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Motivated by recent proposals of “collisionally inhomogeneous” Bose–Einstein condensates (BECs), which
have a spatially modulated scattering length, we introduce a phase imprint into the macroscopic order parameter
governing the dynamics of BECs with spatiotemporal varying scattering length described by a cubic Gross–
Pitaevskii (GP) equation and then suitably engineer the imprinted phase to generate the modified GP equation,
also called the cubic derivative nonlinear Schrödinger (NLS) equation. This equation describes the dynamics of
condensates with two-body (attractive and repulsive) interactions in a time-varying quadratic external potential.
We then carry out a theoretical analysis which invokes a lens-type transformation that converts the cubic derivative
NLS equation into a modified NLS equation with only explicit temporal dependence. Our analysis suggests a
particular interest in a specific time-varying potential with the strength of the magnetic trap ∼1/(t + t∗)2. For
a time-varying quadratic external potential of this kind, an explicit expression for the growth rate of a purely
growing modulational instability is presented and analyzed. We point out the effect of the imprint parameter and
the parameter t∗ on the instability growth rate, as well as on the solitary waves of the BECs.
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I. INTRODUCTION

Since the realization of Bose–Einstein condensates
(BECs) trapped in optical lattices, intense experimental and
theoretical studies have been carried out in the fields of
bright and dark matter wave solitons, coherent structures,
nonlinear excitations of BEC matter waves, and modula-
tional instability (MI) [1–18]. Appearing in many nonlinear
dispersive systems [19–21], MI is a general feature of
continuum as well as of discrete nonlinear wave equations.
It indicates that, due to the interplay between nonlinearity and
the dispersive effects, a small perturbation on the envelope
of a plane wave may induce an exponential growth of
the wave amplitude, resulting in the carrier-wave breakup
into a train of localized waves [22]. In other words, MI
causes an exponential growth of small perturbations of a
carrier wave which is a result of the interplay between
dispersion and nonlinearity. Studies related to MI have
attracted much interest: Carr et al. [8] have studied analytically
and numerically the MI of a nonuniform initial state in
the presence of a harmonic potential in the context of a
mean-field approximation BEC. Some years ago, Rapti et al.
[12] examined the modulational and parametric instabilities
arising in a nonautonomous, discrete nonlinear Schrödinger
equation setup for a deep optical lattice in the BEC context;
Kourakis et al. [23] examined the MI for the collision
of two BECs in the absence of a three body interaction
potential. The evolution of matter waves in time-dependent
traps has been addressed, and the MI of a one-dimensional
(1D) BEC system in a time-dependent harmonic potential
has been investigated [24]. More recently, Mohamadou [25]
investigated the MI of BECs with a time-dependent com-
plicated potential. The MI of the Gross–Pitaevskii (GP)

equation with a time-varying harmonic potential in the
case of focusing nonlinearities has been investigated in
Ref. [18].

The MI for a Bose-Einstein condensate with two-body or
with both two- and three-body interatomic interactions has
been intensively investigated (cf. Refs. [12,18,23–25], for
example); in this work we investigate the MI for BECs using
the derivative cubic GP equation

i
∂φ

∂t
+

[
∂2

∂x2
+ Ṽ + g̃ |φ|2

]
φ + iβ̃

∂(φ2φ∗)

∂x
= 0 (1)

in which the derivative cubic terms represents the delayed
nonlinear response of the system. Equation of type (1) is well
known in plasma physics. It describes the evolution of small
but finite amplitude Alphén waves propagating quasiparallel
to a magnetic field in a low β plasma [26]. Ten years
ago, an equation of the same type was found to describe
the behavior of large-amplitude magnetohydrodynamic waves
propagating in an arbitrary direction with respect to the
magnetic field in a high β plasma [27]. Also in nonlinear
optics for the propagation of very short pulses the typical
Kerr nonlinearity has to be supplemented with a derivative
term [28]. In the absence of the external potential, i.e.,
when Ṽ = 0, Eq. (1) reduces to the well known integrable
derivative cubic nonlinear Schrödinger (NLS) equation in
nonlinear optics derived from the mixed NLS equation through
U(1)-gauge transformation [29]. The derivative cubic NLS
equation also arises as the envelope equation for a weakly
subcritical bifurcation to counterpropagating waves, which is
also of importance in the theory interaction behavior, including
complete interpenetration as well as partial annihilation, for
collision between localized solutions corresponding to a single
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particle and to a two particle state (cf. [30,31]). Naturally, two
questions arise: (1) How should one introduce a GP model
describing the impact of the cubic derivative nonlinearity
interactions on the condensates? (2) How far may the derivative
cubic term of the GP equation affect the MI of BECs?

The present work is motivated by the works of Refs. [18,25]
and by the lack of using the derivative cubic GP equation for
investigating the MI for BEC. Its main purpose is to answer
the above two questions. We first introduce a phase imprint
into the macroscopic order parameter governing the dynamics
of BECs with a spatiotemporal s-wave scattering length in
a time-dependent harmonic trapping potential described by
a cubic GP equation with distributed coefficients and then
engineer the imprinted phase suitably to generate a derivative
cubic GP equation of form (1) (which in the rest of the paper
is called the modified GP equation). The phase imprinting
technique is a relatively new control and analysis tool for
wave function engineering of BECs. This technique could be
extended to the control of wave function amplitude, with the
use of near-resonant laser frequencies to induce absorption.
The phase imprinting for a BEC consists of modifying the
phase distribution of the BEC, for example, by exposing it to
pulsed, off-resonant laser light with a given intensity pattern.
In this process, the atoms experience a spatially varying
light-shift potential and acquire a corresponding phase (cf.
Refs. [14,16,32] for more explanation). One of the advantages
of using the technique of phase imprinting for BECs is that
it does not affect the number of atoms of the condensate.
Second, we used the obtained modified GP equation to give
the simple treatment of MI for a single BEC. With the help
of linear stability analysis (LSA), the analytical expression of
the dispersion relation which is appropriate for investigating
the MI of constant amplitude of the (1 + 1)D single BEC
is established. Then, we obtain from the dispersion relation
the explicit expression for the growth rate of the instability
which allowed us to bring out the effect of derivative terms
on the MI. Finally, we present explicit, analytical solution to
describe the dynamics of a solitary waves for derivative cubic
GP equation with spatiotemporal s-wave scattering length in
a time-dependent harmonic trapping potential. Thus, the aim
of this paper is to investigate, via the derivative cubic GP
equation, the MI of the quasi-1D GP equation for the BEC
with spatiotemporal s-wave scattering length in time-varying
harmonic trapping potential.

The rest of the work is organized as follows: The basic
formalism is given in Sec. II. In Sec. III, a generalized phase
imprint transformation is used to modify a cubic GP equation
into a cubic derivative GP equation; here, we investigate the
MI of the cubic derivative NLS equation without external
potential. The MI of the modified GP equation is investigated
in Sec. IV. An attempt of finding analytical solitary-wave-like
solutions of the modified GP model is carried out in Sec. V,
and the main results are summarized in Sec. VI.

II. BASIC FORMALISM

The well-known Feschbach resonances are used to con-
trol the nonlinearities of matter waves by manipulating the
scattering length either in time or space or in time and
space, and have led to the proposal of many novel nonlinear

phenomena [4,6,33–35]. Theoretical studies have predicted
that a time-dependent modulation of the scattering length can
be used to stabilize attractive 2D BECs against collapse [36,37]
or create robust matter-wave breathers in 1D BECs [17,38].
It has been recently found that atomic matter waves exhibit
novel features under the influence of a spatially varying
scattering length and, consequently, a spatially varying
nonlinearity [39]. More recently, the interplay of nonlinear
and linear potentials has been examined in both continuum and
discrete settings [40].

The evolution of the macroscopic wave function u(x,t)
of the condensates is described by an inhomogeneous NLS
equation called a mean-field GP equation. The inhomogeneity
can be attributed to both the trapping potential and the
nonlinear interaction between the atoms in the condensates.
When the transverse confinement is too tight to allow scattering
to the excited states of the harmonic trap in the transverse
direction, the effective 1D GP equation in an expulsive
harmonic trap is written as [17,41–46]

i
∂u(x,t)

∂t
+

[
∂2

∂x2
+ g(x,t) |u(x,t)|2 + V (x,t)

]
u(x,t) = 0.

(2)

In this equation, time t and coordinate x are measured in
units 2/ω⊥ and a⊥, respectively, where a⊥ = (h̄/mω⊥)1/2

and a0 = (h̄/mω0)1/2 are linear oscillator lengths in the
transverse and cigar-axis directions, respectively. Here ω⊥ is
the harmonic oscillator (or radial-oscillation) frequency and a⊥
is the corresponding linear oscillator length (in the transverse
direction). The numbers ω0 and a0 denote the axial-oscillation
frequency and the corresponding linear oscillator length,
respectively, both in the cigar-axis direction. Here, m is the
atomic mass. The spatiotemporal parameter g(x,t) of the cubic
nonlinearity represents the two-body interatomic interaction
coefficient, negative for repulsive interatomic interactions (or
defocusing nonlinearities) and positive for attractive ones
(focusing nonlinearities). The normalized spatially and tem-
porally modulated coefficient parameter g(x,t) is proportional
to the collision scattering length [36]. The sign and magnitude
of g(x,t) can both be changed using Feshbach resonances,
which make it possible (in principle) to manipulate the sign
and strength of atomic interactions [33]. It is also possible to
vary the scattering length and consequently the nonlinearity
coefficient g(x,t) in space and time by tuning an external field
in the vicinity of a Feshbach resonance [39]. The macroscopic
wave function u(x,t) of the condensate is normalized in units√

8πg0h̄

mω⊥
. Equation (2) possesses two integrals of motion: the

normalized number of atoms N = ∫ +∞
−∞ |u(x,t)|2 dx, and the

Hamiltonian. In Eq. (2), V (x,t) is the external potential. In
the context that Eq. (2) describes the evolution of the wave
function of a quasi-one-dimensional cigar-shaped BEC, we
will consider the time-varying harmonic potential

V (x,t) = −α(t)x2, (3)

which is relevant, in particular, to experimental setups in which
the (magnetic) trap is strongly confined in the two directions,
while it is much shallower in the third one [17,47]. The
strength of the magnetic trap α(t) may be negative (confining
potential) or positive (repulsive potential). The prefactor α(t)
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is typically fixed in current experiments, but adiabatic changes
in the strength of the trap are experimentally feasible, hence
we examine the more general time-dependent case. It should
be noted that in the case of a cigar-shaped BEC in which
we are interested, a self-consistent reduction of a 3D GP
equation to a 1D NLS equation with external potential can be
provided by means of a multiple-scale expansion [48] which
exploits a small parameter δ2 = (Nas/a0)α � 1, where as is
the s-wave scattering length. The parameter δ indicates the
relative strength of the two-body interactions as compared to
the kinetic energy of the atoms. In the case we are interested
in, in this work, when the finite-size effects along the cigar
axes are of primary interest, the same small parameter defines
a strong confinement cross section and to the cigar axis by the
condition a⊥/a0 ∼ δ

√
α. It is important to note, for example,

that, for a BEC of N = 104 of 23Na atoms (with as ≈ 2.75 nm)
having characteristic sizes a0 = 300 μm and a⊥ = 10 μm, one
gets α = 0.11 and δ2 	 0.01.

In the above mentioned reduction, the rescaled mean-field
wave function u(x,t) of the condensate that appears in Eq. (2)
is connected to the original order parameter 	(r,t) through
the relation

	(r,t) = δ

a⊥
√

as

exp(−iω⊥t) exp

(
− r2

2a2
⊥

)
u

(
δx

a⊥
,
δ2ω⊥

2
t

)
,

(4)

where r = (y,z) and ω⊥ is the harmonic frequency corre-
sponding to the cross section, and physical space and time
coordinates (x,t) are used. In Eq. (2), the potential V (x,t) is
measured in units of h̄2a2

⊥/8m, while the rescaled mean-field
wave function u(x,t) is of order 1: u(x,t) = O(1). Under the
above condition, g(x,t) = g0 in Eq. (2) coincides with the
opposite sign of as : g0 = −sgn(as) ∈ {−1,+1}. Henceforth,
we work, in the case of constant g(x,t), with g0 = −sgn(as),
which illustrates the focusing (+1) or defocusing (−1) nature
of the nonlinearity (which represents the attractive or repulsive
nature of the interatomic interactions, respectively). In the
case of a spatiotemporal two-body interatomic interaction
coefficient, in this work we use a first degree polynomial
in x with time-dependent coefficients modulated coefficient
parameter

g(x,t) = xg̃(t) + g̃0(t), (5)

where g̃(t) and g̃0(t) are two real functions of time t . When
g̃(t) ≡ 0, Eq. (5) gives a time-dependent s-wave scattering
length, g(x,t) = g̃0(t), which has been used in many works. In
the present paper, we concentrate ourselves on the case when
g̃(t) �= 0.

III. MODIFIED GP EQUATION AND MI OF THE CUBIC
DERIVATIVE NLS EQUATION WITHOUT EXTERNAL

POTENTIAL

In this section, we first apply the phase imprinting technique
to reduce the cubic GP equation (2) with external potential (3)
into a derivative cubic GP equation. Then we investigate, in
absence of external potential, the MI of constant coefficients
cubic derivative NLS equation.

A. Phase imprinting technique: Modified GP equation

To introduce the modified GP equation which describes
the impact of cubic derivative terms on the condensates, we
consider an additional phase imprint on the order parameter
u(x,t) to generate a new order parameter ψ(x,t) as [46]

u(x,t) = ψ(x,t) exp [−iθ (x,t)] , (6a)

∂θ/∂x = −3β(t) |ψ |2 , (6b)

∂θ/∂t = iβ(t) [ψ∂ψ∗/∂x − ψ∗∂ψ/∂x] + 9β2(t) |ψ |4 . (6c)

Here, θ (x,t) is a spatiotemporal phase imprint and β(t) is a
time-dependent real function, and ψ∗ stands for the complex
conjugate of ψ . Inserting ansatz (6a) into Eq. (2) and using
Eqs. (6b)–(6c) yield

i
∂ψ

∂t
+

[
∂2

∂x2
+ V (x,t) + g(x,t) |ψ |2

]
ψ

+ 4iβ(t)
∂(ψ2ψ∗)

∂x
= 0. (7)

It is important to notice that the last term in Eq. (7) contains two
terms, |ψ |2 ∂ψ∗/∂x and |ψ |2∂ψ/∂x; in fact, ∂(ψ2ψ∗)/∂x =
ψ2∂ψ∗/∂x + 2 |ψ |2 ∂ψ/∂x. The spatiotemporal phase im-
print θ (x,t) which arises from Eq. (6b) can be realized exper-
imentally by giving an instantaneous exposure of condensates
to electromagnetic fields while the time-dependent phase
imprint originates from Eq. (6c) and one has to determine how
this can be experimentally implemented [46]. The functional
imprint parameter β(t) represents the relative magnitudes of
the nonlinear dispersion term. When α(t) = 0 and β(t) = β

are real constants, Eq. (7) reduces to the well known derivative
cubic nonlinear Schrödinger equation, derived in the contexts
of binary fluid convection and nonlinear electrical transmission
lines [49,50]. It should be noted that transformations (6a)–(6c)
do not affect the number N of atoms of the condensate.

It is obvious that Eq. (7) under the condition β(t) = 0
reduces to the cubic GP Eq. (2) involving two-body interatomic
interactions alone and hence we call Eq. (7) the “derivative
cubic” or modified GP equation. The last term 4iβ(t) ∂(ψ2ψ∗)

∂x
in

this equation represents the delayed nonlinear response of the
system which offsets the modulation generally arising due to
three-body interactions. This last term allows the investigation
of the MI of BECs described by the GP equation (2) with
potential (3) for both focusing and defocusing nonlinearities.

B. MI of constant coefficients cubic derivative NLS equation
without external potential

In this section, we investigate the modulational instability
of the constant coefficients cubic derivative NLS (7) without
external potential:

i
∂ψ

∂t
+

[
∂2

∂x2
+ g0 |ψ |2

]
ψ + 4iβ

∂ψ2ψ∗

∂x
= 0. (8)

It is obvious that for every real constant φ0 and q, the function

ψ(x,t) = φ0 exp
{
iqx − i

[
q2 + (4βq − g0) φ2

0

]
t
}

(9)

is a constant-amplitude solution of Eq. (8). According to linear
stability analysis (LSA), we slightly perturb solution (9) as
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follows:

ψ(x,t) = [φ0 + ε(x,t)] exp
{
iqx − i

[
q2 + (4βq − g0) φ2

0

]
t
}
,

(10)

where ε(x,t) is a complex function satisfying the condition
|ε(x,t)| � |φ0| , i.e., very small when compared with φ0.
Substituting ansatz (10) into Eq. (8), we obtain the first order
approximation

i
∂ε

∂t
+ ∂2ε

∂x2
+ 2i

(
q + 4βφ2

0

) ∂ε

∂x
+ 4iβφ2

0
∂ε∗

∂x

+ φ2
0 (g0 − 4βq) (ε + ε∗) = 0. (11)

Seeking the perturbation ε(x,t) in the form

ε = U1 exp [i (Qx − t)] + U ∗
2 exp[−i(Qx − ∗t)] (12)

and requesting that |U1| + |U2| > 0, we find the dispersion
relation connecting the wave number Q and the frequency 

of the perturbation to be of the form[
 − 2Q

(
q + 4βφ2

0

)]2

= Q2
[
φ2

0

(
16β2φ2

0 + 8qβ − 2g0
) + Q2

]
. (13)

It follows from the dispersion relation (13) that the instability
region for the cubic derivative NLS, in the absence of an
external potential, appears for perturbation wave numbers,

Q2 < 2φ2
0

(
g0 − 8β2φ2

0 − 4qβ
)
, (14)

and, in particular, for both focusing and defocusing non-
linearities with a suitable choice of β = β(g0,q,φ0). In
fact, condition (14) is valid as soon as β ∈ Dβ =](−2q −
2
√

q2 + 2g0φ
2
0 )/8φ2

0 ,(−2q + 2
√

q2 + 2g0φ
2
0 )/8φ2

0[. This as-
sumes that q2 + 2g0φ

2
0 > 0, which is satisfied for every real

number q and φ0 for focusing nonlinearities (g0 = +1); in

the case of defocusing nonlinearities (g0 = −1), this last in-
equality is satisfied only for q and φ0 that satisfy the condition
q2 − 2φ2

0 > 0. Henceforth, we call condition q2 + 2g0φ
2
0 > 0

the necessary condition of the MI of the plane-wave solutions
of the cubic derivative NLS equation in the absence of external
source; any parameter β in the above interval will be called
the imprint parameter of the MI. For focusing nonlinearities,
the case where β = 0 has been well investigated in Ref. [18].
From this point onward, we only work with β �= 0.

Under condition (14), the growth rate (gain) of modu-
lational instability (for the NLS equation without external
potential) is given by the relation

|Im | = |Q|
√(

2g0 − 16β2φ2
0 − 8qβ

)
φ2

0 − Q2, (15)

where β is any imprint parameter of the MI. It is evident that the
function B(β) = 2g0 − 16β2φ2

0 − 8qβ reaches its maximal
value in Dβ at the critical point βc = − 1

4
q

φ2
0
, which does

not depend on g0. The presence of the imprint parameter β

significantly modifies the instability domain and brings inter-
esting effects. In fact, first it makes possible the investigation
of the MI of cubic derivative NLS equation in the case of
defocusing nonlinearities (g0 = −1). Second, different values
of the imprint parameter β of the MI correspond to different
instability diagrams. In Fig. 1, we plot the instability growth
rate according to Eq. (15) for different values of β with φ0 = 1
and q = 2. According to this figure, we have two scenarios,
depending on whether β ∈ Dβ is above the critical value
(β � βc) or below the critical value (β � βc). In the top panel
of Fig. 1 where β is above the critical value (β � βc), we can
easily realize that the gain decreases with |β|, while in the
bottom panel where β is below the critical value (β � βc),
the gain increases when |β| decreases. Thus, the imprint
parameter β of the MI, when taken above the critical value

FIG. 1. (Color online) Instability growth rate according to Eq. (15) for three values of the imprint parameter β of the MI with φ0 = 1 and
q = 2. The top panel uses three values of β > βc = −0.5: β = −0.4 (solid line), −0.3 (dashed line), and −0.2 (dash-dotted line); the bottom
panel uses three values of β < βc = −0.5: β = −0.8 (solid line), −0.7 (dashed line), and −0.6 (dash-dotted line). The left and the right panels
correspond to focusing and defocusing nonlinearities, respectively. All quantities are dimensionless.
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βc softens the instability, and, on the other hand, it relatively
enhances the instability when taken below the critical value
βc. Comparing the left panel (focusing nonlinearities) with the
right one (defocusing nonlinearities), it appears that the MI is
stronger in the case of focusing nonlinearities.

IV. MI OF DERIVATIVE CUBIC NLS EQUATION WITH
QUADRATIC EXTERNAL POTENTIAL

The external potential (3) appears as the most physically
relevant example of an external potential in the BEC case and
gives the harmonic confinement of the atoms by experimen-
tally used magnetic traps [14,47]. The purpose of the present
section is to investigate the MI of the modified GP equation (7)
via a derivative cubic NLS equation with quadratic external
potential that we have derived with the help of a generalized
lens transformation.

A. Generalized lens transformation and the derivative cubic
NLS equation with external potential

In order to examine the MI related properties in the
case when the external potential is present, we first perform
a modified lens-type transformation (generalized of lens
transformation) of the form

ψ(x,t) = 1

�(t)
φ exp[if (t)x2 + η(t)]. (16)

Here, T = T (t), �(t) and f (t) are three time-dependent real
functions, and X(x,t) = x�−1(t) is a spatiotemporal real func-
tion. This kind of transformation has been used for deriving
atomic solitons of Bose–Einstein condensates consisting of
sodium and rubidium atoms when one starts from the known
optical soliton solution of the NLS equation in the absence
of external potential [51]. To preserve the scaling, we follow
Refs. [52,53] and choose

dT

dt
= 1

�2(t)
. (17)

By inserting (16) into Eq. (7) and taking expressions (5) for
g(x,t) and (17) into account, the resulting equations can be
satisfied if

df

dt
+ 4f 2 + α = 0, (18a)

d�

dt
− 4f (t)� = 0, (18b)

dη

dt
+ 2f (t) − 1

�

d�

dt
= 0, (18c)

β(t) = g̃(t)f −1(t)/8. (18d)

Solving Eqs. (18b) and (18c) in terms of f (t) yields

�(t) = �(0) exp

(
4
∫ t

0
f (s) ds

)
, (19a)

η(t) = 2
∫ t

0
f (s)ds + η(0). (19b)

The problem of finding the time dependence of the parameters
T (t) and �(t) is then reduced to the solution of Riccati
equation (18a). To solve Eq. (18a), one needs a particular

solution with the help of which the equation can be transformed
into Bernoulli equation.

Under conditions (17)–(18d), the equation for φ(X,T )
becomes

i
∂φ

∂T
+ ∂2φ

∂X2
+ λ0 |φ|2 φ + iλ

∂(φ2φ∗)

∂X
= 0, (20)

where

λ0 = g̃0(t) exp[2η(t)], λ = 4
β(t)

�(t)
exp[2η(t)]. (21)

Generally, λ0 and λ are real and depend on the time t .
Thus, we retrieve the cubic derivative NLS equation with
time-dependent coefficients. It is important to notice from
ansatz (16) that η(t) influences the number of atoms N in the
condensate. In fact, using the phase imprint ansatz (6a)–(6c)
and the lens transformation (16) we have N = ∫

R |u|2 dx =
exp[η(t)]

∫
R |φ|2 dX. According to Eq. (19b), exp[η(t)] =

exp[2
∫ t

0 f (s)ds + η(0)], which means that the number of
atoms in the condensate grows exponentially if f (t), solution
of the Riccati equation (18a), is positive, and will decrease
exponentially if f (t) is negative. We can then conclude that
a positive f (t) is associated with the feeding of atoms in the
condensate, while the negative f (t) corresponds to the loss of
atoms in the condensate. It is obvious that the function f (t)
depends on the strength of the magnetic trap α(t), while its sign
is independent of that of α(t). For example, if α(t) = −α4

0 is a
negative constant (which corresponds to a confining potential),
then f (t) = ±α2

0/2 will be two particular solutions of the
Riccati equation (18a). If working in the presence of feeding
(loss) of atoms in the condensate, one may then work with
positive (negative) f (t).

B. Investigation of the MI for the derivative cubic NLS equation

In this subsection, we investigate the MI for the cubic
derivative NLS equation (20). We start with the derivation
of the analytical expression of the dispersion relation which
is appropriate for investigating the MI of constant amplitude
wave solution of Eq. (20). Then, we separately analyze the
cases of derivative cubic NLS equation (20) with constant
coefficients and with distributed coefficients.

1. Linear stability analysis and criterion of the MI for the cubic
derivative NLS

To investigate the MI for the cubic derivative NLS equa-
tion (20), we follow the LSA technique and look for an ansatz
in the form

φ = [φ0 + ε] exp

[
−iQX − i

∫ T

0
(υ) dυ

]
, (22)

where (T ) is a real time-dependent function representing the
nonlinear frequency shift, φ0 is a real constant, Q is the wave
number of the carrier, and ε(X,T ) is a small perturbation of
the wave amplitude (|ε| � 1). Substituting ansatz (22) into
Eq. (20) and linearizing δφ and its complex conjugate ε∗, we
obtain, after taking

(T ) = Q2 − λ0(t)φ2
0 − Qφ2

0λ(t), (23)
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that ε satisfies the linear equation

i
∂ε

∂T
+ ∂2ε

∂X2
+ 2i

(
λφ2

0 − Q
) ∂ε

∂X
+ iλφ2

0
∂ε∗

∂X

+ φ2
0 (λ0 + λQ) (ε + ε∗). (24)

Let us seek the perturbation ε(X,T ) in the form

ε = U1 exp

(
iKX − i

∫ T

0
ω(υ) dυ

)

+U ∗
2 exp

(
−iKX + i

∫ T

0
ω∗(υ) dυ

)
, (25)

where KX − ∫ T

0 ω(υ) dυ is the modulation phase in which
K and ω are the wave number and the complex frequency of
the modulation waves, respectively, and U1 and U2 are two
complex numbers. The MI may set in provided the complex
frequency ω has a non-null imaginary part. Inserting Eq. (25)
into Eq. (24) and requesting that |U1| + |U2| > 0 yield the
time-dependent dispersion relation[

ω − 2K
(
λφ2

0 − Q
)]2

− K2
[
K2 + φ2

0

(
λ2φ2

0 − 2Qλ − 2λ0
)] = 0. (26)

For ω to have a non-null imaginary part, it is necessary and
sufficient that

K2 + φ2
0

(
λ2φ2

0 − 2Qλ − 2λ0
)

< 0. (27)

Inequality (27) is the criterion of the MI for the cubic derivative
NLS equation (20). Under the MI criterion (27), the local
growth rate (gain) of modulational instability is given by the
relation

|Im ω(t)| = |K|
√

φ2
0

[
2Qλ(t) + 2λ0(t) − λ2(t)φ2

0

] − K2.

(28)

2. MI for the derivative cubic NLS equation with constant
coefficients

A particularly simple and interesting case is when λ0 and
λ are constants. Then from system (17)–(18d), it follows that
β(t) must be a constant and g̃0(t) must satisfy the nonlinear
second order ordinary differential equation

y
d2y

dt2
− 2

(
dy

dt

)2

− 4α(t)y2 = 0. (29)

In the case of constant λ0 and λ, the problem of finding
the time dependence of the parameters then reduces to solve
Eq. (29). The simplest way to work with Eq. (29) is to
solve it for α(t) when g̃0(t) is known. For example, any
g̃0(t) = ã0 exp

(̃
λt

)
(see Ref. [46]) corresponds to constant

α(t) = −̃λ2/4.

As it is indicated in Ref. [18], one of the most interesting
cases in the setting with the harmonic potential is the one with
the inverse square dependence (of the trap amplitude, for a
given x) on time of equation

α(t) = A(t + t∗)−2, (30)

for an arbitrary nonzero real constant A. Inserting Eq. (30) into
Eq. (29) yields

g̃0(t) = 4λ0β

λ�(0)

(
t + t∗

t∗

)m

, m = −1 ± √
1 − 16A

2
. (31)

For g̃0(t) to be a real function of time t , the parameter
A of the strength of the magnetic trap α(t) must satisfy
the condition A < 1/16. This condition on A allows us to
investigate the MI of the cubic derivative NLS equation
for both confining potential (A < 0) and repulsive potential
(A > 0). In Eq. (30), t∗ is an arbitrary constant which
essentially determines the “width” of the trap at time t = 0. It is
important to notice that t∗ < 0 describes a BEC in a shrinking
trap, while the case t∗ > 0 corresponds to a broadening
condensate. Inserting Eq. (30) into system (18a)–(18d), all
the time-dependent parameters are explicitly defined; in par-
ticular, we have T (t) = t∗ (2m + 1)−1 �−2(0)[( t+t∗

t∗ )2m+1 − 1].
To guarantee the variation of T from zero to infinity, we
must take m = (−1 + √

1 − 16A )/2 in the case of broadening
condensates, and m = (−1 − √

1 − 16A)/2 for BECs in a
shrinking trap. In the latter case, we focus our study on the
case where t goes from zero to −t∗; this avoids a singularity at
t = −t∗ and guarantees the variation of T from zero to +∞.

In the case of constant λ0 and λ, the growth rate (gain) of
modulational instability is time independent, but depends on
the imprint parameter β:

|Im ω(β)| = |K|
√

φ2
0

[−λ2(β)φ2
0 + 2Qλ(β) + 2λ0

] − K2.

(32)

It is evident that the variation of the growth rate, related to the
imprint parameter β, may significantly modify the instability
domain and bring interesting effects. In fact, to different
values β correspond different instability diagrams, depending
on whether λ = λ(β) is positive or negative. Negative λ(β)
softens the instability, while positive one [λ(β) > 0] relatively
enhances the instability. This behavior is shown in Fig. 2
through the MI gain provided by Eq. (32), as a function of
the perturbation wave number K , for three values of negative
λ(β) [Fig. 2(a)] and three values of positive λ(β) [Fig. 2(b)].
In Fig. 2(a), obtained with negative λ(β), it is easily seen
that the gain decreases with the imprint parameter λ, while
in Fig. 2(b) with positive λ(β), the gain increases when the
imprint parameter λ increases.

We can summarize the result for constant λ0 and λ

as follows. For the MI of constant amplitude plane-wave
solutions φ = φ0 exp(−iQX − i[Q2 − λ0φ

2
0 − Qφ2

0λ]T ), it
is necessary and sufficient that the wave number K of the
modulation waves satisfies the MI criterion (27). Moreover,
for given φ0, Q, and λ0, the imprint parameter β should be
chosen such that λ2(β)φ2

0 − 2Qλ(β) − 2λ0 < 0.

3. MI for the derivative cubic NLS equation with
time-dependent coefficients

Let us now look at the case when at least one of λ0 and
λ is not constant. As in the previous case, if we consider
the harmonic potential with the inverse square dependence on
the time trap amplitude (30) with A < 1/16, we found as a
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FIG. 2. (Color online) Instability growth rate according to Eq. (32) for three positive values and three negative values of the imprint parameter
λ(β). (a) Case of negative values of λ(β) with λ(β) = −0.125, −0.25, and −0.50. (b) Case of positive values of λ(β) with λ(β) = 0.125, 0.25,
and 0.50. The other parameters are Q = 1, φ0 = 1, and λ0 = 3/2.

particular solution of Riccati equation (18a)

f (t) = B(t + t∗)−1, B = 1 ± √
1 − 16A

8
. (33)

With the help of the particular solution (33), the general
solution of Eq. (18a) reads

f (t) = 1 − 4B + CB (1 − 8B) (t + t∗)8B−1

C (1 − 8B) (t + t∗)8B + 4(t + t∗)
, (34)

where C = 1−4B−4f (0)t∗

[f (0)(1−8B)(t∗)8B−B(1−8B)(t∗)8B−1] . Using (30)

and (33), we obtain the time dependence of the following
parameters:

�(t) = �(0)

(
t + t∗

t∗

)4B

, (35a)

η(t) = 2B ln

∣∣∣∣ t + t∗

t∗

∣∣∣∣ + η(0), (35b)

β(t) = g̃(t)(t + t∗)

8B
, (35c)

T (t) = 1

�(0) (1 − 4B)

[
(t + t∗)

(
t∗

t + t∗

)4B

− t∗
]
. (35d)

It follows from system (35a)–(35d) that β(t) is no longer
a functional parameter, but depends of g̃(t). In the case of
positive t∗ (broadening condensate), it is reasonable to take B

such that 1 − 4B should be positive; a proper choice of �(0)
will then ensure a variation of T (t) from zero to +∞. For
BECs in a shrinking trap (t∗ < 0), a good choice of �(0) and

B > 1/4 and working with 0 � t < t∗ will avoid singularity
at t∗ and ensure a variation of T (t) from zero to +∞.

In the case at least one of λ0 and λ is not constant, the
growth rate (gain) of modulational instability (28) is time
dependent. In this case, the variation of the growth rate,
related to the sign of t∗, i.e., on whether t∗ describes a BEC
in a shrinking trap (t∗ < 0) or corresponds to a broadening
condensate, may significantly affect the instability domain and
bring new effects. Indeed, to different signs of t∗ correspond
different instability diagrams. Negative t∗ relatively enhances
the instability, while positive t∗ softens the instability. This
behavior is shown in Fig. 3 through the MI gain provided by
Eq. (28), as a function of the perturbation wave number K ,
for three negative values of t∗ [plot (a)] and three positive
values of t∗ [plot (b)]. In Fig. 3(a) corresponding to BECs
in a shrinking trap (t∗ < 0), one easily realizes that the gain
increases with t∗, while in Fig. 3(b) obtained for broadening
condensates (t∗ > 0), the gain decreases as t∗ increases. The
plots in this figure are obtained with g̃0(t) = 2 exp (0.5t) and
g̃(t) = 2 exp (−t).

From our analysis, it is clear that the simplest and most
interesting case in the setting with a time-dependent harmonic
potential is the one with the inverse square dependence (of
the trap amplitude, for a given x) on time of Eq. (30) with
A < 1/16. In this case, the modified lens transformation
suggests the equivalence with a cubic derivative NLS equation.
In this special case of interest, the coefficients of the cubic
derivative NLS equation are either constant or time dependent,
suggesting that the frequencies of the modulation waves are
either constant or time dependent.

FIG. 3. (Color online) Instability growth rate according to Eq. (28) for three positive values and three negative values t∗ at time t = 0.
(a) Case of BECs in a shrinking trap (t∗ < 0) with t∗ = −0.6, −0.4, and −0.2. (b) Case corresponding to broadening condensates (t∗ > 0)
with t∗ = 0.1, 0.2, and 0.4. The other parameters are Q = 1, φ0 = 1, A = −1, �(0) = 1, η(0) = 0, g̃0(t) = 2 exp (0.5t), g̃(t) = 2 exp (−t),
B = (1 + √

17 )/8 for plot (a) and B = (1 − √
17 )/8 for plot (b).
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V. SOLITARY-WAVE SOLUTIONS OF THE EFFECTIVE 1D
GP EQ. (2) WITH SPATIOTEMPORAL POTENTIAL (3)

Due to the suggested analogy with a cubic derivative
NLS with a constant coefficient gain where the modulational
stability analysis has been completely performed, the most
interesting case of the spatiotemporal potential (3) is the case of
α(t) = A(t + t∗)−2 with A < 1/16, which we now investigate
analytically. We limit ourselves to constant λ0 and λ in Eq. (20)
and apply the F expansion method to find a large class of
solitary-wave solutions.

We are mainly interested in analytical solitary-wave so-
lutions of constant coefficients derivative cubic NLS equa-
tion (20). Conditions that β(t) should be a constant and g̃0(t)
should be a solution of Eq. (29) are the integrability condition
of Eq. (2). In order to find a large class of solitary-wave
solution, the F -expansion technique is used.

In order to find a large class of solitary-wave solu-
tion of Eq. (20) with constant coefficients, we perturb the
Stokes wave solution φ(X,T ) = φ0 exp[−ik0X + i(λ0φ

2
0 +

k0λφ2
0 − k2

0)T ] of Eq. (20) to obtain its solitary-wave solutions.
Writing a solution of Eq. (20) in polar form,

φ(X,T ) = R(X,T ) exp [i�(X,T )] , (36)

we obtain the following system for the definition of the real
functions R(X,T ) and �(X,T ):

−R∂�/∂T + ∂2R/∂X2 − R (∂�/∂X)2

− λR3∂�/∂X + λ0R
3 = 0,

(37)
∂R/∂T + 2 (∂�/∂X) (∂R/∂X)

+R∂2�/∂X2 + 3λR2∂R/∂X = 0.

Now, we use the above Stokes solution to perturb system (37)
as follows:

R(X,T ) = φ0 + ρ(z = X − υT ),
(38)

�(X,T ) = −k0z + ϕ(z) + (
λ0φ

2
0 + λk0φ

2
0 − k2

0 − k0υ
)
T ,

υ being an arbitrary constant (traveling wave velocity).
Inserting (38) into (37) and integrating the resulting second
equation yield

dϕ

dz
= C0

(φ0 + ρ)2 + (υ + 2k0)

2
− 3λ

4
(φ0 + ρ)2 , (39)

where C0 is a constant of integration. Inserting the expression
for dϕ

dz
into the first resulting equation yields(

dζ

dz

)2

= α̃ζ 4 + 4β̃ζ 3 + 6γ̃ ζ 2 + 4̃δζ + ε̃ = f (ζ ), (40)

where

ζ (z) = [φ0 + ρ(z)]2 ,

α̃ = −λ2,

β̃ = (λυ − 2λ0) /4,

γ̃ = [
4λ0φ

2
0 + 2λ

(
2k0φ

2
0 − C0

) − 4υk0 − υ2 − 4k2
0

]
/6,

δ̃ = const,

ε̃ = −4C2
0 . (41)

It is important to notice that δ̃ and C0 are two arbitrary real
constants (constants of integration).

It is known since 1865 (see Ref. [54], p. 454]) that solutions
to Eq. (40) are given in terms of Weierstrass’ elliptic function
℘(z; g2,g3) (see Ref. [55], pp. 4–16]) by

ζ (z) = ζ0 +
√

f (ζ0) d℘(z;g2,g3)
dz

+ f ′(ζ0)
2

[
℘(z; g2,g3) − 1

24f ′′(ζ0)
] + 1

24f (ζ0)f ′′′(ζ0)

2
[
℘(z; g2,g3) − 1

24f ′′(ζ0)
]2 − 1

48f (ζ0)f (IV )(ζ0)
, (42)

where ζ0 is an arbitrary real constant, not necessarily a zero of
the polynomial f (ζ ) and f ′ = df/dζ . The invariants g2 and
g3 of the function ℘(z; g2,g3) are related to the coefficients of
f (ζ ) according to Ref. [54]

g2 = α̃ε̃ − 4β̃ δ̃ + 3γ̃ 2,
(43)

g3 = α̃γ̃ ε̃ + 2β̃γ̃ δ̃ − α̃δ̃2 − γ̃ 3 − ε̃β̃2.

The so-called discriminant � of Weierstrass’ elliptic function
℘(z; g2,g3) (see Ref. [56], p. 44])

� = g3
2 − 27g2

3 (44)

is suitable to classify the behavior of the solution ζ (z) and to
discriminate between periodic and solitary-wave-like solutions
[55]. If � = 0, g2 � 0, and g3 � 0, ζ (z) is solitary-wave-like
and is given by

ζ (z) = ζ0 + f ′(ζ0)

4
[
e1 − 1

24f ′′(ζ0) + 3e1cosech2(
√

3e1 z)
] ,

if e1 > 0, (45a)

ζ (z) = ζ0 + f ′(ζ0)z2

4
[
1 − f ′′(ζ0)

24 z2
] , if e1 = 0, (45b)

where e1 = 3
√−g3. Because δ̃ and C0 are two arbitrary

constants of integration, we can, for simplicity, choose δ̃ and C0

so that either δ̃ = ε̃ = 0 or δ̃ �= 0, ε̃ < 0 and g2 = g3 = 0. In
both cases, we have g2 � 0,g3 � 0, and � = 0. Then Eq. (45a)
defines solitary-wave-like solutions if and only if γ̃ > 0 and
2β̃2 − 3α̃γ̃ � 0, while Eq. (45b) describes the intensity of
the algebraic solitary waves if f ′′(ζ0) < 0. According to
the definition of ζ (z) by system (41), the physical solution
(45a) must be non-negative. It is important to mention that a
solution ζ (z) given by Eq. (45a) is said to be physical if it
is real and bounded. Considering the phase diagram of f (ζ ),
Refs. [57–60], one obtains conditions, expressed in terms of
the coefficients of the basic equation, that determine physical
solutions [see Fig. 4, obtained from Refs. [57–59] and showing
the phase diagrams associated to real and bounded solutions
if either δ̃ = ε̃ = 0 (left plots) or g2 = g3 = 0 (right plots)]. It
is important to notice that physical solutions that are obtained
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FIG. 4. (Color online) Phase diagrams associated to real and bounded solutions when either δ̃ = ε̃ = 0 or δ̃ �= 0, ε̃ < 0, and g2 = g3 = 0
(for more explanation, cf. Refs. [57] for the right plots and [59] for left plots).

from the phase diagrams are just possible solutions for our
problem. In fact, the solitary-wave solutions that are in our
interest must be both physical and non-negative. Thus, we
are interested only in non-negative physical solutions. In what
follows, we give examples of solitary-wave solutions when
either δ̃ = ε̃ = 0 or δ̃ �= 0, ε̃ < 0, and g2 = g3 = 0.

A. Examples of solitary-wave solutions under conditions
˜δ = ε̃ = 0

According to Ref. [59], we have the following physical
solitary-wave-like solutions when δ̃ = ε̃ = 0:

ζ±(z) =
γ̃ [2β̃ ±

√
4β̃2 − 6α̃γ̃ ]

[
3γ̃ 2 + (γ̃ 2 − 1) cosh2

(√
3
2 γ̃ 3 z

)]
[−3α̃γ̃ 3 + (4β̃2 ± 2

√
4β̃2 − 6α̃γ̃ − α̃γ̃ (5 + γ̃ )2) cosh2

(√
3
2 γ̃ 3 z

)] . (46)

Solutions (46) correspond to the two simple roots of the
polynomial f (ζ ) (of course, when 4β̃2 − 6α̃γ̃ > 0) and are
represented by the phase diagrams (b)–(d) and (f)–(h) in Fig. 4
(for more details, see Ref. [59]).

Let us now investigate the conditions of non-negativity of
solutions (46). Here, we distinguish two cases, namely, the
case when γ̃ = 1 and the case when 0 < γ̃ �= 1. It is obvious
that case γ̃ = 1 is associated only to the bright solitary-wave
solution.

(A) If γ̃ = 1, solutions (46) will be non-negative if
and only if α̃(2β̃2 ±

√
4β̃2 − 6α̃ − 18α̃)−1 < 2/3 and (2β̃ ±√

4β̃2 − 6α̃ )(2β̃2 ±
√

4β̃2 − 6α̃ − 18α̃) > 0.
An example of bright solitary-wave-like solution is ob-

tained with the parameters λ0 = 1, φ0 = 1, υ = 0.5, k0 = 1,
and λ = 8.25/4. With this set of parameters, ζ+(z) satisfies
all the needed conditions (real, bounded, and non-negative).
Figures 5–7, respectively, show the effect of t∗, A, and β on
the density |u(x,t)|2 at x = 3 of the wave function u(x,t) asso-
ciated with bright solitary-wave-like solutions; here, we used
�(0) = 1. For these three figures, the plots of the left and right
panels correspond, respectively, to broadening condensates
(t∗ > 0) and BECs in a shrinking trap (t∗ < 0), while the plots
of the top and bottom panels correspond to confining potential

(A < 0) and repulsive potential (A > 0), respectively. For
x = 3, Fig. 5 shows the time evolution of the density |u(x,t)|2
for three different values of t∗. As it is easily seen from this
figure, the density amplitude in the case of confining potential
decreases as t∗ increases for broadening condensates, but
increases with t∗ for BECs in a shrinking trap. In the case
of repulsive potential, the density amplitude increases with
t∗ for both broadening condensates and BECs in a shrinking
trap. Figure 6 depicts the density |u(x,t)|2 at x = 3 for three
different values of A. The plots of this figure show that for both
confining potential (top plots) and repulsive potential (bottom
plots), the amplitude of the density decreases as A increases;
this happens for both broadening condensates (left plots) and
BECs in a shrinking trap (right plots). It is seen from the plots
in Fig. 7 where the density |u(x,t)|2 at x = 3 is depicted for dif-
ferent values of β that independently of the sign of A (confining
potential or repulsive potential) and of the sign of t∗ (broad-
ening condensates or BECs in a shrinking trap), the wave
amplitude decreases as the imprint parameter β increases.

(B) If 0 < γ̃ �= 1, then solutions (46) will be non-negative
if and only if the following three conditions are
simultaneously satisfied: (i) 3γ̃ 2(1 − γ̃ 2)−1 � 1, (ii)
3α̃γ̃ 3(4β̃2 ± 2

√
4β̃2 − 6α̃γ̃ − α̃γ̃ (5 + γ̃ )2)−1 < 1, and
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FIG. 5. (Color online) Plots of density |u(x,t)|2 at x = 3 (in units of a⊥) for three values of the parameter t∗ appearing in potential (30)
and showing the effect of t∗ on the amplitude of the density. The top and bottom panels correspond to confining potential (with A = −2) and
repulsive potential (with A = 1/17), respectively, while the left and right panels are associated with broadening condensates and BECs in a
shrinking trap, respectively. Typical values of all other parameters are given in the text.

(iii) γ̃ (γ̃ 2 − 1)(2β̃ ±
√

4β̃2 − 6α̃γ̃ )(4β̃2 − α̃γ̃ (5 + γ̃ )2 ±
2
√

4β̃2 − 6α̃γ̃ ) > 0. With the parameters λ0 = 1, φ0 = 1,
υ = 0.5, λ = 14.25/4, and k0 = 1, conditions (i)–(iii) are
simultaneously satisfied for ζ+(z), and hence we have an
example of the solitary-wave-like solution from Eq. (40)
when 0 < γ̃ �= 1. With the use of this set of parameters, we
depicted in Figs. 8–10, respectively, the density |u(x,t)|2
at t = 4 of the wave function u(x,t) associated with the
solitary-wave-like solutions (46); Figs. 8–10, respectively,

show the effect of t∗, A, and β on the solitary-wave evolution.
Here, we used �(0) = 1. These three figures have the same
disposition as Figs. 5–7: the plots of the left and right panels
correspond to broadening condensates (t∗ > 0) and BECs in a
shrinking trap (t∗ < 0), respectively, while the plots of the top
and bottom panels correspond to confining potential (A < 0)
and repulsive potential (A > 0), respectively. Figure 8 shows
at time t = 4 the spatial evolution of the density |u(x,t)|2
for three different values of t∗. As is easily seen from this

FIG. 6. (Color online) Plots of density |u(x,t)|2 at x = 3 (in units of a⊥) for three values of the parameter A appearing in potential (30),
showing the effect of A on the amplitude of the density. The top and bottom panels correspond to confining potential and repulsive potential,
respectively, while the left and right panels are associated with broadening condensates (with t∗ = 10) and BECs in a shrinking trap (with
t∗ = −10), respectively. Typical values of all other parameters are given in the text.
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FIG. 7. (Color online) Plots of density |u(x,t)|2 at x = 3 (in units of a⊥) for three values of the imprint parameter β appearing in
transformation (6b), showing the effect of β on the peak density. The top and bottom panels correspond to confining potential (with A = −2)
and repulsive potential (with A = 1/17), respectively, while the left and right panels are associated with broadening condensates (with t∗ = 10)
and BECs in a shrinking trap (with t∗ = −10), respectively. Typical values of all other parameters are given in the text.

figure, the peak density in the case of confining potential
decreases as t∗ increases for broadening condensates (top
panels), but increases with t∗ for BECs in a shrinking trap.
In the case of repulsive potential (bottom panels), the peak
density increases with t∗ for both broadening condensates
and BECs in a shrinking trap. Figure 9 depicts the density
|u(x,t)|2 at time t = 4 for three different values of A. The
plots of this figure show that for both the confining potential
(top plots) and the repulsive potential (bottom plots), the

peak density decreases as A increases; this happens for
both broadening condensates (left plots) and BECs in a
shrinking trap (right plots). It is seen from the plots in
Fig. 10 where the density |u(x,t)|2 at time t = 4 is depicted
for different values of β that, independently of the sign of
A (confining potential or repulsive potential) and of the
sign of t∗ (broadening condensates or BECs in a shrinking
trap), the peak density decreases as the imprint parameter
β increases.

FIG. 8. (Color online) Density |u(x,t)|2 at time t = 4 (in units of 2/ω⊥) for three values of the parameter t∗ appearing in potential (30),
showing the effect of t∗ on the peak density. The top and bottom panels correspond to confining potential (with A = −2) and repulsive
potential (with A = 1/17), respectively, while the left and right panels are associated with broadening condensates and BECs in a shrinking
trap, respectively. Typical values of all other parameters are given in the text.
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FIG. 9. (Color online) Density |u(x,t)|2 at time t = 4 (in units of 2/ω⊥) for three values of the parameter A appearing in potential (30),
showing the effect of A on the peak density. The top and bottom panels correspond to confining potential and repulsive potential, respectively,
while the left and right panels are associated with broadening condensates (with t∗ = 10) and BECs in a shrinking trap (with t∗ = −10),
respectively. Typical values of all other parameters are given in the text.

B. Examples of solitary-wave solutions under conditions ˜δ �= 0,

ε̃ < 0, and g2 = g3 = 0

In the present subsection, we give examples of solitary-
wave solutions when δ̃ �= 0, ε̃ < 0, and g2 = g3 = 0. As we
will see in what follows, one of the particularities of the present
special case is that a bright and a dark solitary waves can exist
for the same values of parameters α̃, β̃, and γ̃ . According to
Eq. (43), solving the system g1 = g2 = 0 for ε < 0 and δ̃ �= 0

yields

ε̃ = ε̃ (̃α,β̃,γ̃ )

= 4β̃2(3α̃γ̃ − 2β̃2) − 3α̃2γ̃ 2 ± 8β̃(β̃2 − α̃γ̃ )
√

β̃2 − α̃γ̃

α̃3
,

δ̃ = δ̃(̃α,β̃,γ̃ ) = 3α̃β̃γ̃ − 2β̃3 ± 2(β̃2 − α̃γ̃ )
√

β̃2 − α̃γ̃

α̃2
,

FIG. 10. (Color online) Density |u(x,t)|2 at time t = 4 (in units of 2/ω⊥) for three values of the imprint parameter β appearing in
transformation (6b), showing the effect of β on the amplitude of the density. The upper and lower panels correspond to confining potential (with
A = −2) and repulsive potential (with A = 1/17), respectively, while the left and right panels are associated with broadening condensates
(with t∗ = 10) and BECs in a shrinking trap (with t∗ = −10), respectively. Typical values of all other parameters are given in the text.
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FIG. 11. (Color online) Plots of density |u(x,t)|2 versus x (in units of a⊥) and t (in units of 2/ω⊥) for α(t) = (t − 1)−2/17 with λ = λ0 = 1,

k0 = 0, υ = 6, φ0 = 2. 7813 for the dark solitary wave (a), and φ0 = 2. 8013 for the bright solitary wave (b). To generate these plots, we
numerically solved Eq. (17) and system (18a)–(18d) with initial values T (0) = 0, f (0) = 1.1, η(0) = 0, �(0) = 1. Plot (a) is associated with
the dark algebraic solitary-wave solution (47) (with sign “−”), while plot (b) corresponds to the bright algebraic solitary-wave solution (47)
(with sign “+”). Plots (c) and (d) show the density profile for the dark and bright algebraic solitary wave at different times t, taken from the
region of the positivity (c) and negativity (d) of the functional parameter f (t).

if β̃2 − α̃γ̃ � 0 and 4β̃2(3α̃γ̃ − 2β̃2) − 3α̃2γ̃ 2 ± 8β̃(β̃2 −
α̃γ̃ )

√
β̃2 − α̃γ̃ > 0. Replacing δ̃ and ε̃ into Eq. (40)

leads to the simple root ζ0 = −α̃−1[β̃ ± 3
√

β̃2 − α̃γ̃ ] of

the polynomial f (ζ ). Inserting the above simple root
ζ0 into solution (45b) leads to the algebraic solitary
waves

ζ (z) = −α̃[β̃ ± 3
√

β̃2 − α̃γ̃ ] + 4(̃αγ̃ − β̃2)[−β̃ ±
√

β̃2 − α̃γ̃ ]z2

α̃[̃α − 4(β̃2 − α̃γ̃ )z2]
(47)

satisfying the needed condition of the non-negativity as soon as
β̃ > 0, γ̃ < 0, α̃γ̃ < β̃2 < 9α̃γ̃ /8. In solution (47), signs “−”
and “+” are associated with the dark and bright solitary waves,
respectively. By taking α̃ = −1, β̃ = 1, and γ̃ = −8.1/9, all
the conditions of the existence of solution (47) for both signs
“−” and “+” are satisfied. In other words, parameters α̃ = −1,

β̃ = 1, and γ̃ = −8.1/9 together with δ̃(−1,1, − 8.1/9) and
ε̃(−1,1,−8.1/9) < 0 define a dark and a bright solitary wave.
The above values for α̃,β̃, and γ̃ are obtained from system
(41) for λ = λ0 = 1, k0 = 0, υ = 6, φ0 = 2. 7813 for the
dark solitary wave, and φ0 = 2. 8013 for the bright solitary
wave. With these values of parameters, we show in Fig. 11
the density |u(x,t)|2 corresponding to a dark (a) and a bright
(b) algebraic solitary-wave solution for α(t) = (t − 1)−2/17.

The functional parameters T (t), f (t), �(t), and η(t) appearing
in the density are obtained numerically by solving Eq. (17)
and system (18a)–(18c) with initial conditions T (0) = 0,

f (0) = 1.1, �(0) = 1, and η(0) = 0. With the initial datum
f (0) = 1.1, function f (t) changes its sign on [0,1[, positive

on [0, t0[ and negative on ]t0, 1[. The change of the sign of
f (t), from positive to negative explains why the solitary wave
propagates with a decreasing (increasing) amplitude on [0, t0[
/ ]t0, 1[. This situation is clearly seen in Figs. 11(c) and 11(d)
showing the soliton profile at different times. It is also seen
from Figs. 11(c) and 11(d) that the algebraic solitary waves
move with an increasing (decreasing) peak in the region of
positive (negative) f (t). In the region of positive (negative)
f (t), the bright (dark) algebraic solitary wave move with
a decreasing (increasing) width. Inversely, the dark (bright)
algebraic solitary wave move with a decreasing (increasing)
width in the region of negativity (positivity) of f (t).

VI. SUMMARY AND DISCUSSION

In this work, we have examined the problem of modula-
tional instabilities of plane waves in the context of the Gross–
Pitaevskii equations with a time varying external potential.
The motivation for this study was its direct link with the
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“collisionally inhomogeneous” Bose–Einstein condensates
which have a spatially modulated scattering length. To make
possible the investigation of the MI for BECs with both attrac-
tive and repulsive two-body interactions, we first transformed
the cubic GP equation into a cubic derivative NLS equation
by suitably engineering the phase imprint on the old order
parameter associated with the cubic GP equation. A modified
lens transformation was then used to cast the problem in a
rescaled space and time frame in which the cubic derivative
NLS equation is converted into a similar equation without
explicit spatial dependence. For the strength of the magnetic
trap ∼(t + t∗)−2 and a linear in the x temporal two-body
interatomic interaction coefficient, the resulting growth rate
of a purely growing MI is either constant or time varying. The
effect of both the imprint parameter and the trap parameter t∗
on the growth rate of the MI was investigated. In the case of
constant gain, we have presented analytical solitary-wave-like
solutions of the cubic GP equation and analyzed the effect of
the above two parameters on the peak density.

Although we have investigated the problem of modulational
instabilities of Stokes waves in the context of the GP equations

with a time varying external potential and, in some particular
cases, have presented analytical solitonic-wave solutions, it
is obvious that there are still many significant and important
problems waiting for further investigations. Can we conclude
on the stability of the analytical solitonic-wave solutions found
in this paper? Does the imprint parameter affect the stability
of solutions? Can one use the found analytical solutions to
investigate the solitons’ collision? These are some of the
pending problems! Our next challenge is the investigation of
the stability of analytical solutions found in this work, and the
effect of the imprint parameter on their stability.
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