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Instanton configurations of 1+1 dimensions in a ferromagnetic biaxial-anisotropy-spin chain are obtained
explicitly in the strong-anisotropy limit, and macroscopic quantum coherent tunneling of domain walls is
illustrated in terms of the instantons. The tunneling amplitude for an instanton configuration is obtained and the
result shows that it is possible to have a finite-energy splitting of the degenerate orientations of the magneti-
zation for a finite-length spin chain at finite temperature.
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I. INTRODUCTION

Quantum tunneling has attracted considerable interest be-
cause of its wide applications in areas ranging from con-
densed matter to high-energy physics and cosmology. The
instanton method1,2 is a powerful tool for the calculation of
tunneling effects. Instantons, which are classical Euclidean
configurations connecting degenerate minima of the Euclid-
ean potential, are seen to be just the classical trajectories of
pseudoparticles existing in the potential barrier region and
not actual field configurations of real time. The tunneling
amplitude between two degenerate states is, however, domi-
nated by the instanton configurations in the semiclassical ex-
pansion of the functional integral. In the context of quantum
mechanics the instantons, which are obtained from 1+0 di-
mensional Euclidean equation of motion, have been well
studied for various potentials such as double well3 and
sine-Gordon.4

Recently the quantum tunneling of magnetization vector
in single domain ferromagnetic grain and Néel vector in
single domain antiferromagnetic grain has become an active
research field5,6 both theoretically and experimentally. With
the help of spin-coherent-state path integrals, the spin sys-
tems can be converted to typical potential tunneling models
of 1+0 dimension. Although quantum tunneling in the con-
text of field theory, for instance, the tunneling of domain
walls,7–11 has been investigated, the explicit multidimen-
sional �time-space� instanton configurations have not been
studied extensively.

We in the present paper give some explicit instanton con-
figurations of 1+1 dimensions and illustrate the quantum
coherent tunneling of domain walls in a continuous ferro-
magnetic spin chain of biaxial anisotropy. In Ref. 12, the
authors studied the macroscopic quantum tunneling in an
antiferromagnetic spin chain and given the pure-quantum-
tunneling configurations for the sine-Gordon model. But in
this paper, we investigate the finite-temperature effects,
namely, the thermally assisted quantum tunneling and obtain
the periodic instanton configurations.

The paper is organized as follows. In Sec. II, we introduce
the model of ferromagnetic spin chain with biaxial aniso-
tropy and the equation of motion of the magnetization vector
is reduced to the 1+1-dimensional sine-Gordon field equa-

tion in strong-anisotropy limit. In Sec. III, an instanton con-
figuration and corresponding tunneling amplitude are ob-
tained analytically, and the tunneling process of the domain
walls is illustrated. In Sec. IV, we give the breatherlike in-
stanton. Periodic instanton–anti-instanton pair configurations
are shown explicitly in Sec. V. Finally, we summarize our
results in Sec. VI.

II. MODEL

We consider a spin chain consisting of molecular ferro-
magnets with biaxial anisotropy, for instance, the molecule
Fe8. The model Hamiltonian is seen to be

Ĥ = − J�
�i,j�

Ŝi · Ŝj + K1�
i

�Ŝi
z�2 − K2�

i

�Ŝi
x�2, �1�

where J�0 is the exchange parameter, and K1 and K2 are the
anisotropy parameters with K1�K2�0. The giant spin of the
molecular magnet at ith site is described by the spin operator

Ŝi. The bracket �i , j� means the sum over the nearest neigh-
bors only.

The ferromagnet at each lattice site has a XY easy plane
with a X easy axis. As a consequence of the square term

�Ŝi
x�2, the two equilibrium orientations of the magnetization

along the �X directions are degenerate. Thus this model pos-
sesses instanton configurations, which are responsible for the
quantum tunneling3,4,13 of the domain walls.

The Heisenberg equation of motion for the spin operator

of the ferromagnet at the kth site is d
dt Ŝk= 1

i� �Ŝk , Ĥ�. At low
temperatures, the operator of the giant spin can be treated

as14 a classical vector Ŝk→S�k. Taking the continuous limit,

S�k→S��x , t�, we have the differential equations of the spin

vector in the spherical coordinates, S� = �Sx ,Sy ,Sz�
=S�sin � cos � , sin � sin � , cos ��, with S=s�s+1��, where s
is the spin quantum number.15 For strong anisotropy, i.e.,
K1�K2, the spin vectors are forced to rotate in the XY plane
and we may assume that �=� /2−	, where 	 denotes a small
perturbation angle. Expanding � to the first order of 	 and
assuming slow spatial variation in angles 	 and �, the equa-
tion of motion then reads
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�	

�t
= 2JS

�2�

�x2 − K2S sin�2�� ,

��

�t
= 2K1S	 , �2�

where we have assumed that the chain is along X direction
and x denotes the dimensionless spatial coordinate measured
in the unit of the lattice constant. As a result of the above
approximation, one has

2JS
�2�

�x2 −
1

2K1S

�2�

�t2 = K2S sin�2�� . �3�

A Lagrangian density that yields the equation of motion can
be written as15

£ = 2�JS� 1

2c2	 ��

�t

2

−
1

2
	 ��

�x

2

− V���� , �4�

with V���= 1
g2 �1−cos 2��, where c=2S�JK1 is the speed of

the spin wave12 and g=�4J /K2 is a dimensionless parameter.
The canonical momentum density is defined by 


=�£ /�� ��
�t �= 2�JS

c2 � ��
�t �, and we have the Hamiltonian density

H=2�JS� 1
2c2 � ��

�t �2+ 1
2 � ��

�x �2+V����.

III. INSTANTONS AND TUNNELING OF DOMAIN WALLS

The instanton is a solution of Euclidean field equation of
motion

�2�

�x2 +
�2�

c2 � �2 =
2

g2sin�2�� , �5�

for the Euclidean Lagrangian density £e=2�JS� 1
2c2 � ��

�� �2

+ 1
2 � ��

�x �2+V����, where �= it is imaginary time. The instanton
configuration is found as �see the Appendix�

cos���x,��� = k sn��
2�x − v� − x0�
g�1 + �v/c�2

,k� , �6�

where v is the velocity of the instanton and sn is Jacobian
elliptic function16 with modulus k=�1−g2Ecl�1+ �v /c�2� /2,
where the integration constant Ecl plays the role of dimen-
sionless energy density. The integration constant x0 is the
center position of the instanton at �=0. For simplicity, we
take it to be zero.

We demand that ��x ,�� be periodic with period L along
the spin chain, ��x ,��=��x+L ,��, where L denotes the di-
mensionless length of the chain measured in unit of lattice
constant. This leads to the condition

2L

g��1 + �v/c�2�
= 4mK�k� , �7�

where m=1,2 ,3 , . . . are positive integer and K�k� denotes the
complete elliptic integral of the first kind.16

In statistical mechanics, the mathematical analogy of the
density matrix17 and the transition amplitude in imaginary
time offer the period of the periodic instanton at given tem-
perature T6,

p =
�

KBT
=

2K�k�g��1 + �v/c�2�
v

, �8�

where � and KB are the Planck and the Boltzmann constants,
respectively. The parameter k is to be determined from the
above two equations. We also have

v =
KBTL

m�
, �9�

namely, the velocity of the instantons are quantized due to
the periodic boundary condition.

Inserting Eq. �9� into Eq. �8�, we obtain the dependence
relation of k on temperature T

K�k� =
L

2gm

1

��1 + 	KBTL

m�c

2� . �10�

Then we have the T-dependent energy density Ecl�T�
= 2�1−k2�

g2�1+�v/c�2� . Recalling that K�k��� /2, we get the restriction
for our solution

T 

m�c

KBL
�	 L

mg�

2

− 1. �11�

As the temperature is increased, the number of instanton
and anti-instantons increased and the dilute gas
approximation2 breaks down. For k→0, we have the maxi-
mal temperature at which the periodic instanton and anti-
instantons condense and become an instanton solid.6 In this
limit, the energy parameter Ecl→2 /g2�1+ �

KBTmaxL

m�c �2�
=2m2�2 /L2 and the configuration tends to the top of the
potential V���,

�t =
�

2
, �12�

and for k→1, i.e., Ecl→0, the solution becomes

�0�x,�� = arccos
tanh��
2�x − v��

g�1 + �v/c�2�� . �13�

Considering �1−cos��0/2�
1+cos��0/2� =tan� �0

2 �=exp�� 2�x−v��
g�1+�v/c�2 �, we

obtain the �anti�kinklike solutions

��anti�ins�x,�� = 2 arctan
exp��
�x − v��

g�1 + �v/c�2�� , �14�

where the “+” sign means the instanton solution, otherwise,
the so-called anti-instanton solution.

The tunneling amplitude of the domain wall is

��T� � exp	−
W�T�

�

 , �15�

where the Euclidean action for the periodic instanton con-
figuration �Eq. �6�� is
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W�T� = �
0

p

d��
0

L

dx£e =
8mJS�2

gKBT
�2E�k�

− k�2K�k���1 + 	KBTL

m�c

2

=
8mJS�2

gKB
F�k�� 1

T2 + 	KBL

m�c

2

, �16�

where k�=�1−k2 and E�k� denotes the complete elliptic in-
tegral of the second kind.

The function F�k�=2E�k�−k�2K�k� is monotonic and in-
creases from � /2 to 2 for 0�k�1. Thus it can be treated as
a constant when analyzing the dependence relation of the
Euclidean action W on T and L. For the maximal temperature
permitted, we have the smallest action, consequently, the
largest tunneling amplitude. The lower the temperature is,
the smaller the tunneling amplitude of the domain wall is. In
the limit of T→0, we have an infinite action, implying that
the energy splitting of the degenerate ground state, which is
proportional to �, is negligibly small, in accord with the
existing result in literature12 �in the limit of �V→0 of Eq.
�24� therein�. Similarly, the longer the spin chain is, the
smaller the tunneling amplitude is. In the limit of L→�, we
also have an infinite action. But for a finite-length spin chain
at finite temperature, it is possible to have a finite action and
consequently, a finite-energy splitting of the degenerate ori-
entations of the magnetization.

The evolution of the spin vectors as a function of spatial
and imaginary time coordinates for the instanton configura-
tion �Eq. �14�� is shown in Fig. 1, where the macroscopic
quantum coherent tunneling of domain wall can be seen
clearly. Equation �6� is a periodic instanton configuration
which is responsible for the quantum tunneling at finite
temperature.3,4 The tunneling process is shown in Fig. 2. We
want to note here that it is a virtual process which occurs
only in the potential barrier with imaginary time; see also
Fig. 3.2 of Ref. 6. In real time, the spin vectors go directly
between +X and −X states.

IV. BREATHERLIKE PERIODIC INSTANTON

If we rescale the coordinates by x̃=
�2x
g and �̃=

�2c�
g , the

Euclidean field �Eq. �5�� reduces to

�2�

� x̃2 +
�2�

� �̃2 = sin�2�� . �17�

Taking the ansatz that �=2 arctan�X�x̃� /T��̃��,18 we have

	 �X

� x̃

2

= �X4 + �X2 + � ,

	 �T

� �̃

2

= �T4 + �1 − ��T2 + � , �18�

where �, �, and � are integration constants.
Letting �=1 / l2 with �l��1, we get the breatherlike con-

figuration by direct integration of Eq. �18� in the case that
��0 and �=0

�b�x,�� = 2 arctan� 1
�1 − l2

sin��l��

sinh��2x

g�l� � � , �19�

where the auxiliary parameter � is absent in the solution.
Breather is a localized solution with spatial width �2g�l�

��2g and is considered as a bound pair configuration in
soliton theory.18 The instanton and the anti-instanton oscil-
late with respect to one another with the frequency

�l =
c�2�1 − l2�

g�l�
. �20�

But, here, we consider it as the periodic instanton configura-
tion with the period

�

KBT
=

2�

�l
=

�2�g�l�

c��1 − l2�
, �21�

which determines entirely the parameter l and therefore the
configuration at given temperature T.

FIG. 1. Tunneling process of the domain wall for instanton so-
lution �14�. The variables along x and � axes are in units of
g�1+ �v /c�2 /2 and g�1+ �v /c�2 /2v, respectively.

FIG. 2. Tunneling process of the domain wall for periodic in-
stanton solution �6� with k=0.9. The units of the variables along x
and � axes are the same as those in Fig. 1.
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�b�x ,�� describes periodic instanton–anti-instanton pair
configuration for an infinite-length spin chain. The corre-
sponding time evolution of the giant spin vectors is shown in
Fig. 3.

V. INSTANTON–ANTI-INSTANTON PAIR
CONFIGURATIONS

Assuming �=1 / �1+ �v /c�2�, we obtain the following con-
figuration by direct integration of Eq. �18� in the case that
��0 and �=0:

�c�x,�� = 2 arctan� c cosh� �2v�

g�1 + �v/c�2�
v cosh� �2x

g�1 + �v/c�2�� , �22�

where the auxiliary parameter � is also absent in the solu-
tion.

With the help of the mathematical formula arctan A
+arctan 1

A =arctan A+arccot A=� /2�A�0�,19 we have

�c�x,�� = � − 2 arctan�v cosh� �2x

g�1 + �v/c�2�
c cosh� �2v�

g�1 + �v/c�2�� . �23�

We then consider its asymptotic behavior in time follow-
ing Ref. 20 in soliton theory. First, when time approaches
−�, we have

�c�x,�� → 2 arctan� c exp�−
�2v�

g�1 + �v/c�2�
2v cosh� �2x

g�1 + �v/c�2�� . �24�

For x→−�,

�c�x,�� → 2 arctan
 c

v
exp� �2�x − v��

g�1 + �v/c�2��
= 2 arctan�exp��2�x − v	� +

�

2

�

g�1 + �v/c�2 �� , �25�

where

� = g ln�v/c��2�1 + �v/c�2�/v . �26�

For x→ +�,

�c�x,�� → 2 arctan�exp�−

�2�x + v	� +
�

2

�

g�1 + �v/c�2 �� .

�27�

The solution therefore corresponds to an instanton–anti-
instanton pair traveling with opposite velocities and ap-
proaching one another in the distant past.

In the same manner, we obtain its asymptotic behavior
when time approaches +�,

�c�x,�� → � − 2 arctan� 2v cosh� �2x

g�1 + �v/c�2�
c exp� �2v�

g�1 + �v/c�2� � .

�28�

For x→−�,

�c�x,�� → � − 2 arctan�exp�−

�2�x + v	� −
�

2

�

g�1 + �v/c�2 �� .

�29�

For x→ +�,

�c�x,�� → � − 2 arctan�exp��2�x − v	� −
�

2

�

g�1 + �v/c�2 �� .

�30�

In the distant future, the solution corresponds to the same
instanton–anti-instanton pair with the same shapes and ve-
locities but at opposite position. Another important change
from the initial configuration is the time delay � which re-
mains as the sole residual effect of the tunneling process. The
corresponding time evolution of the giant spin vectors is
shown in Fig. 4.

For ��0, we obtain the corresponding periodic configu-
ration

FIG. 3. Evolution of the spin vectors for breatherlike periodic
instanton �19� with l=�0.5. The variables along x and � axes are in
units of g /�2 and g /�2c, respectively.
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�p�x,��=2 arctan�c�2−k2
2

v�2−k1
2

dn� �2x

g��1+ �v/c�2��2−k1
2�

, k1�
dn� �2v�

g��1+ �v/c�2��2−k2
2�

, k2�� ,

�31�

where dn �x ,k�=�1−k2sn2�x ,k� is also named Jacobian el-
liptic function.16 For the above solution we have the restric-
tion such that

k1�

�2 − k1
2�

=
k2��v/c�
�2 − k2

2�
. �32�

In the limit ki→0 �i=1,2�, the solution exists only for
v=c and therefore tends to the trivial configuration �t= �

2 . In
the limit ki→1, the solution reduces to the configuration
which is seen to be the same with solution �22� for any
velocity v. Thus solution �31� is the periodic instanton–anti-
instanton pair configuration for the quantum tunneling at fi-
nite temperature. The corresponding time evolution of the
giant spin vectors is shown in Fig. 5.

The parameters k1 and k2 are to be determined from the
periodic boundary condition

�2L

g��1 + �v/c�2��2 − k1
2�

= 2m1K�k1� , �33�

where m1=1 ,2 ,3 , . . ., and the period of the periodic instan-
ton at given temperature T

�

KBT
=

2K�k2�g��1 + �v/c�2��2 − k2
2�

�2v
. �34�

Generally, if there are several solutions for the equation of
the instanton, one should take into account only the one with
the least action, which will dominate Eq. �15�, unless all or
some of the solutions happen to have comparable actions, in
which case one should take all relevant contributions to �
into account.1 However, those corresponding to the configu-
rations in Secs. IV and V are unable to be obtained and are

lacking in the present paper. These need further study in the
future.

VI. SUMMARY

We in the present paper provide various instanton con-
figurations of 1+1 dimensions in a ferromagnetic spin chain
with biaxial anisotropy, and the coherent tunneling process
of domain walls is illustrated explicitly. The magnitude of
the tunneling amplitude corresponding to the periodic instan-
ton configuration �Eq. �6�� is obtained. Result shows that it is
possible to have a finite-energy splitting of the degenerate
orientations of the magnetization along easy axis for a finite-
length spin chain at finite temperature.
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APPENDIX: CALCULATION OF INSTANTON SOLUTION
(6)

We look for the trial solution ���� with �=x−v�. Then we
have

�1 + 	v
c

2�	d2�

d�2 
 =
2

g2sin�2�� . �A1�

Multiplying with the term � d�
d� � and integrating over the vari-

able �, the equation of motion is seen to be

1

2
	d�

d�

2

−
V���

�1 + �v/c�2�
= − Ecl, �A2�

where the integration constant Ecl plays the role of dimen-
sionless energy density. We want to get the instanton con-

FIG. 4. Evolution of the spin vectors for instanton–anti-
instanton pair configuration �22� with v /c=0.5. The variables along
x and � axes are in units of g /�2 and g /�2v, respectively.

FIG. 5. Evolution of the spin vectors for periodic instanton–anti-
instanton pair configuration �31� with k1=k2=0.9. The units of the
variables along x and � axes are the same with those in Fig. 4.
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figurations with the energy parameter confined in the region
0�Ecl�

2
g2�1+�v/c�2� , namely, Ecl=

2�1−k2�
g2�1+�v/c�2� with 0�k�1.

Then we have

	d�

d�

2

=
4

g2�1 + �v/c�2�
�k2 − cos2 �� . �A3�

Letting cos �=k cos �, we get

	d�

d�

2

=
4

g2�1 + �v/c�2�
�1 − k2 cos2 �� . �A4�

By direct integration16 of the equation

d�

�1 − k2 cos2 �
= �

2d�

g�1 + �v/c�2
, �A5�

we have

cos � = sn��
2�x − v� − x0�
g�1 + �v/c�2

, k� , �A6�

then the instanton solution �Eq. �6�� is obtained.
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