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We investigate the tunneling character of vortex in an asymmetrical potential well with a finite barrier by
using the periodic instanton method. We obtain the total decay rate which is valid for the entire range of
temperature and show how it reduces to the appropriate results for the classical thermal activation at high
temperatures, the thermally assisted tunneling at intermediate temperatures, and the pure quantum tunneling at
low temperature. We can even give the exact definition of the “crossover” temperature and find experimental
data to support our theoretical analysis.
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I. INTRODUCTION

The question of particlelike collective excitations, like do-
main walls, solitons, vortices, or fluxons, exhibiting quantum
behavior has attracted much attention. Especially the escap-
ing process of a particle from a potential well is a problem of
great importance in almost all areas of physics.1–7

Vortices occur naturally in a wide range of gases and flu-
ids, from macroscopic to microscopic scales.8–10 Two kinds
of vortices can develop in superconductors. The first, the
Abrikosov vortex, penetrates certain �type II� superconduct-
ors above a critical value of applied magnetic field. It can
hop between pinning sites under thermal activation, causing
dissipation in current-carrying wires and generating noise in
sensors such as superconducting quantum interference de-
vices �SQUIDs�. Quantum tunneling of Abrikosov vortices
remains controversial. The second vortex, the Josephson vor-
tex, exists in a Josephson junction, formed by a sandwich of
two superconducting layers and a thin insulating layer,
through which electrons in the form of Cooper pairs can
tunnel coherently. In a current-biased Josephson junction,
swirling currents generate vortices of flux. Vortex motion in
current-biased Josephson junction systems has been the sub-
ject of much theoretical and experimental work.11–14

Recently, Wallraff et al.8 showed that a single pinned vor-
tex in a current-biased annular junction subject to an in-plane
field can undergo macroscopic quantum tunneling to escape
from a potential well; they also showed that the vortex’s
energy in the controllable well is quantized. In their experi-
ment, they made an annular junction between two narrow
rings of the superconductor niobium, stacked one on top of
the other. The flux in each ring is quantized in units of h /2e
�where h is Plank’s constant and e is the charge on an elec-
tron�; when this flux quantum number differs between the
two rings by one unit, the difference is manifested as a single
vortex in the junction. If a magnetic field is applied in the
plane of the annulus, at an angle to the magnetic moment of
the vortex, the potential energy of the system is proportional
to the cosine of the angle. If an external current is then ap-
plied to the junction, across the two superconducting layers,

the resulting imbalance in the tunneling currents produces a
force on the vortex to escape and move along the barrier.

In this paper we investigate the quantum tunneling of a
vortex in a long Josephson junction by using the periodic
instanton method which is well known as a powerful tool for
dealing with quantum tunneling phenomena.15,16 In our
model, we simplify a single vortex behavior in an annular
junction subject to an in-plane field as a particle in a tilted
washboard potential. We first calculate the total decay rate
for all temperatures and show how it reduces to the appro-
priate results for the classical thermal activation at high tem-
peratures, the thermally assisted tunneling at intermediate
temperatures, and the pure quantum tunneling at low tem-
peratures.

The rest of the paper is as follows: In Sec. II we gain the
base mode of our path-integral approach from the master
equation. In Sec. III we recall from Ref. 16 the bounce with
nonzero energy and again give the main process of the cal-
culation. Results and comparison with experiments are dis-
cussed in Sec. IV. The analysis of quantum-classical transi-
tion property is in Sec. V.

II. THE MASTER EQUATION IN CURRENT-BIASED
JOSEPHSON JUNCTION

The dynamics of a current-biased Josephson tunnel junc-
tion can be described by the master equation.17,18 The behav-
ior of the superconducting tunnel junction is described by the
Josephson relations

IJ = Ic sin �, V = ��0

2�
�d�

dt
. �1�

Here IJ is the tunneling current of Cooper pairs flowing
through the junction, Ic the critical current, V the voltage
across the junction, � the phase difference of the supercon-
ducting order parameter, and �0=h /2e�2.07�1015 Wb the
flux quantum. The classical equation describing the system is
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I = C
dV

dt
+

V

R
+ IJ, �2�

where I is the bias current, C the capacitance, and R the
resistance characterizing the dissipation. Inserting the Jo-
sephson relations into the classical equation one obtains

C��0

2�
�2d2�

dt2 +
1

R
��0

2�
�2d�

dt

= −
�

��
�− Ic��0

2�
��cos� +

I

Ic
��� . �3�

This equation is identical with the equation of motion of a
particle with mass M = ��0 /2��2C, subject to damping and a
fluctuating force, and move in the one-dimensional potential

Ũ���, commonly known as the washboard potential: Ũ���
=−IC��0 /2���cos �+ I / Ic��.

The component of the potential periodic in the vortex co-
ordinate � is due to the interaction of the vortex magnetic
moment with the external magnetic fields. The tilt of the
potential is proportional to the Lorentz force acting on the
vortex which is induced by the bias current applied to the
junction. The rate at which the particle escapes from the
potential depends on details of the shape of the potential.

Experimentally, the escape rate of a vortex from the zero-
voltage state to the finite-voltage state was measured. In the
mechanical analog this corresponds to measuring the escape
of the particle from one of the washboard potential wells.
The escape might occur either by thermal fluctuations or by
quantum tunneling. Since in the weak-damping limit the par-
ticle is unlikely to be retrapped in another well, we are inter-
ested in only one potential well of the washboard potential.
We can approximate it very well, for bias currents close to
the critical current, by a cubic parabola,

U��� = 3U0� �

�0
�2�1 −

2�

3�0
� . �4�

The height U0 and the position of the maxi-
mum �0 are given in terms of the parameters of the
junction by U0=2Ic��0 /2�	��1− I�2�1/2− I� arccos I�	, �0

=2
3�1− I� arccos I� / �1− I�2�1/2	, where I�= I / Ic. Increasing
the bias current I through the junction corresponds to reduc-
ing the height U0 of the barrier.

The existence of tunneling results in a complex vortex
energy E �see Fig. 1�. The decay rate � of the vortex states is
defined as the imaginary part of the complex energy, �
=2/� Im E. If ��� denotes an eigenstate of the Hamiltonian
H with energy E, the transition amplitude A from the state
��� to itself—the “survival probability” of ���—in the pres-
ence of quantum tunneling over Euclidean time 2� reads

A = ��e−2H���� = e−2E�. �5�

The amplitude A can also be calculated with the help of the
path-integral method. Comparing the defined transition am-
plitude A from Eq. �5� with the path-integral result in the
next section, we can find the decay rate �.

III. TUNNELING OF VORTEX

The Lagrangian for a 0+1 dimension scalar field ��t� is
L= 1

2 M�d� /dt�2−U���. By using Euclidean time 	= it we
can rewrite L as

LE���	�,�̇�	�	 = − L =
1

2
M�d�

d	
�2

+ U��� , �6�

and the classical action is

SE��� = �
	i

	f

LE���	�,�̇�	�	d	 . �7�

The classical solution �c which minimizes the action with
Euclidean time 	 satisfies the equation

1

2
M�d�c

d	
�2

− U��c�	�	 = − E . �8�

The periodic instanton represents the pseudoparticle configu-
ration responsible for tunneling under the barrier at energy E.
Tunneling out of a vortex state in a potential U��� can be
treated as motion with imaginary time 	= it in the corre-
sponding inverted potential. The corresponding “periodic in-
stanton” solution19

�c�	� = �1 − ��1 − �2�sn2�u�k� �9�

is periodic with period T, 
�k��T=n2K�k�, n=1,2 ,3 , . . ., and
�c�	+T�=�c�	�, where �1�E���2�E���3�E� denote three
roots of the equation U���=E, �1 and �2 denote the turning
points of the instanton motion in inverted potential. sn�u �k�
denotes a Jacobian elliptic function with the modulus k
=
��1−�2� / ��1−�3�, where u=
�k��	, 
�k��
=
U0��1−�3� /M�0

3, k�=
1−k2 is the complementary
modulus of k.

Considering the small fluctuation about the classical solu-
tion �c�	� is

��	� = �c�	� + ��	� , �10�

and correspondingly

FIG. 1. A particle with energy E moving in the cubic potential
given by Eq. �4�; trajectories of the nonvacuum instantons �the case
n=1 and n=2� given by Eq. �9�.
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SE��� = SE��c�	� + ��	�	 � Sc��� + SE, �11�

where Sc���=�	i

	f� 1
2 M�̇c

2�	�+U��c�	�	�d	, and SE

= 1
2�	i

	f�M̂�d	 with M̂ =−d2 /d	2+U���c�.
The amplitude A can also be calculated with the help of

the path integral method. We rewrite it

A =� �E
*�� f��E��i�K�� f,	 f ;�i,	i�d� fd�i, �12�

with � f =��	 f�, �i=��	i�, and 	 f −	i=2�. Thus �i and � f

denote the end points of the instanton motion which tend to
the turning point �2. The Feynman propagator from �i to � f
resulting from the instanton motion is defined by

K�� f,	 f ;�i,	i� = �
n=0,1,2. . .

Kn�� f,	 f ;�i,	i� ,

Kn�� f,	 f ;�i,	i� = �
�i→�f

D���exp�− SE���	 . �13�

The zero bounce contribution. n=0 means there is no tun-
nel occurring which equals the harmonic oscillator in infinite
barrier, i.e., 1

2 M�0
2�0

2=3U0 and the zero bounce contributes
to the real part of the complex energy

A0 = e−2Ecl�, �14�

where Ecl= �m+ 1
2

���0, m=o ,1 , . . . and �0=
6U0 /M�0
2.

Both bias current and applied magnetic field scale the energy
level separation �E=��0� �1− I / Ic�H�2	1/4. We draw the mi-
crowave frequency versus normalized bias current in Fig. 2
with Wallraff experiment parameters. In fact, the results of
Fig. 2 just give the theoretical dashed lines in Fig. 3�b� of
Ref. 8. At low temperature and in the absence of microwave
radiation, the occupation of the excited state is very small.
By irradiating the sample with microwaves, the vortex can
be excited resonantly from the ground state to the first ex-
cited state. Then obviously a lower bias current correspond-
ing to the tunneling out to the first excited state will be
detected �see Fig. 3�a� in Ref 8	.

The one bounce contribution. Setting T=2� and taking

n=1, we have 
�k���=K�k�, where � is half the period of
the motion of the pseudoparticle as indicated in Fig. 1. As the
energy tends to zero with k→1, the periodic instanton solu-
tion reduces the usual vacuum bounce.19 On the other hand,
as the energy approaches the top of the barrier E→U0 with
k→0, the solution becomes the trivial configuration �c=�0.
This trivial solution is called a sphaleron. The nonvacuum
bounce thus interpolates between the vacuum bounce and
this sphaleron.

The necessary boundary conditions for ��	�, where ��	�
denotes the small deviation of � from the classical trajectory
with end points held fixed, are ��	i�=��	 f�=0. From the
expressions of Kn in Eq. �13� and SE in Eq. �11� we obtain
K1=e−Sc���I�, where I� is the functional integral I�

=���	i�=0
��	f�=0D���e−SE. We can evaluate the expression with the

help of tables of integrals in Ref. 20 and find with 	i=−�,
	 f =�, and �=K�k� /
�k��, Sc���=W���	 f� ,��	i� ,Ecl	
+2Ecl�, where W= 8

15

MU0 /�0

3��1−�3�5/2��1−k2��k2

−2�K�k�+2�k4−k2+1�E�k�	, where K�k� and E�k� are the
complete elliptic integrals of the first and second kinds.

The Feynman propagator of the path integral is diverg-
ent because the velocity of instanton N�	�=d�c /d	
=−2
U0 /M��1−�2�
�1−�3sn�u �k�cn�u �k�dn�u �k� van-
ishes at the turning points, i.e., cn�±K�k� �k	=o. The transi-
tion amplitude has to be finite and this singularity must
be smoothed out by turning point integrations of d�i and
d� f. We use the following relations established in Ref. 16:
I�=−i�1/2�	1/2�N�� f� /N��i�	��2Sc�� f ,�i ;�� /�� f

2	1/2.
Further, we replace the wave functions �E��i� and �E�� f�

in Eq. �12� by their leading WKB approximations,
and expand the action in powers of �2−�c��� up to
the second order, which corresponds to the one loop
approximation. Thus we write Sc�� f ,�i ;��=Sc����� ,
��−�� ;�	+ 1

2�2S /�����2�� f −����	2+¯. The WKB ap-
proximations of the wave functions are given by �E�� f�
= �C exp�−��2

�f �̇d��	 /
�̇ f, �E��i�= �C exp�−��2

�i �̇d��	 /
�̇i.
The normalization constant C is defined by C
= �2��3

�2d� /
2/M�E−U���	�−1/2, where the integration
extends from turning point to turning point across the
nontunneling domain �i.e., the region of the harmonic-
oscillator approximation�. Evaluating C one obtains C
= �
U0 /M�0

3
�1−�3 /2K�k��	1/2.
Using one loop expansion of the action and completing

the turning point integration, we can obtain one instanton
contribution

A1 = − 2i�e−W−2E�
 U0

M�0
3


�1 − �3

2K�k��
. �15�

The one instanton contribution is that of the classical con-
figuration with period T=n2K�k� /
�k�� with n=1. For n=2
there are two instantons moving from −� to � with “posi-
tions” 	0= ±K�k� /
�k�� �see Fig. 1�. The contribution An to
the transition amplitude arising from n instantons can be cal-
culated analogously

FIG. 2. Microwave frequency � /2� vs normalized bias current
I / Ic�H� at T=25 mK with Wallraff experimental parameters.
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An = �− i�n �2��n

n!
e−nW−2E��
 U0

M�0
3


�1 − �3

2K�k��
�n

. �16�

The total transition amplitude A is obtained by summation,

A = �
n

An = e−2E� exp�− i2�
 U0

M�0
3


�1 − �3

2K�k��
e−W� .

�17�

We can get the imaginary part of energy E by comparing
the above amplitude A in Eq. �17� with defined amplitude A
in Eq. �5�. The decay rate of vortex state with energy E can
be written as

� =
�E

2�K�k��
e−W, �18�

where �E=
2��1−�3� /3�0�0 is the energy dependent fre-
quency. We emphasize that this compact formula is valid for
the entire region of energy 0�E�U0. It can be applied to
any excited states from bottom to top of the well.

In low energy limit E�U0, introducing a harmonic ap-
proximation Em=m��0+E0, we can evaluate the decay rate
�m of mth excited state,

�m =
1

m!
�432U0

��0
�m

�0. �19�

When m=0, �m reduces to the decay rate �0 of the vortex
state with energy E0 and �0=12�0


6U0 /���0e−36U0/5��0.
We can find that the decay rate depends on the well depth.

In a future experiment, we can increase the bias current
through the junction corresponding to reducing the height of
the barrier. The tunneling rate could be increased by lower-
ing the well depths.

IV. TEMPERATURE DEPENDENCE

Taking a statistical average of the decay rates of different
vortex states, ��T�=1/Z0�m�me−Em/kBT, where Z0

=�me−Em/kBT, we can obtain the decay rate of temperature
dependence

��T� = �0�1 − e−��0/kBT�e432U0/��0e−��0/kBT
, �20�

where kB is the Boltzmann constant. With experimental pa-
rameter �0=2��01=75 GHz for �01 between 10 and 13 GHz
given in Ref. 8 and U0=2.5��0 for two energy levels in the
well, Fig. 3 shows three distinct regions with different be-
havior for ��T�. At high temperature, the decay is thermally
activated and exhibits the expected Arrhenius law,21 �AR
=�0 /2�e−U0/kBT. At intermediate temperature, we observe
“thermally assisted ” tunneling, in which atoms are thermally
activated to excited quantum state in the well, and then decay
out from the well by quantum tunneling. At lower tempera-
ture, pure quantum tunneling from the trapped ground state
is dominate, which is controlled by the “vacuum” instanton
trajectory. Hence the ordinarily definition of the “crossover”
temperature is Tcr=��0 /2�kB, below which quantum tunnel-
ing dominates. The decay rate is independent on temperature

if T�Tcr, whereas it will increase appropriately with tem-
perature if T�Tcr. We find Tcr=92 mK which is consistent
with the “crossover” temperature extracted from the tem-
perature dependence of the switching current distributions in
Ref. 8. In the following section, we will give another defini-
tion of the Tcr using our method, which will help in getting a
deeper understanding of the conception.

In order to maker clearer the meaning of ��T�, we repeat
the process of the experiment.8 Wallraff et al. investigate the
escape process by ramping up the current that is flowing
through the annular junction until they see a jump in the
voltage across the junction, which corresponds to the vortex
beginning to rotate rapidly around the annulus �the voltage is
proportional to the vortex velocity�. This depinning of the
vortex and its subsequent escape from the well is a stochastic
process, so repeated measurements yield a distribution of
switching currents at which depinning occurs. As the tem-
perature is lowered, the width of this distribution shrinks,
indicating a crossover from the classical region to macro-
scopic quantum tunneling in the quantum regime. We assume
that we have an initial thermal distribution of the vortices
�the decay principle will be consistent with the statistical
experimental results�; the population should decay as

N�t� =
N0

Z0
�
m

e−�mt−Em/kBT, �21�

where N0 is the initial population of trapped vortices. Since
N�t� is a sum of exponential decay factors, it does not decay
exponentially itself, i.e., N�t� is not a straight line if we plot
log N�t� as a function of time. There is not a single slope, and
therefore it cannot be assigned a single decay rate. At long
times, the curve approaches a straight line, with the corre-
sponding rate given by �0, i.e., the slowest channel domi-
nates the long time behavior. In fact, the initial slope at time
t=0 corresponds to a rate of ��T� as calculated, meaning that
��T� is simply the initial rate of decay of the population. The
above discussion is valid if there is no thermalization of the
population during decay, which is a situation that the experi-
mentalist can realize. On the other hand, it is also possible to
intentionally introduce intrawell transitions between the dif-

FIG. 3. The temperature dependence of the decay rate ��T� with
experimental parameters �0=75 GHz and U0=2.5��0.
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ferent levels, such that thermalization can be established in a
time tc. In this case, if tc is short compared to 1/��T�, the
population will decay at ��T� at all times. If it is larger than
1/��T�, the population will decay initially nonexponentially
until time tc, after which the population will decay at ��T��,
where T� is some temperature below T. There is a cool down
of the population due to the initial decay.

To probe the ��T� versus the temperature for a different
external condition we draw Fig. 4. In order to have a quali-
tative analysis about Fig. 2�b� in Ref. 8, we use the experi-
ment parameters Ic�H�. From our Fig. 4, we can find a value
of Tcr about 90±mk, which is consistent with the saturation
temperature in Fig. 2 of Ref. 4. In Fig. 4, we can see in a
higher field the quantum region corresponds to a higher de-
cay rate. That indicates the quantum tunneling is also domi-
nated by the potential. If a higher field is applied to the
junction, which corresponds to the vortex having a higher
harmonic oscillator frequency and less shallow effective po-
tential, the quantum tunneling will get a higher decay rate.
This is the reason for Fig. 2�b� in Ref. 8 having two branches
in the quantum region.

V. QUANTUM-CLASSICAL TRANSITION

The second derivative of the action, which is proportional
to dE /dT, can be interpreted as the specific heat of the

system.22 Our model, allowing explicit calculation of peri-
odic instantons and the corresponding evaluation of the ac-
tion, can be studied with regard to phase transitions from
classical to quantum behavior.22,23 When the vortex escape
from the potential under certain in-plane field, the second-
order transition from thermal activation to macroscopic
quantum tunneling should be observed as the temperature is
lowered. The thermodynamic action, i.e., that of the sphale-
ron at the top of the barrier, and the action are correspond-
ingly given by S0= �U0�� / �kBT� and ST=E /T+W. Figure 5
displays the behavior of ST and S0 versus temperature T. We
emphasize that the temperature of the point of intersection is
the “cross” temperature Tcr. In Fig. 5�b�, arrows show the
actual dependence of S�T� as the temperature is lowered and
one can clearly see the typically smooth behavior of a second
order transition from the thermal to the quantum regime as
the temperature is lowered.

In conclusion, we have calculated the total decay rate over
the entire range of temperature of the vortex, which is con-
fined in a current-biased annular junction subject to an in-
plane field. We also pointed out that the system acquires a
second order transition.
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