
PHYSICAL REVIEW E 91, 062915 (2015)

Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line

E. Kengne,1 A. Lakhssassi,1 and W. M. Liu2

1Department of Computer Sciences and Engineering, University of Quebec at Outaouais, 101 St-Jean-Bosco,
Succursale Hull, Gatineau(PQ), Canada J8Y 3G5

2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China

(Received 10 March 2015; revised manuscript received 18 May 2015; published 24 June 2015)

We study analytically the dynamics of modulated waves in a dissipative modified Noguchi nonlinear electrical
network. In the continuum limit, we use the reductive perturbation method in the semidiscrete limit to establish
that the propagation of modulated waves in the network is governed by a dissipative nonlinear Schrödinger (NLS)
equation. Motivated with a solitary wave type of solution to the NLS equation, we use both the direct method and
the Weierstrass’s elliptic function method to present classes of bright, kink, and dark solitary wavelike solutions
to the dissipative NLS equation of the network. Through the exact solitary wavelike solutions to the dissipative
NLS equation, we investigate the effects of the dissipative elements of the network on wave propagation. We
show that the wave amplitude decreases and its width increases when the dissipative element of the network
increases. It has been also found that the dissipative element of the network can be used to manipulate the
motion of solitary waves through the network. This work presents a good analytical approach of investigating the
propagation of solitary waves through discrete electrical transmission lines and is very important for studying
modulational instability.
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I. INTRODUCTION

Because of its wide significance in a great variety of
physical systems, the propagation of modulated waves has
been the subject of considerable interest for many years,
as, for example, in nonlinear optics [1–5]. On the other
hand, discrete electrical transmission lines are very convenient
tools to study the wave propagation in one-dimensional (1D)
nonlinear dispersive media [5–19]. They have been applied to
the study of thin-film and diffusion resistors, capacitors, and
conductors and to the evaluation of undesirable interaction
between different components of integrated circuits; moreover,
discrete electrical transmission lines can be successfully used
to simulate the characteristics of some active microcircuit
elements, in particular, the field-effect transistors [6,7]. In
particular, lossy transmission lines with nonlinear loads are
very important for the study of and the design of high-speed
electronic circuits [8]. Owing to the increasing frequencies
and bit rates, one has to take the transmission line effects
of the interconnections into account, for example, signal-
delay, reflexion, attenuation, and cross talk [9]. Most recently,
nonlinear transmission lines have proven to be of great
practical use in extremely wide band (frequencies from dc
to 100 GHz) focusing and shaping of signals (that is, changing
certain features of incoming signals, such as the frequency
content, pulse width, and amplitude), which is usually a
hard problem [11]. In biomedical engineering, networks
consisting of resistors, inductors, and capacitors, connected
in series or in parallel, are used as an approximation of
the nonlinear conservation law for blood flow in biological
tissues [20–24].

Motivated by the qualitative and quantitative studies of
properties of solitons in real nonlinear dispersive media, we
aim in this paper to present a detailed calculation to predict
the modulational instability (MI) and to evaluate quantitatively
the dissipative effects on the envelope soliton in the modified

Noguchi electrical transmission line [25] taking into account
the dissipation of the electrical components. The rest of the
paper is organized as follows. In Sec. II we present a brief
description of our model and write the basic equations of the
lossy modified Noguchi electrical transmission line in Fig. 1.
Using the reductive perturbation method in the semidiscrete
limit [14,26], we establish in Sec. III that the dynamics of
modulated waves in the lines is described by a dissipative
nonlinear Schrödinger (NLS) equation. In Sec. IV we find
analytical bright and dark or kink solitary wavelike solutions
of the dissipative NLS equation of the network. With the help
of analytical solutions, we investigate analytically the propaga-
tion of bright, dark, and kink solitary waves along the network
in Sec. V. Finally, the main results are summarized in Sec. VI.

II. MODEL DESCRIPTION AND CIRCUIT EQUATIONS

The model under consideration is a lossy 1D modified
discrete Noguchi electrical transmission line shown in Fig. 1
made of N identical unit cells. Each unit cell is modeled by
a linear inductor L1 in parallel with a linear capacitance CS

in the series branch and a linear inductor L2 in parallel with
a nonlinear capacitor C in the shunt branch. In order to take
into account the dissipation of the network, a conductance
G is connected in parallel with inductor L2, accounting
for the dissipation of L2 in addition with the loss of the
nonlinear capacitor C. The nonlinear capacitor C consists of
a reverse-biased diode with differential capacitance function
of the voltage Vn across the nth capacitor. It is biased by a
constant voltage Vb and depends on the voltage Vn, for low
voltage, at cell n as [19]

C(Vb + Vn) = dQn

dVn

� C0
(
1 − 2αVn + 3βV 2

n

)
, (1)

where C0 = C(Vb) is the characteristic capacitance and α > 0
and β > 0 designate the nonlinear coefficients of the electrical
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FIG. 1. Schematic representation of the elementary cell of the
lossy 1D modified discrete Noguchi electrical transmission line. The
network possesses N identical unit cells.

stored charge Qn; the subscript n stands for the number of cells
in the network. During the computation, we use the following
network parameters [10,19]: L1 = 200 μH, L2 = 470 μH,

Vb = 2 V, C0 = 370 pF, α = 0.21 V−1, β = 0.0197 V−2,

and CS = 50 pF.
Applying the Kirchhoff laws on the network of Fig. 1 leads

to the following equations that describe the propagation of
waves [voltage Vn(t)] in the network:

d2Vn

dt2
+ u2

0(2Vn − Vn+1 − Vn−1) + ω2
0Vn + G

C0

dVn

dt

+ λ
d2

dt2
(2Vn − Vn+1 − Vn−1) = d2

dt2

(
αV 2

n − βV 3
n

)
, (2)

where n = 1,2, . . . ,N (N being the number of cells consid-
ered), u0 = 1/

√
L1C0, and ω0 = 1/

√
L2C0 are the charac-

teristic frequencies of the network, λ = CS/C0. When using
Eq. (2) to experience the transmission of solitons through the
model shown in Fig. 1, one generally excites the left extremity
of the line and chooses the total number of cells of the line,
N , so as not to encounter the wave reflection at the end of the
network.

III. MODULATED WAVES AND THE DISSIPATIVE
NONLINEAR SCHRÖDINGER EQUATION

In this section, we aim to derive the amplitude equation
describing the motion of modulated waves in the network of
Fig. 1. We thus focus on waves with a slowly varying envelope
in time and space with regard to a given carrier wave with
angular frequency ω = ωp = 2πf and wave number k = kp.
In order to apply the reductive perturbation method [14],
we introduce through the perturbative small parameter ε the
slow envelope variables x = ε(n − υgt) and τ = ε2t , and n

is the cell number; here υg designates the group velocity
of the linear wave packets. Thus, the signal voltage Vn will
depend explicitly not only on n and t , but also on x and τ , to
separate in a natural way its fast and slow variations, in both
space and time; that is Vn(t) = V (n,t ; x,τ ). Following Yemélé
et al. [27,28], the solution of Eq. (2) is assumed to have the
following general form:

Vn(t) = εA(x,τ ) exp[iθ ] + ε2{B0(x,τ )

+B(x,τ ) exp[2iθ ]} + c.c., (3)

where θ = kn − ωt is the rapidly varying phase, and c.c.
stands for the complex conjugate. The dc and second-harmonic
terms, respectively B0(x,τ ) and B(x,τ ), are added to the
fundamental one [A(x,τ ]) in order to take into account the
asymmetry of the charge-voltage relation given by Eq. (1). In
spite of the band-pass character of our filter, we will consider
the solution (3) in its complete form, which may help in
appreciating the contribution of the dc term. We then order
the damping coefficient in Eq. (2) so that the damping and
nonlinearity effects appear in the same perturbation equations.
Thus, we set G/C0 = 2u0ε

2σ . Substituting Eq. (3) into Eq. (2)
yields a series of inhomogeneous equations at different orders
of [ε, exp [iθ ]]. Order [ε, exp[iθ ]] is associated with the linear
approximation (Vn � 1) and leads to linear dispersion relation
of a typical pass band filter

ω2 = ω2
0 + 4u2

0 sin2 k
2

1 + 4λ sin2 k
2

. (4)

The corresponding linear group velocity is

υg = dω

dk
=
(
u2

0 − λω2
0

)
sin k

ω
(
1 + 4λ sin2 k

2

)2 . (5)

To order [ε3, exp [iθ ]] we get the dissipative nonlinear
Schrödinger equation governing the slow envelope evolution

i
∂A

∂τ
+ P

∂2A

∂x2
+ Q|A|2A + iA = 0, (6)

where

P =
[
u2

0 + λ
(
2υ2

g − ω2
)]

cos k − 4λωυg sin k − (1 + 2λ)υ2
g

2ω
(
1 + 4λ sin2 k

2

) ,

(7a)

Q = 3βω

2
(
1 + 4λ sin2 k

2

) − 4υ2
gα

2ω(
υ2

g − u2
0

)(
1 + 4λ sin2 k

2

)
− α2ω3(

1 + 4λ sin2 k
2

)[
ω2 + (4λω2 − u2

0

)
sin2 k − ω2

0
4

] , (7b)

 = u0σ(
1 + 4λ sin2 k

2

)
,

(7c)

respectively, represent the dispersion, the nonlinearity, and the
dissipation. A similar solution to the nonlinear Schrödinger
equation (6) has already been derived by Marquié et al. [29]
when studying the modulational instability in a real electrical
lattice and has been used by Giannini et al. [30] to investigate
the propagation of bright and dark solitons in lossy optical
fibers.

To orders [ε2, exp [2iθ ]] and [ε4, exp [0iθ ]], we respec-
tively obtain the second harmonic and the continuous compo-
nents B and B0 of the voltage:

B(x,τ ) = αω2

ω2 + (4ω2λ − u2
0

)
sin2 k − ω2

0
4

A2,

B0(x,τ ) = 2αυ2
g

υ2
g − u2

0

|A|2. (8)
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FIG. 2. Linear dispersive curve of the network showing evolution
of the frequency f = ω/2π as function of the wave number k for
the network parameters L1 = 200 μH, L2 = 470 μH, Vb = 2 V,

C0 = 370 pF, α = 0.21 V−1, β = 0.0197 V−2, and CS = 50 pF. The
lower cutoff frequency is f0 = 381.65 kHz (dashed line), and the
upper cutoff frequency is fmax = 991.63 kHz (dash-dotted line).

Comparing Eq. (7b) with Eq. (8), we conclude that the second
and third terms of the nonlinearity coefficient Q come from
the contribution of B0(x,τ ) and B(x,τ ), respectively. It is seen
from Eq. (7c) that the dissipative coefficient  is due to the
dissipative element G of the network and increases with the
dissipative parameter σ . As we can see from Eqs. (7a), (7b),
and (7c), the dispersion coefficient P, the nonlinear coefficient
Q, and the dissipative coefficient  are all functions of
the wave number k. For values of k chosen in the first
Brillouin zone (0 � k � π ), we plot in Fig. 2 P, Q, and
product P×Q as functions of wave number k for the above
network parameters. As we can see from the dispersion curve
[Fig. 2(a)], the dispersion coefficient P vanishes for the value
of the wave number kz � 1.5708 rad/cell that corresponds to
the frequency fz � 808.46 kHz. Figure 2(b) shows that for
the above network coefficients, the nonlinear coefficient Q is
negative for almost all wave number k from the first Brillouin
zone, except for k ∈ [k1, k2] where k1 � 1.2677 rad/cell
and k2 � 1.87389 rad/cell corresponding to frequencies f1 =
ω(k1)/(2π ) � 725.372 kHz and f2 =ω(k2)/(2π ) � 875.121
kHz, respectively. Therefore, product PQ is positive for k ∈ [0,

k1[∪]kz, k2[ and negative for k ∈]k1, kz[∪]k2, π ] [this can
be seen from Fig. 2(c)]. In summary, we have four different
regions concerning the modulational instability of a plane wave
and the possible soliton solutions:

1. Region I: f ∈ [f0, ω(k1)/2π ], i.e., f ∈ [381.654,

725.372], PQ > 0 ⇒ Unstable ⇒ Bright Solitons
2. Region II: f ∈ [ω(k1)/2π, fz], i.e., f ∈ [725.372,

808.46],
PQ < 0 ⇒ Stable ⇒ Dark Solitons

3. Region III: f ∈ [fz, ω(k2)/2π ], i.e., f ∈ [808.46,

875.121],
PQ > 0 ⇒ Unstable ⇒ Bright Solitons

4. Region IV: f ∈ [ω(k2)/2π, fmax], i.e., f ∈ [875.121,

991.632],
PQ < 0 ⇒ Stable ⇒ Dark Solitons. Here f0 = ω0/2π and

fmax = ωmax = (2π )−1
√

(ω2
0 + 4u2

0)/(1 + 4λ). Note that for

P = 0, f = fz = ω(kz)/2π . Figure 2 shows the linear dis-
persion curve associated with Eq. (4) and different regions of
the MI for the above network parameters.

IV. EXACT BRIGHT, DARK, AND KINK SOLITARY
WAVELIKE SOLUTIONS OF THE DISSIPATIVE

NLS EQUATION OF THE NETWORK

We start this section by noting that the partition of the
bandwidth is not a real problem. The important point is only
that some frequency regions correspond to positive PQ leading
to envelope solitons, whereas another ones correspond to
negative PQ leading to hole and kink solitons. The variation
of the sign of product PQ piques our interest in the analytical
study of envelope, hole, and kink solitons in our network.

In this section, we find exact solitary wavelike solutions of
the dissipative NLS equation (6). It is well known that in the
absence of the dissipative term, i.e.,  = 0, Eq. (6) admits both
bright and dark soliton solutions. Equation (6) is not longer
integrable if its dissipative term  is not zero; in this section,
we attempt to find its analytical solitary wavelike solutions
when  �= 0. For this purpose, we introduce ansatz

A(x,τ ) = a(τ )u(X) exp{i[Kx − ϕ(τ )]},
(9)

X = X(x,τ ) = α0(τ )x + β0(τ ),

where K is a real constant, a(τ ), α0(τ ), β0(τ ), and ϕ(τ ) are a
real function of variable τ to be determined , and u is a real
function of variable X. Inserting ansatz (9) into Eq. (6) and
separating real and imaginary parts yield

Pα2
0

(
du

dX

)2

+ 2Qa2u4 +
[
dϕ(τ )

dτ
− PK2

]
u2 − A0 = 0,

(10a)( da
dτ

a
+ 

)
u +

(
dβ0

dτ
− 1

α0

dα0

dτ
β0 + 2PKα0 +

dα0
dτ

α0
X

)
du

dX

= 0, (10b)

where A0(τ ) is an arbitrary function of τ (constant of
integration with respect with X). Demanding that α0 and β0

satisfy equation

dβ0

dτ
− 1

α0

dα0

dτ
β0(τ ) + 2PKα0 = 0

yields

β0(t) = −2PKτα0(τ ) + K0α0(τ ),

X = α0(τ )[x − 2PKτ + K0], (11)

where K0 is an arbitrary real parameter. Inserting Eq. (11) into
system (10a)–(10b) yields

Pα2
0(τ )

(
du

dX

)2

+ 2Qa2u4 +
[
dϕ(τ )

dτ
− PK2

]
u2 − A0 = 0,

(12a)(
1

a

da

dτ
+ 

)
u +

(
X

α0

dα0

dτ

)
du

dX
= 0. (12b)

Equation 12(a) is an elliptic ordinary differential equation
(EODE). The simplest functions α0(τ ) and a(τ ) for which
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Eq. 12(b) is satisfied for every u(X) are obtained by asking
that the coefficients of u and du/dX in this equation vanish,
i.e., 1

a
da
dτ

+  = 0 and X
α0

dα0
dτ

= 0. This leads to

a(τ ) = a0 exp[−τ ], α0(τ ) = α00, (13)

where a0 �= 0 and α00 �= 0 are two real constants. Thus, if a(τ )
and α0(τ ) are defined by Eq. (13), system (12a)–(12b) becomes(

du

dX

)2

= −2Qa2

Pα2
0

u4 + PK2 − dϕ

dτ

Pα2
0

u2 + A0

Pα2
0

, (14)

that we rewrite in the form(
dρ

dX

)2

= −8Qa2

6Pα2
0

ρ3 + 4
[
PK2 − dϕ(τ )

dτ

]
Pα2

0

ρ2 + 4
A0

Pα2
0

ρ,

u2 = ρ. (15)

Equations (14) and (15) are EODEs. Each of these two
equations is a special case of the equation(

dy

dX

)2

= α1y
4 + 4β1y

3 + 6γ1y
2 + 4δ1y + ε1

def.= �(y),

(16)

where α1, β1, γ1, δ1, and ε1 are functions of variable τ defined
as

α1 =
{

− 2Qa2

Pα2
0

for Eq. (14),

0 for Eq. (15);
β1 =

{
0 for Eq. (14),

− 4Qa2

3Pα2
0

for Eq. (15);

γ1 =
{

2
(

PK2− dϕ(τ )
dτ

)
3Pα2

0
for Eq. (14),

0 for Eq. (15);

δ1 =
{

0 for Eq. (14),
A0

Pα2
0

for Eq. (15);
ε1 =

{
A0

Pα2
0

for Eq. (14),

0 for Eq. (15).

In some special cases, we can express solitary wavelike
solutions of Eq. (16) in terms of P, Q, α0, a, ϕ, K , and
A0. In our analysis, we mainly use Eq. (14) [Eq. (15) will be
used only occasionally].

To find analytical solitary wavelike solutions of Eq. (16)
in explicit form, we use either the direct method or the
Weierstrass’s elliptic function method [31,32]. It is well
known that a large class of solutions of Eq. (16) is given
by expression [31,32]

y(X) = y0 +
√

�(y0) d℘(X;g2,g3)
dX

+ 1
2�′(y0)

[
℘(X; g2,g3) − 1

24�′′(y0)
]+ 1

24h(y0)�′′′(y0)

2
[
℘(X; g2,g3) − 1

24�′′(y0)
]2 − 1

48�(y0)�′′′′(y0)
, (17)

where y0 is any real function of τ [not necessary a root
of polynomial �(y)] and ℘(X; g2,g3) is the Weierstrass’s
elliptic function with invariants g2 = α1ε1 − 4β1δ1 + 3γ 2

1 and
g3 = α1γ1ε1 + 2βγ δ − αδ2 − γ 3 − ε1β1. Equation (17) leads
to solitary wavelike solutions of Eq. (16) only when the
following three conditions are satisfied simultaneously [33]:

� = g3
2 − 27g2

3 = 0, g2 � 0, g3 � 0. (18)

When y0 is a simple root of polynomial �(y), Eq. (17) leads
to the solitary wavelike solution having the form [33]

y(X) = y0 + �′(y0)

4
{
e1 − �′′(y0)

24 + 3e1 cosh2[
√

3e1X
} ,

e1 = 1

2
3
√−g3. (19)

It is important to note that expression (19) is used for the
solitary wavelike solution of Eq. (16) only if y0 is a simple
root of polynomial �(y).

We notice that any solitary wavelike solution of the EOD
equation (16) leading to a solitary wavelike solution u(X) of
Eq. (14) gives the following solitary wavelike solution of the
dissipative NLS Eq. (6):

A(x,τ ) = a0 exp[−τ ]u(α00[x − 2PKτ + K0])

× exp{i[Kx − ϕ(τ )]}. (20)

In what follows, we distinguish the case of bright and dark and
kink solitary wavelike solutions.

A. Analytical bright solitary wavelike solutions
of the OEDE

As we have mentioned above, solitary wavelike solutions
of Eq. (14) will be sought either by the direct method or the
Weierstrass’s elliptic function method.

1. Direct method for exact bright soliton solutions
to the OEDE

As examples of the use of the direct method, we seek
soliton solutions of Eq. (14) having either the form u(X) =
1/ cosh [mX] or u(X) = 1/(A1 + B1 cosh2 [mX]). Imposing
to u(X) to satisfy Eq. (14) yields

u(X) = 1

cosh
[

a
α0

√
2Q

P
X
] ,

ϕ(τ ) =
{(

K2P − 2Qa2
0

)
τ − ϕ0, if  = 0

K2Pτ + Qa2
0


exp[−2τ ] − ϕ0, if  �= 0

,

(21a)

u(X) = ±1

a

√
PK2 − dϕ(τ )

dτ

2Q

1

1 − 2 cosh2
[

1
2α0

√
PK2− dϕ(τ )

dτ

P
X
] ,

(21b)

respectively. In solution 21(b), ϕ(τ ) is an arbitrary
function that satisfies conditions P [PK2 − dϕ(τ )

dτ
] > 0 and

Q[PK2 − dϕ(τ )
dτ

] > 0. Both Eqs. 21(a) and 21(b) give soliton
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solutions of Eq. (14) with vanishing boundary conditions
u(±∞) = 0.

2. Weierstrass’s elliptic function method for exact solitary
wavelike solutions to the OEDE

Now we apply Weierstrass’s elliptic function method to
find exact bright solitary wavelike solutions of either Eq. (14)
or (15). We start with Eq. (14). For Eq. (14), conditions (18)
for solitary wavelike solutions read

A0

{
8A0Qa2 +

[
PK2 − dϕ(τ )

dτ

]2}
= 0,

[
PK2 − dϕ(τ )

dτ

]2

− 24A0Qa2 � 0,

P

[
PK2 − dϕ(τ )

dτ

]{
72A0Qa2 +

[
PK2 − dϕ(τ )

dτ

]2}
� 0.

(22)

If A0 = 0, the first two conditions are satisfied, while the last
one is satisfied only if P [PK2 − dϕ(τ )

dτ
] � 0. In this case, poly-

nomial � admits two simple roots, namely, u0 = ±
√

PK2− dϕ

dτ

2Qa2

if and only if Q[PK2 − dϕ(τ )
dτ

] > 0. Using expression (19) for
each of these simple roots yields

u(X) = ±1

a

√
PK2 − dϕ(τ )

dτ

2Q

×
⎧⎨
⎩1 − 12

1 + 6 cosh2
[

1
2α0

√
P −1

(
PK2 − dϕ

dτ

)
X
]
⎫⎬
⎭.

(23)

It is obvious that (23) is a solitary wavelike solution of Eq. (14)
with nonvanishing boundary conditions.

If A0 �= 0, the first of conditions (22) for solitary wave-

like solutions of Eq. (14) yields A0 = − 1
8Qa2 [PK2 − dϕ(τ )

dτ
]
2
,

leading to �(u) = − 2Qa2

Pα2
0

(u2 − PK2− dϕ

dτ

4Qa2 )2. Evaluating e1 in this

case yields e1 = − [PK2− dϕ(τ )
dτ

]

6Pα2
0

. It follows from the expression

for �(u) that polynomial �(u) does not have any simple root.

B. Analytical expression for dark (kink) soliton
solutions of the OEDE

We now apply direct method and Weierstrass’s elliptic
function method to find analytical dark soliton solutions u(X)
of Eq. (14).

1. Direct method for exact dark solutions to the OEDE

Here we find an exact dark soliton solution of Eq. (14) by
substituting u(X) = tanh [mX] in Eq. (14). As the result, we
obtain the dark soliton solution

u(X) = tanh

[
a

α0

√
−2Q

P
X

]
,

ϕ(τ ) = K2Pτ − 2Qa2
0


exp[−2τ ] − ϕ0, (24)

where ϕ0 is an arbitrary real constant.

2. Weierstrass’s elliptic function method for exact dark
and/or kink soliton solutions to the OEDE

Now we apply the Weierstrass’s elliptic function method
to find dark and/or kink soliton solutions of Eq. (14).
These solutions are associated with nonzero multiple roots of
polynomial � for Eq. (14) and/or Eq. (15) [33]. For a multiple
root of polynomial �, we use Eq. (17) instead of Eq. (19) to
evaluate the corresponding soliton solutions.

We start with Eq. (14). When A0 �= 0, we found, under the
conditions of solitary wavelike solutions (22), that polynomial

� for Eq. (14) admits two double roots u0 = ± 1
2

√
PK2− dϕ

dτ

Qa2 , if

ϕ(τ ) is chosen from condition Q(PK2 − dϕ

dτ
) > 0 . Let us, as

an example, consider the double root u0 = 1
2

√
PK2− dϕ

dτ

Qa2 . Noting

that e1 = −PK2− dϕ(τ )
dτ

6Pα2
0

and choosing u0 = 1
4a

√
PK2− dϕ(τ )

dτ

Q
[33],

Eq. (17) for ℘ = e1 + 3e1

sinh2 (
√

3e1X)
gives the kink soliton

solution

u(X) = 1

2a

√
PK2 − dϕ(τ )

dτ

Q

{
4 + 3 sinh

[
2
α0

√
−PK2− dϕ(τ )

dτ

2P
X
]}

5 + 3 cosh
[

2
α0

√
−PK2− dϕ(τ )

dτ

2P
X
] ,

(25)

where Q(PK2 − dϕ

dτ
) > 0 and, consequently, P (PK2 − dϕ

dτ
) < 0.

We now use Eq. (15) to generate another dark soliton
solution of Eq. (14). For this equation, conditions (18)

for soliton solutions give 8Qa2A0 + [ dϕ(τ )
dτ

− PK2]
2 = 0

and P [PK2 − dϕ(τ )
dτ

] � 0. Solving the first equation in
A0 and inserting the result in �(ρ) yield �(ρ) =
− 8Qa2

Pα2
0
ρ[ρ − PK2− dϕ(τ )

dτ

4Qa2 ]
2
. Therefore, �(ρ) admits one double

root, ρ0 = PK2− dϕ(τ )
dτ

4Qa2 . Noting that e1 = −PK2− dϕ(τ )
dτ

6Pα2
0

and choosing

ρ0 = PK2− dϕ(τ )
dτ

8Qa2 [33], we evaluate Eq. (17) for ℘ = e1 +
3e1

sinh2 (
√

3e1X)
and use the relationship u2 = ρ to get the following

dark soliton solution:

u(X) = ± 1

2a

√
PK2 − dϕ(τ )

dτ

Q

√
2 + sinh2(

√
3e1X) + sinh4(

√
3e1X) − 2 cosh(

√
3e1X) sinh(

√
3e1X)

2 + sinh2(
√

3e1X)
. (26)

Here e1 = −PK2− dϕ(τ )
dτ

6Pα2
0

. Note that under condition P [PK2 − dϕ(τ )
dτ

] < 0, we automatically have Q[PK2 − dϕ(τ )
dτ

] > 0 since PQ < 0.
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V. PROPAGATION OF BRIGHT, DARK, AND KINK
SOLITARY WAVELIKE THROUGH

THE NETWORK OF FIG. 1

In this section we use the exact solutions of the dissipative
NLS equation (6) to investigate analytically the propagation of
bright, dark, and kink solitary wavelike through the network
of Fig. 1. We focus on the case of  �= 0.

A. Propagation of bright solitary waves
in the network of Fig. 1

Each of the bright soliton solutions 21(a) and 21(b)
and the solitary wavelike solution (23) of the EODE (14)

leads, respectively, to bright soliton solutions and a bright
solitary wavelike solution of Eq. (6) and consequently, to
the propagation of bright solitons and bright solitary waves
in the network of Fig. 1. It is important to notice that each of
solutions 21(b) and (23) of the EODE (14) contains the free
functional parameter ϕ(τ ), which will be chosen under some
conditions on P and/or Q. This free functional parameter will
allow us to manipulate the motion of the solitary waves on the
network. We will limit ourselves to the use of solutions 21(a)
and (23) [one solution without the free parameter ϕ(τ ) and one
solution that contains ϕ(τ )].

We start with the solution 21(a) that we write the corre-
sponding solution of Eq. (6) as follows:

A(x,τ ) = a0 exp[−τ ] exp
{
i
(
Kx − K2Pτ − Qa2

0


exp[−2τ ] + ϕ0
)}

cosh
{
a0

√
2Q

P
exp[−τ ][x − 2PKτ + K0]

} ,  �= 0, (27a)

A(x,τ ) = a0 exp
{
i
(
Kx − [K2P − 2Qa2

0

)
τ + ϕ0

]}
cosh

{
a0

√
2Q

P
(x − 2PKτ + K0)

} ,  �= 0. (27b)

It is seen from Eq. 27(a) that the soliton amplitude a0 is propor-
tional to function exp [−τ ], while its width is inversely pro-

portional to function
√

2Q

P
exp [−τ ]. Because  is a positive

parameter, function exp [−τ ] decreases when  increases
(we remember that τ = ε2t > 0). In other words, the soliton
width increases when the dissipative element G of the network
increases. Meantime, the soliton amplitude decreases when
the dissipative element of the network increases. The center

of bright soliton is ξ (τ ) =
√

P
2Q

(2PKτ + K0) exp [τ ], and

satisfies equation d2ξ (τ )
dτ 2 − [4PK+(2PKτ+K0)]

2PKτ+K0
ξ (τ ) = 0. This

equation means that the center of mass of the macroscopic
wave packet behaves like a classical particle and allows us
to manipulate the motion of bright soliton in the network by
controlling the dissipative element G.

Figure 3 shows the propagation of solitary signal at
frequency f = 406.881kHz for the above network parameters
and solution parameters a0 = 50, ϕ0 = −20, K = −0.1, and
ε = 10−3 . It is seen from Figs. 3(a) and 3(c) that the cell
number n does not affect either the peak value of wave
amplitude or the wave width. Figure 3(b) shows that the wave
amplitude decreases while the wave width increases when the
dissipative parameter σ increases.

Now we consider the solitary wavelike solution (23) of
the EODE (14). This solution of the EODE (14) leads to the
following bright solitary wavelike solution of the dissipative
NLS equation (6)

A(x,τ )

= ±
√

PK2 − dϕ(τ )
dτ

2Q

×
⎛
⎝1− 12

1 + 6 cosh2
[

1
2

√
PK2− dϕ

dτ

P
(x − 2PKτ+K0)]

⎞
⎠

× exp[i(Kx − ϕ(τ ))], (28)

where the functional parameter ϕ(τ ) and constant K

are to be taken from conditions P [PK2 − dϕ(τ )
dτ

] > 0 and
Q[PK2 − dϕ(τ )

dτ
] > 0. Although if the solitary wavelike

solution (28) of the dissipative NLS equation (6) does not
contain (explicitly) the dissipative coefficient , parameters K

and ϕ(τ ) appearing in this solution result from the existence
of the dissipative term in Eq. (6).
For the above network parameters and a given set of solution
parameters, we show in Fig. 4 the propagation of bright
solitary waves through cell n = 25 of the network for different
expressions for dϕ(τ )/dτ . This figure shows how we can
manage the bright solitary waves motion in the line just by
manipulating the functional parameter ϕ(τ ).

B. Propagation of kink solitons in the network of Fig. 1

Based on an exact kink soliton solution of Eq. (14), we
investigate analytically the propagation of kink solitons in
the network of Fig. 1. The kink soliton solution (24) of the
EODE (14) is associated with the following kink soliton
solution of the dissipative NLS equation (6):

A(x,τ ) = a0 exp[−τ ] tanh

×
{
a0

√
−2Q

P
exp[−τ ][x − 2PKτ + K0]

}

× exp

{
i

(
Kx−K2Pτ+2Qa2

0


exp[−2τ ]+ϕ0

)}
.

(29)

It is seen from solution (29) that the wave amplitude a0

is proportional to the function exp [−τ ] while its width

is inversely proportional to
√

− 2Q

P
exp [−τ ]. Therefore,

solution (29) can be used to describe the compression of kink
solitons of the network of Fig. 1. With the help of the exact
kink soliton solution (29) of the dissipative NLS equation (6),
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FIG. 3. Signal voltage obtained with the exact bright soliton solution 27(a) of the dissipative NLS equation (6) for the network parameters
shown in the text and for frequency f = 406.881 kHz. (a) Propagation of bright soliton signal at different cells of the network. (b) Propagation
of bright soliton signal at cell n = 15 of the network for different dissipative parameter σ . (c) Spatial propagation of bright soliton through the
network at different times for σ = 0.00461.

we show in Fig. 5 the dynamics of kink solitons propagating
through the network for the above line parameters. Plots of
Figs. 5(a) and 5(c) show that the wave amplitude does not
vary with the cell number n. Plots of Fig. 5(b) show that the
wave amplitude decreases while its width increases when the
dissipative parameter σ increases. For a better understanding,
we show in Fig. 6 the time evolution of kink solitons through

cell n = 15 at frequency f = 777.275 kHz for three different
values of the dissipative parameter σ .

C. Propagation of dark solitons in the network of Fig. 1

We end this section with the analytical investigation of the
dynamics of dark solitons propagating through the network.

FIG. 4. Propagation of bright solitary waves in the network at frequency f = 849.872 kHz obtained with the exact bright solitary wavelike
solution (28) of the dissipative NLS equation (6) for the network parameters shown in the text and the solution parameters ε = 10−2, K = 0.1,

K0 = 40 and (a) dϕ(τ )
dτ

= −109; (b) dϕ(τ )
dτ

= −109 cos2 [250 000ε−2τ ]; (c) dϕ

dτ
= −2×10−4 exp [106ε−2τ ]; (d) dϕ

dτ
= −1010 cosh−2 [105ε−2τ ].
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FIG. 5. Propagation of kink soliton in the network at frequency f = 777.275 kHz for the above line parameters and the solution parameters
a0 = 12, ϕ0 = 0.1, K0 = −5, K = 0.1, and ε = 10−2. (a) Evolution of kink soliton at three different cells; (b) evolution of kink soliton at cell
n = 25 for three values of the dissipative parameter σ ; (c) profile of the kink soliton at three different times.

For this purpose, we use the exact solution (26) of the
EODE (14) which leads to the following exact dark soliton
solution of the dissipative NLS equation (6):

A(x,τ ) =
±
√

PK2− dϕ(τ )
dτ

Q
exp[i(Kx − ϕ(τ ))]

2
{

2 + sinh2
[√−PK2− dϕ(τ )

dτ

2P
(x − 2PKτ + K0)

]}

×
{

2− sinh

[
2

√
−PK2 − dϕ(τ )

dτ

2P
(x−2PKτ+K0)

]

+ sinh2

[√
−PK2 − dϕ(τ )

dτ

2P
(x − 2PKτ + K0)

]

+ sinh4

[√
−PK2 − dϕ(τ )

dτ

2P
(x − 2PKτ + K0)

]} 1
2

,

(30)

where constant K and the functional parameter ϕ(τ ) are
to be chosen from conditions P [PK2 − dϕ(τ )

dτ
] < 0 and

Q[PK2 − dϕ(τ )
dτ

] > 0. It is obvious that the dissipative parame-
ter  does not appear explicitly in (30). Meanwhile, parameters
K and K0 and the functional parameter ϕ(τ ) result from the
presence of  in Eq. (6). For a given set of solution parameters
and the above network parameters, we show in Fig. 7 the
time evolution of dark soliton through cell n = 250 of the
network for different functional parameter ϕ(τ ). Plots of this
figure show how we may use parameter ϕ(τ ) to manipulate the
motion of dark solitons through the network.

VI. CONCLUSION

In this work, we have studied the dynamics of modulated
waves in a modified Noguchi electrical transmission line with
dissipative elements. In the continuum limit, we have used
the semidiscrete approximation to establish that the motion of
modulated waves in the network is governed by a dissipative
nonlinear Schrödinger equation. Based on the dissipative NLS
equation and the linear dispersion law, our study predicted
four frequency regions with different behaviors concerning
the modulational instability of a plane wave, two regions
associated with the envelope solitons which alternate with two
regions for dark or kink solitons. Motivated with the solitary
wave type of solutions to the classical nonlinear Schrödinger
equation, we have used both the direct method and the

FIG. 6. (Color online) Effects of the dissipative element of the
network on the kink soliton propagating through cell n = 15 at
frequency f = 777.275 kHz.
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FIG. 7. Propagation of dark soliton in the network at frequency f = 935.515 kHz with the network parameters shown in the text for
the solution parameters ε = 10−3, K = −0.1, K0 = 500, and different functional parameter ϕ(τ ) defined from (a) dϕ(τ )

dτ
= PK2 + a0; (b)

dϕ(τ )
dτ

= PK2 + a0(1 + 0.5 cos [ 106τ

ε2 ]); (c) dϕ(τ )
dτ

= PK2 + a0 exp [ 105

ε2 τ ]; (d) dϕ(τ )
dτ

= PK2 + a0 exp [− 105

ε2 τ ], where a0 = 2000.

Weierstrass’s elliptic function method to derive exact bright,
kink, and dark solitary wavelike solutions of the dissipative
NLS equation of the network. Using the derived exact
solitary waves solutions, we have investigated analytically the
dynamics of bright, kink, and dark solitary waves through
the network and found the effects of the dissipative elements
of the network on the soliton propagation. We have shown

that the wave amplitude decreases while its width increases
when the dissipative element of the network increases. We
also shown that neither the wave amplitude nor its width
varies as the solitary waves propagates along the network.
Our investigations show that the dissipative elements of the
network can be used to manipulate the motion of bright, kink,
and dark solitary waves through the network.
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