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Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with
spatiotemporally modulated nonlinearity
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We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger
equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct
exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton’s eigenvalue is fixed,
the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the
stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width
background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.
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I. INTRODUCTION

Solitons are the subject of intensive theoretical and ex-
perimental studies in various fields, such as hydrodynamics,
plasma physics, nonlinear optics, and Bose-Einstein con-
densates (BECs). Many nonlinear partial differential and
difference equations, which model these physical media,
give rise to soliton solutions. Among them, the nonlinear
Schrödinger equation (NLSE) and its variants have been the
most thoroughly investigated models, especially in nonlinear
optics, where many species of solitons have been predicted [1],
and in BEC, where, in particular, the dynamical management
of solitons may be used in applications such as matter-wave
interferometry and gyroscopes [2].

The construction and stabilization of exact soliton modes
have always been important topics, because exact stable
solutions are of great significance to both the understanding
of the nonlinear dynamics and its applications. In the one-
dimensional (1D) NLSE, exact stable bright solitons exist if
the nonlinearity is self-focusing. In higher dimensions, bright
solitons are unstable, as they are subject to the collapse.
Nevertheless, multidimensional solitons can be stabilized by
varying the nonlinearity temporally [3,4] or spatially [5–7] or
by introducing the nonlocal [8] or saturable [1] nonlinearity.
The spatiotemporal nonlinearity management is also useful in
generating solitons with novel properties [4]. In particular, the
time-periodic variation of the nonlinearity can create robust
breathers [9] and discrete compactons [10] and can enhance
the mobility of discrete solitons [11], while the spatially
periodic nonlinearity modulation supports persistent Bloch
oscillations [12] and may break the stability limit imposed
by the Vakhitov-Kolokolov criterion [7,13,14]. Further, using
self-focusing spatiotemporally modulated nonlinearity, it is
possible to construct an infinite number of exact solitons,
such as resonant and breathing ones [15]. However, only the
fundamental soliton is stable, and for self-defocusing spatially
modulated nonlinearities, no exact localized solitons have been
reported as yet.

Here we aim to propose a scheme for constructing exact
soliton solutions to the 1D NLSE with a general form of the
spatial modulation of the cubic self-defocusing nonlinearity. In
this way, we construct stable higher-order modes built as arrays
of dark solitons nested in a finite-width background. We also
show that the instability of those solitons which are not stable
can be controlled by varying the nonlinearity’s strength in time.
The stabilization mechanism resembles the classical effect of
the parametric stabilization, such as the inverted pendulum,
which can be sustained by an oscillating pivot.

II. MODEL AND GENERIC TRANSFORMATION FOR
STATIONARY SOLUTIONS

We start with the normalized NLSE,

iψξ = −ψxx + V (ξ,x)ψ + g(ξ,x)|ψ |2ψ, (1)

where ψ is the macroscopic wave function for the cigar-shaped
BEC if ξ stands for time, V is the axial potential, and g

is proportional to the interatomic s-wave scattering length.
The spatiotemporal modulation of g(ξ,x) can be induced by
means of the Feshbach-resonance technique [4,7,9,16]. On
the other hand, Eq. (1) with ξ = z governs the propagation of
an optical beam in a planar waveguide along the z direction,
the external potential being generated by a modulation of the
local refractive index [17], while various forms of g(z,x)
may be realized via accordingly designed distributions of
nonlinearity-enhancing dopants [7,18].

We first address stationary soliton solutions, when V and g

are functions of x only:

ψ(x,ξ ) = ρ(x)U [X(x)] exp(−iμξ ), (2)

where eigenvalue μ (chemical potential, in the case of BEC)
is a real constant, X(x) ≡ ∫ x

−∞ ρ−2(s) ds, and ρ(x) is sought
for as

ρ(x) = (
αϕ2

1 + 2βϕ1ϕ2 + γ ϕ2
2

)1/2
, (3)
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with ϕ1(x) and ϕ2(x) being two linearly independent solutions
of ϕxx + [μ − V (x)]ϕ = 0, where α, β, and γ are real
constants (cf. Ref. [15]). Further, setting

g(x) = [ρ(x)]−6F (U ), (4)

we conclude that U (X) satisfies the ordinary differential
equation

EU = −UXX + F (U )U 3, (5)

where E ≡ (αγ − β2)W 2, with constant Wronskian W =
ϕ1ϕ2x − ϕ2ϕ1x . We are interested in the case of E > 0, when
Eq. (3) guarantees that ρ(x) does not vanish; hence the
nonlinearity coefficient (4) does not have singularities.

Exact soliton solutions of Eq. (1) are generated by exact
solutions to Eq. (5), which may be obtained with many
forms of F (U ). The widely used choice is that with F (U )
being a constant [15,19], whereas the sign of the nonlinearity
coefficient g(x) is either focusing (negative) or defocusing
(positive) in the whole spatial domain. A more versatile choice
is F (U ) = g3 + g5U

2, which transforms Eq. (5) into a solvable
cubic-quintic equation. The addition of the term g5U

2 can
generate a larger variety of exact soliton solutions to Eq. (1).
Note that the respective cubic-nonlinearity coefficient may
even be made sign-changing, for g3g5 < 0 [20]. Yet more
exact solitons can be generated by choosing other forms of
F (U ). We will construct exact solutions taking

F (U ) = U−3[EU − sin(EU )], (6)

which casts Eq. (5) into the stationary sine-Gordon equation,
UXX + sin(EU ) = 0. This equation with E > 0 describes the
motion of a pendulum, i.e., either oscillations, with U being
a periodic function of X, or the rotation, with U varying
monotonically. The localized soliton requires U to be a
periodical function; thus

U (X) = 2E−1 arcsin[q sn(
√

EX,q)], (7)

where sn is the Jacobi’s elliptic function with modulus q. The
period of U (X) in Eq. (7) is 4K(q)/

√
E, where K(q) is the

complete elliptic integral of the first kind.
The cubic nonlinearity given by Eqs. (4) and (6) has

the defocusing sign, i.e., g(x) > 0. Therefore, an external
potential is needed to confine the system. Here we consider
the most physically relevant case of the harmonic potential,
V (x) = ω2

0x
2. In this case, solutions ϕ1(x) and ϕ2(x)

may be expressed in terms of the M and W functions of
Whittaker and Watson [21] and Gamma function 
: ϕ1(x) =
ω

−3/4
0 sgn(x)|x|−1/2M and ϕ2(x) = 
[(3ω0 − μ)/(4ω0)]

ω
−1/4
0 (π |x|)−1/2 {W + 2

√
π
[(3ω0 − μ)/(4ω0)]−1

M}, when
μ �= μ̃(�) ≡ (2� + 1)ω0, � = 0,1,2, . . . , with μ̃(�) being the
�th energy eigenvalue of the harmonic oscillator. Since
ϕ1(0) = ϕ2x(0) = 0 and ϕ1x(0) = ϕ2(0) = 1, the Wronskian
is W = −1. As E > 0, ρ(x) �= 0 holds when α,γ > 0.

We focus on the symmetric profiles of the nonlinearity
modulation and the corresponding solitons by setting β = 0
in Eq. (3). To produce a typical example, we set ω0 = 0.1,
α = 61/3, and γ = 1, which makes g(x) ∼ 1 around the center.
Then, for given μ, ρ(x) and X(x) can be calculated. To meet
the zero boundary condition at x = ±∞, modulus q must
satisfy the constraint, 2nK(q) = √

ER, where n is a positive
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FIG. 1. (Color online) The relation between the number of exact
soliton solutions and the discrete energy levels of the harmonic-
oscillator potential (the underlying parabola). (a) Modulation profiles
of the defocusing nonlinearity g(x) (solid line), and the shape of the
exact soliton (dashed line), when μ = 0.2, n = 1, and q = 0.7458.
The horizontal axis is coordinate x. Other insets display the same
for (b) μ = 0.4, n = 1, q = 0.9984, (c) μ = 0.4, n = 2, q = 0.8586,
(d) μ = 0.6, n = 1, q = 0.9998, (e) μ = 0.6, n = 2, q = 0.9530, and
(f) μ = 0.6, n = 3, q = 0.5933. The other parameters are α = 61/3,
β = 0, γ = 1, and ω0 = 0.1.

integer and R ≡ ∫ +∞
−∞ ds/ρ2(s). Since K(q) > π/2, it follows

from here that n <
√

ER/π . This clearly means that there
is only a finite number of the exact solutions for given μ.
Integer n is the order of the soliton mode, which features n − 1
density nodes. Further analysis demonstrates that

√
ER/π

increases monotonically as μ increases, while other parameters
are fixed, and n takes values up to � + 1 when μ̃(�) < μ <

μ̃(�+1); when μ < μ̃(0), there are no solutions (see Fig. 1).
An explanation for this is that the defocusing nonlinearity
pushes the energy levels up relative to the harmonic oscillator.
Thus, the fundamental solitons (n = 1) exist when μ > μ̃(0),
first-order excited solitons (n = 2) exist when μ > μ̃(1), etc.
This conclusion coincides with the findings of Ref. [22] for
the spatially homogeneous defocusing nonlinearity. A similar
result holds for gap solitons in self-defocusing media: only
first n families of the solitons exist when μ lies in the nth
optical-lattice-induced band gap [23].

In keeping with the preceding analysis, Fig. 1(a) shows that
only one exact soliton exists when μ = 0.2. The corresponding
single-humped nonlinearity-modulation profile is localized
near x = 0, and the exact soliton has a small dip, because
of the self-repulsive sign of the nonlinearity. We checked
the stability of the soliton against various perturbations by
means of direct simulations of Eq. (1). In particular, if kicked
with initial velocity 0.1, it remains stable, featuring periodic
oscillations [Fig. 2(a)].

Using the numerical integration in imaginary time, we
have found that this and other fundamental solitons in the
present model represent the ground state, which explains their
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FIG. 2. (Color online) (a) Oscillations of the soliton from Fig. 1(a)
which was left-kicked with velocity 0.1, the corresponding initial
condition for Eq. (1) being ρ(x)U [X(x)] exp(−0.05ix). (b) Oscilla-
tions of the soliton from Fig. 1(c) which was left-kicked with initial
velocity 0.05.

robustness. As μ increases, more and more exact solitons
appear, while the nonlinearity profile develops several peaks.
In particular, Figs. 1(b) and 1(c) demonstrate that two exact
solitons exist in the case of μ = 0.4. Besides the stable
fundamental soliton, the first-excited-state soliton, which
looks like a dark soliton nested in a finite-width background, is
stable too [see Fig. 2(b)]. However, at μ = 0.6, the exact first-
and second-excited-state solitons are not stable; see Fig. 3(b)
for the former one. While it is not easy to analyze the stability
of all the solitons corresponding to the excited states, at larger
values of μ it is possible to generate arrays of nested dark
solitons which maintain their stability—in particular, if they
are kicked with small spatially homogeneous [Fig. 4(b)] or
inhomogeneous [Fig. 4(c)] velocities. This finding suggests
a new approach to constructing the Newton’s cradle and
exciting supersolitons in systems described by the scalar NLSE
[24], where the nested dark chains may be generated by the
phase-imprinting method [25].

Note that, for a fixed chemical potential, there is one-to-one
correspondence between the exact soliton and the nonlinearity

FIG. 3. (Color online) (a) The profile of the spatially modulated
nonlinearity and (b) the unstable evolution of the soliton from
Fig. 1(e). (c) The spatiotemporal nonlinearity modulation and
(d) the unstable evolution of the soliton, for the initial condition
the same as in panel (b), but with the nonlinearity taken as per Eq. (9)
and half the trapping frequency, ω = ω0/2.

FIG. 4. (Color online) (a) The modulation profile of the de-
focusing nonlinearity and the corresponding exact soliton (solid
and dashed lines) for μ = 1.6, n = 8, and q = 0.4752. (b,c)
The quasistable evolution of the soliton. The initial condition in
panel (b) for Eq. (1) is ρ(x)U [X(x)] exp(−0.05ix), while that in
panel (c) is ρ(x)U [X(x)] exp(−0.05i|x|).

profile g(x). On the other hand, for fixed g(x) one can find
other soliton solutions numerically, by varying μ and using
the relaxation method. We have checked that, if the exact
soliton is stable, then its counterparts numerically found for the
same g(x) are stable too, provided that the chemical potential
does not vary too much. Further, it was checked that these
solitons remain stable when the nonlinearity profiles were
taken somewhat different from the special form (4). Thus,
higher-order solitons are physically meaningful objects.

III. STABILITY CONTROL OF NONAUTONOMOUS
SOLITONS

With g and V made functions of x and ξ , Eq. (1)
turns into a nonautonomous NLSE [26]. In particular, it is
known that, for g = g(ξ ) and V = ω(ξ )x2, exact solitons
can be constructed by dint of a self-similar transformation
which reduces the original NLSE to a known solvable form
[27]. Inspired by this finding, we here seek a possibility to
construct exact nonstationary solitons for Eq. (1) with the
spatiotemporal modulation of the nonlinearity and harmonic
external potential, transforming it into the NLSE with time-
independent coefficients,

iT = −YY + ω2
0Y

2 + g2(Y )||2. (8)

The reduction can be implemented if the nonlinearity coeffi-
cient and external potential in Eq. (1) are of the form

g(ξ,x) = g1(ξ )g2[x/W (ξ )], V (ξ,x) = ω(ξ )x2, (9)

where W (ξ ) is the width of the nonlinearity modulation, which
also determine the soliton’s width. Thus, we introduce the
self-similar transformation (cf. Ref. [27])

ψ(ξ,x) = (T ,Y )W−1/2 exp(iWξx
2/4W ), (10)
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with T ≡ ∫ ξ

0 ds/W 2(s) and Y ≡ xW−1(ξ ). It can be checked
that Eq. (8) can be recovered, in this way, only for g1(ξ ) =
1/W (ξ ), with W (ξ ) satisfying Wξξ + 4ω2(ξ )W = 4ω2

0W
−3.

The exact stationary soliton solutions displayed in Fig. 1
can be borrowed to produce solutions to Eq. (8), replacing Y by
x, g2 by g, T by ξ , and  by ψ . Moreover, given the functional
form of ω(ξ ), such as a0 + a1 cos(ξ ), the equation for W (ξ )
can be solved. Then, one can construct exact nonstationary
soliton solutions of Eq. (1) as per Eq. (10).

It is worthy to note that the stability of the nonstationary
soliton is related to that of the corresponding stationary solu-
tion and the functional form of W (ξ ). If the stationary soliton
of Eq. (8) is stable, the respective nonstationary soliton of
Eq. (1) is stable too. However, if the stationary soliton is
unstable, with the instability setting in at, say, T = T0, the
instability of the nonstationary soliton may be delayed or
even suppressed, choosing an appropriate form of W (ξ ).
Namely, if T = ∫ ξ

0 W−2(s) ds always remains smaller than
T0, the instability is completely prevented, because the system
does not have enough time (propagation distance) to reach
the instability threshold. On the other hand, the onset of
the instability will be delayed if equation T0 = ∫ ξ

0 W−2(s) ds

yields ξ > T0.
As a typical example, we take the exact soliton corre-

sponding to Fig. 1(e). Without the temporal nonlinearity
modulation, its instability starts at ξ ≈ 40 [Fig. 3(b)]. If,
at ξ = 0, the trap frequency is abruptly reduced to a half,
and after that the nonlinearity is varied as per Eq. (9) with
W (ξ ) =

√
1 + 3 sin(ω0ξ )2 [Fig.3(c)], we find that the soliton

first experiences the exact self-similar evolution in accordance

with Eq. (10), and then it starts to develop the instability at
ξ ≈ 81, according to equality 40 = ∫ ξ

0 W−2(s)ds [Fig. 3(d)].
Clearly, the instability onset is delayed. It can be delayed
further if one decreases the trapping frequency more, varying
the nonlinearity accordingly.

IV. CONCLUSION

To conclude, we have proposed a transformation for finding
exact soliton solutions to the nonlinear Schrödinger equation
with general forms of the spatially or spatiotemporally
modulated cubic nonlinearity and external potential. We have
found that the number of solitons is determined by the
soliton’s chemical potential and discrete energy levels of the
trapping harmonic-oscillator potential. We have also found
stable higher-order modes, built as arrays of dark solitons
embedded into a finite-width background. Finally, we have
shown how one can control the instability of nonstationary
solitons. The method can be also applied to finding exact
vortex solitons for two-dimensional nonlinear Schrödinger
equations.
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gent Nonlinear Phenomena in Bose-Einstein Condensates
(Springer, Berlin, 2008).

[3] H. Saito and M. Ueda, Phys. Rev. Lett. 90, 040403 (2003); F. Kh.
Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed,
Phys. Rev. A 67, 013605 (2003).

[4] B. A. Malomed, Soliton Management in Periodic Systems
(Springer, New York, 2006).

[5] I. Towers and B. A. Malomed, J. Opt. Soc. Am. B 19, 537
(2002); M. Centurion, M. A. Porter, P. G. Kevrekidis, and
D. Psaltis, Phys. Rev. Lett. 97, 033903 (2006).

[6] H. Sakaguchi and B. A. Malomed, Phys. Rev. E 73, 026601
(2006); G. Fibich, Y. Sivan, and M. I. Weinstein, Physica D
217, 31 (2006); Y. Sivan, G. Fibich, and M. I. Weinstein,
Phys. Rev. Lett. 97, 193902 (2006); N. V. Hung, P. Zin,
M. Trippenbach, and B. A. Malomed, Phys. Rev. E 82, 046602
(2010).

[7] Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys.
(to be published).

[8] C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91,
073901 (2003); 92, 113902 (2004).

[9] P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A.
Malomed, Phys. Rev. Lett. 90, 230401 (2003).

[10] F. Kh. Abdullaev, P. G. Kevrekidis, and M. Salerno, Phys. Rev.
Lett. 105, 113901 (2010).

[11] J. Cuevas, B. A. Malomed, and P. G. Kevrekidis, Phys. Rev. E
71, 066614 (2005); G. Assanto, L. A. Cisneros, A. A. Minzoni,
B. D. Skuse, N. F. Smyth, and A. L. Worthy, Phys. Rev. Lett.
104, 053903 (2010).

[12] M. Salerno, V. V. Konotop, and Yu. V. Bludov, Phys. Rev. Lett.
101, 030405 (2008).

[13] Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Opt. Lett. 33,
1747 (2008); 33, 2173 (2008).

[14] H. Sakaguchi and B. A. Malomed, Phys. Rev. A 81, 013624
(2010).
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