetrigs andT,. The simplest
metry requirements. Then the soluti&h is determined by nontrivial case is two simple poles andz, on the circle
the conditiond(i), (ii), and(iii) up to a left matrix multiplier  |z|=p with z;=z,=pe'?® as shown in Fig. (), which gives
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the well known solution of one domain wall. As a demon- A=costt{,+gsirte sirts,,
stration of how to proceed with the Riemann-Hilbert method,
we first find out this simplest nontrivial solution. Li=2(r+p%Ir)sing (x—Vit)+ay,
We choose the scattering matrices with the triangular
form L,=2(r—p?Ir)cose (x—V, t)+ as, (12
b, 1 0 with V=4[ (r*+ p*/r(r?+p?)Jcos¢ and V,=2(r + p?/

®) r)[c_os(2¢)/cos¢]. The two parameters; and a, are inte-

1]’ gration constants.

0 1 =73 The above solutions describe the bound states of double
domain walls. The two walls oscillate against each other,
while their center of mass moves with constant velotlty

V1= =17 |, Vo= bz

where b,=—b, and b; /b, :Zlﬁ% because of the symme-

tries. This special triangular formensures that the solution X :
. The ratior/p tells how tightly the double walls are bounded.
+ ~
approaches the ground statexat =. The twisted scatter When the four poles are far off circle, i.ec/p>1, the

ing matricesJ; have the same form as above, except that the : :
coefficientsb; are replaced by = b; e/ 24(@)x- 2@, double domain walls are so tightly bounded together that

: . i _ they can be viewed as one traveling solution whose shape is
t follows from (i) and the normalization of atz=p that 3 . - o
the solution&(x,t;z) must have the form modulated_by a spin wave with ve_locnsyz. T_h|s is the_rea-
son that this solution is called soliton solution historicatly.
As the four poles get closer to the ciralgp—1 the oscilla-
, 9 tion of double domain walls begin to become obvious. Its
amplitude gets larger while its frequendy/,—V,| gets
where the coefficient& and B can then be determined by smaller. The shapes of double domain walls are well kept
condition (ii). Now the matricesé(») and £&(—p) can be except around collision time, which ts=0 if constantsa,
computed from Eq(7), the scalar functionn from Eq. (9), and a, are taken to be zero.

B
+
Z_Zl 2_22

&2)=1+(z—p)

and finally the solution can be written as The other possible situation for four poles is shown in
_ Fig. 1(d), where the four poles are on the cir¢lg=p. Let
My=—cos¢ seclf, My=tanh{, M,=sin¢ Secm( ) two of them to be ar;=pe'1 andz;= pe'?2, then the other
10 - g

two are located at,=z; andz,=z;, as demanded by sym-
where Z(x,t)=4p sing (x—Vt)+a, V=4p cos¢, ¢=arg,;, metriesT; andT,. We find the solution in this case

and « is an integration constant. It describes a moving do-
main wall with velocityV, width (|4p sin¢|)"%, and energy
E=8psine. It include two limits: a Nékewall with maxi-
mum velocity 4 for ¢=0, and Bloch wall with maximum
energy & for ¢p= /2.

1
M X=K[cos¢2(cos¢2— cos¢,)sinh{,

+C0S¢4(C0Sh,— COSh,)sinh{,],

1
IV. DOUBLE DOMAIN WALLS My:K[sianSlJr sir? ¢, — sin ¢b;sin ¢p,c0sh ; coshy,
More interesting solutions are double domain walls, ) )
which are found with four poles in the complex plane. There +(1—cos¢p;c0s¢,)(sinh{isinh{>—1)],

are only two possible arrangements for four poles, as shown
in Figs. 1b) and Xd).

The first case is achieved by allowing a pole off circle
|z|=p, say,z;=re'?, with r > p. Then symmetrie¥, andT,

1
M Z=Z[sin ¢,(COSh,—CcoSeh,)coshly

demand that the three others be locatedzgtz;, z3 +5in ¢1(COSP,— COSehy)cosh ], (13
=(p?Ir)e', z,=z,. Following the procedure of our where
Riemann-Hilbert method, we find the solution for the case of
four poles off circle A=(1-cos¢;cosd,)coshiycoshyy
2 sings —sing,Sin ¢,(1+sinh;sinh{,),
x= A [sin¢ sinh{,cosl,+ f coseé coshl;sings], .
{1=4psing, (X=Vit)+ay,
Myzﬁ[c032¢)+sinr?§l—gsin2¢ sirtg,], {2=4pSing; (x=Val) + ay, (14
with V;=4p cos¢, andV,=4p cos¢,, while a; anda, are
2 sing integration constants.
M,= A [cos¢ coshcosl,— f sing sinhZ1Sinds], This solution depicts a pair of scattering domain walls.
(11) The scattering process is completely similar to the elastic
collision of two balls with same mass. Before collision, they
wheref=(r2+p?)/(r?—p?), g=4p?r?/(r?>-p?)?, and move towards each other, one with velocly, the other
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with V,. At the coIIis_ion, they exchan_ge velocities. Then they L,=4p cosp(x—V,t)+ ay, (18
move apart, one wit/,, the other withV;.
As we have exhausted the situations for four poles, wawith Vi=4p cos¢ and V,=4p[cos(2p)/coss], while a,
have not exhausted all possible double domain wall solutiongnd a; are integration constants.
of the Landau-Lifshitz equation. There is one more double In this solution, the double domain walls also collide
domain wall solution corresponding to the case shown ihead-on and then depart from each other forever. However,
Fig. 1(c), where we have two poles of the second order. Inunlike the previous case, the relative velocities of the two
this case, the two scattering matrices take the form walls tend to zero at long times ast.1We call this solution
a marginally bound state of the domain walls. It can be
by b1, worked out from Eq(17) that the relative position between
t— the two walls isAX=(1/2p sin ¢)In[|4(V;—V,)sin(2p)|t]. It
means that the effective potential between the two well-
0 1 separated domain walls decreases exponentially as
—e~ ®rsiné \We note that this marginally bound state can be
1 0 viewed as the limiting case of either a bound state or an
(15) unbound state. Taking either—_>p in Eq. (12) or ¢p;— ¢, in
Eq. (13) reproduces the solutiofi7).

1
U= -7y (z—z,)?% ],

and V. CONCLUSION

A B c D These three solutions, the bound state, the unbound state,
&2)=1+(z—p) + + + . and the marginally bound state, are all possible double do-
=7y 272 (z-7)® (z-2)° main wall solutions. This claim is intuitively obvious from a
(16) physical point of view, and now it is also clear mathemati-

Using our Riemann-Hilbert method with these matrices, wecally with the help of the Riemann-Hilbert method. All other

find the solution for the case of two poles of the second ordePOl€ distributions, besides the four cases shown in Fig. 1,
correspond to solutions of more than double domain walls.

2sing ) For example, two poles of third order give us a solution of
x=—x Lsingsinh{,+{>cos¢coshd, |, triple domain walls which collide and depart from each other

with diminishing velocities; a pair of poles on circle and four

1 poles off circle produce a solution describing a single wall
My:K[cos{2¢)+sini’?§l—§§sin2<;b], scattering with a double-wall bound state. In principle, the
Riemann-Hilbert method can give us all possible solutions of
the Landau-Lifschitz equation, and all possible pole arrange-

2sing ] . . : :
=4 [cos¢pcoshi,— Z,sing sinhg,],  (17) {pents in the complex plane give us all domain wall solu-
ions.
where
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