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We study the semiclassical motion of holes by exact numerical solution of the Luttinger model. The trajec-
tories obtained for the heavy and light holes agree well with the higher order corrections to the abelian and the
nonabelian adiabatic theories in S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1378 �2003�,
respectively. It is found that the hole trajectories contain rapid oscillations reminiscent of the “Zitterbewegung�

of relativistic electrons. We also comment on the nonconservation of helicity of the light holes.
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The field of spintronics holds the promise of using the
spin degree of freedom for building low-power integrated
information processing and storage devices.2,3 Spintronics
devices also promises to access the intrinsic quantum regime
of transport, paving the path towards quantum computing.
Recently, it has been predicted theoretically that a dissipa-
tionless spin current can be induced by an external dc electric
field in a large class of p-doped semiconductors.1 The dissi-
pationless spin current arises from the spin-orbit coupling in
semiconductors and several other groups have shown that it
also applies to a broader class of models.4–7

The theory of Ref. 1 is based on the adiabatic solution to
the Luttinger model, which describes holes near the top of
the fourfold degenerate valence band. It was pointed out that
the abelian adiabatic approximation applies for the heavy
hole �HH�, while the non abelian adiabatic approximation is
required to obtain the correct result for the light hole �LH�.
The adiabatic approximation is generally based on the sepa-
ration of the light and the heavy hole bands. However, at the
top of the valence band, these two bands intersect each other,
and it is not clear to which extent the adiabatic approxima-
tion is valid. In this paper, we solve the semiclassical trajec-
tory for the Luttinger model exactly by numerical integration
of the Heisenberg equation of motion. We find that the full
trajectory of the holes consists of two parts, a rapidly oscil-
lating part, reminiscent of the “Zitterbewegung” of a relativ-
istic electron,8 is superposed on a smooth part, which is ac-
curately described by the adiabatic theory. The separation of
the rapid and the smooth parts of the trajectory is also similar
to the cyclotron and the guiding center motion of a charged
particle in an uniform magnetic field and a spatially varying
potential. In this sense, the adiabatic approximation in the
spin-orbit coupled systems is similar to the lowest-Landau-
level approximation in the quantum Hall effect.

The Luttinger effective Hamiltonian9 with a dc electric
field E=Ezẑ can be written as1

H =
�2

2m
���1 +

5

2
�2�k2 − 2�2�k · S�2� + eEzz , �1�

where �1, �2 are the valence-band parameters for semicon-
ductor materials. Luttinger9 pointed out that there are 16 lin-

early independent spin matrices which can be chosen as E,
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set of dynamic variables in the theory consists of three posi-
tion operators x, y, and z, three momentum operators kx, ky,
and kz, and the 16 spin matrices listed above. The Heisenberg
equation of motion for the expectation value of any operator
A is determined by a differential equation d	A
 /dt
= �i��−1	�A ,H�
. The equations of motion for the momentum
and the position operators are given by
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where a��2��1+5�2 /2� /2m ,b�−�2�2 /m ,c�−eEz, and � �
represents the anticommutative relation. The equation of mo-
tion for the spin operators can be obtained straightforwardly,
but they are lengthy and will not be given explicitly here.

Thus the evolution of momentum is simply determined by
Eq. �2�, and can be solved trivially analytically. Next we
numerically solve the equations for the spin operators, which
depends only on the solution of the momentum, not on the
position. Finally, we decompose the expectation value of the
product of the momentum and the spin into the products of
their expectation values in Eq. �3�, and numerically solve for
the position operators. For convenience, we can always
choose a coordinate frame which make the hole’s initial mo-
mentum have no y component.

Time evolution of the heavy hole: The initial state of the
HH with helicity �=3/2 can expressed as ��0�=U†�k�0��
��1,0 ,0 ,0�T, where U†�k�0��=exp�−i�Sz�exp�−i�Sy�
is defined in Ref. 1, and k�0� is the initial momentum. The
initial expectation value of any operator A is 	A�0�
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�	��0��A���0�
. From this definition of the initial state, we
obtain 	x�0�
, 	kx�0�
, 	Sx�0�
, 	�Sx�0� ,Sy�0��
, etc. as the
initial conditions for Eqs. �2� and �3� and the spin
equations.

In Fig. 1, we plot the trajectory of the HH as a function of
time. We clearly see that besides the acceleration in the z
direction and the uniform velocity motion along the x direc-
tion, there is a sideway drift along the y direction, which is
responsible for the dissipationless spin current. We can com-
pare the trajectories between our numerical solution and the
result from Ref. 1. The abelian adiabatic equations of Ref. 1
describe the overall trend very well. However, we see that
there are rapid oscillations on the exact numerical curve. The
frequency of the oscillations increases and the amplitude de-
creases as the time increases. This Zitterbewegung effect can
be obtained from the higher orders of the adiabatic approxi-
mation theory.10 The oscillation on z�t� canot be seen clearly
because the figure space is limited, but the oscillation on x�t�
is really small which is analyzed as below.

In order to study the higher orders of the adiabatic ap-
proximation, we transform the Hamiltonian �1�. We assume
the wave function has the form of �	�x , t�

=exp�−ieEzzt /���u�k , t�
, then substitute �	�x , t�
 into the
Schödinger equation, so that we get a time-dependent
Schödinger equation i��t�u�k , t�
=H0��t��u�k , t�
, where the
time-dependent effective Hamiltonian H0��t�=ak�t�2

+b�k�t� ·S�2, where k�t� is determined by Eq. �2�. In the
adiabatic approximation, we assume �u�k , t�
=��C��t�
�exp�−�i /���0

t 
��t��dt��U†�k���
, where ��
 represents any
eigenstate of Sz, so U†�k���
 is the instant eigenstate of H0��t�.
H0��t�U

†�k���
=
��t�U†�k���
, where 
��t�=�2k�t�2 /2m�. We
substitute �u�k , t�
 into the time-dependent Schödinger equa-
tion, so that we get the equation of C��t� is

d

dt
C�t� + BC�t� = 0, �4�

where C�t���C3/2C1/2C−1/2C−3/2�T, and
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where ���1/���0
t �
�t��dt� is the dynamic phase, and

�
�t���
L�t��−
H�t�� is the energy difference of HH and
LH. If we choose the initial state C�0���1,0 ,0 ,0�T, the
adiabatic approximation assumes that 0�C−3/2,±1/2�t�

C3/2�t��1 is always satisfied. So only one equation re-
mains, �d /dt�C1/2�t�= ��3/2��ei�. We can solve it after the
approximation that both �
 and � are slowly varying func-
tions of t. Then the first-order correction of trajectory is
x�1�=C3/2

* �t�C1/2�t�e−i� ·	 3
2 �U�k�i�� /�k�U†�k�� 1

2

+h.c. This

method is applicable to the other three kinds of holes, too. So
we get the unified formulas of the first-order correction on
the trajectory of any helicity state

x�1� =

��2�2 −
7

2
�eEz sin 2�

2k2�

�1 − cos��


�
t�� ,

y�1� = −

��2�2 −
7

2
�eEz sin �

k2�

sin��


�
t� ,

z�1� =

��2�2 −
7

2
�eEz sin2 �

k2�

�1 − cos��


�
t�� , �6�

From these formulas, we can see that the frequency �
=�
 /� will increase while the amplitude �k2�
�−1 will de-
crease as time increases, as shown in Fig. 1. We can evaluate
the quantities of frequency and amplitude in Fig. 1, which
agree with Eq. �6� very well. The oscillation on x�t� is small
because sin 2��0.

Now let us study the applicability of Eq. �6�. We have
used the approximation that both �
 and � are slowly vary-
ing functions of t, which is equivalent to �
dt
�
 and
�dt
�. They imply the same result, eEz�t
�k, which ex-
pectations that the approximation is valid when the electric
field has not brought large changes in momentum. If we

FIG. 1. �Color online� A heavy-hole’s ��=3/2� position vs time.
The solid �red� lines are numerical results, and the dash �blue� lines
are from the formulas of Ref. 1. The initial momentum is parallel to
the x axis, and the electric field is parallel to the z axis. These
conditions are the same in other figures.
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assume Ez=1�103 V/m, and k=4�108 m−1, we get �t

2000 T. So we have enough periods of oscillations in
which Eq. �6� is applicable.

Figure 2 indicates Si�t���ki�t� /k�t�, which implies the
approximate conservation of HHs helicity. This can be seen
clearly in Fig. 5. The oscillations show that the semiclassical
spin vector always precesses around the momentum direction
as the momentum changes in an electric field. The oscillation
can be calculated with the similar method above. The deep
reason for the HHs helicity conserving is the matrix element
representing transition between �= ±3/2 is zero. But the
LHs helicity is not conserved as shown in the next section.

Now many proposals for spintronic devices are a two-
dimensional �2D� system. For a 2D system, the momentum
in the confined direction will be quantized. The holes can
move only in the plane. The Luttinger Hamiltonian can be
approximated by the relation 	kz
=0 and 	kz

2
���� /a�2,
where a is the thickness of the 2D system.11,12 The energy
band structure can be obtained by diagonalizing the 2D
Hamiltonian. The HH and LH subbands split at � point. But
if we focus on the evolution of a HH or LH state, we can still
find oscillations which average to the adiabatic curve, the
frequency of oscillations is still the energy difference be-
tween the two subbands. This is a general result of the adia-
batic theory.

Time evolution of the light-hole: When we choose the
initial state as ��0�=U�k�0��†�0,1 ,0 ,0�T, Eqs. �2� and �3�
and the spins’ equations describe the evolution of a LH with
helicity �=1/2. The trajectory is shown in Fig. 3, and the
evolution of spin is showed in Fig. 4. The anomalous shift in
the y direction is not as large as predicted from the abelian
adiabatic theory of Ref. 1 and the helicity is no longer as
conserved as that of HH. However, both the trajectory and
the evolution of spin can be explained in the nonabelian
adiabatic theory,1,10 which properly takes into account the
transition between the two LH states.

If we confine the problem in the light hole’s space, Eq. �4�
is reduced to

d

dt
� C1/2

C−1/2
� + �0 − �̇

�̇ 0
�� C1/2

C−1/2
� = 0. �7�

It describes the evolution of two degenerate states. The so-
lution is

C�t� = � cos��t − �0� sin��t − �0�
− sin��t − �0� cos��t − �0� �C�0� , �8�

where �t is the the polar angle at the time t. So we can get the
anomalous shift in the y directions

FIG. 2. �Color online� A heavy-hole’s ��=3/2� spin vs time.
The solid �red� lines are numerical results, and the dash �blue� lines
are �ki /k.

FIG. 3. �Color online� A light-hole’s ��=1/2� position vs time.
The solid �red� lines are numerical results, the dash �blue� line is
from the abelian adiabatic theory, and the dot �black� lines are from
the nonabelian adiabatic theory.

FIG. 4. �Color online� A light-hole’s ��=1/2� spin vs time. The
solid �red� lines are numerical results, and the dot �black� lines are
from the nonabelian adiabatic theory.
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y±1/2�t� = C†�t�U�k�i�ky
U†�k�C�t�

= ±
3 cos��t − 2�0� − cos�3�t − 2�0� − 2 cos �0

4k0 sin �0
,

�9�

and the evolution of spin is 	S�t�
=C†�t�U�k�SU†�k�C�t�,

Sx,±1/2�t� = � � 3
4 sin��t − 2�0� + 1

4 sin�3�t − 2�0�� ,

Sy,±1/2�t� = 0,

Sz,±1/2�t� = ± � 3
4 cos��t − 2�0� − 1

4 cos�3�t − 2�0�� . �10�

The results from Eqs. �9� and �10� has been plotted in
Figs. 3 and 4, they describe the trends of numerical curves
very well except for the rapid oscillation on the numerical
curves, which have been explained in the previous sections
due to higher order corrections to the adiabatic theory.

At last, we obtain the anomalous velocity in the y direc-
tion

vy,±1/2�t� = ±
3eEz

4�k2 �sin��t − 2�0� − sin�3�t − 2�0�� . �11�

When t=0, vy,± 1
2
�0�=��2�2− 7

2
�eEzkx0 / ��k0

3�, which is just

the Eq. �7� of Ref. 1 �where Fij is given by Eq. �S5� of
SOM�. Equation �11� represent the anomalous velocity at any
time.

Unlike the HH, the LH does not always stay as an eigen-
state, it will evolute according to Eq. �8�. Figure 5 compares
the spins’ evolution of HH and LH. Obviously, LHs helicity
is not as conserved as HH, so LHs spin cannot be always
parallel to its momentum like HH. The nonabelian adiabatic
theory of Ref. 1 properly takes this effect into account.

The adiabatic condition: Reference 13 raised a criticism

by asking why the anomalous shift in Ref. 1 is independent
of �2. Actually, if �2=0, the anomalous shift vanishes be-
cause the Hamiltonian degenerates to an ordinary one with-
out the spin-orbit coupling, and the adiabatic approximation
is no longer valid. Below can we see explicitly that the adia-
batic approximation fails when �2 is less than a certain quan-
tity. The condition of adiabatic approximation10 is

� 	H,��
d

dt
�L,�


EH − EL

�
� =

�3

2

d�

dt

2k2 b

�

=
�3meEz sin �

4k3�2�2

 1. �12�

The condition is better satisfied if Ez is smaller and �2 is
larger. The small Ez ensures that the time-dependent Hamil-
tonian changes slowly, and the large �2 ensures that the en-
ergy difference between the HH and LH bands is large ��

=2�2k2�2 /m�, so the transition probability between HH and
LH is small.

In most semiconductors, Eq. �12� can be satisfied. For
example as GaAs, �2=1.01, kF�8�108 m−1, if we assume
Ez=103 V/m, �0=90°, we get the condition is k�0.02kF. So
only a little part in the middle of Fermi ball does not meet
the conditions. We can neglect them when we integrate the
whole Fermi ball.

Conclusion: We have studied the motions of the heavy
hole and light hole in a large class of hole-doped semicon-
ductor based on the Luttinger Hamiltonian. The trajectory of
HH has rapid, small amplitude oscillations, which can be
explained as the first-order correction on the trend described
in Ref. 1. The trajectory of LH is more complicated and the
helicity of the LH is not conserved. The nonconservation of
the helicity invalidates the Abelian adiabatic approximation.
However, the motion of LH can be well explained by the
nonabelian adiabatic theory. The excellent agreement be-
tween the exact numerical solution of the Heisenberg equa-
tion of motion and the adiabatic approximation validates the
key assumptions leading to the dissipationless spin current,
and addresses the naive criticism raised in Ref. 13. In the
future, we plan to apply the formalisms developed in this
paper to study the Luttinger Hamiltonian under more general
external conditions.
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