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Modeling of matter-wave solitons in a nonlinear inductor-capacitor network
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A lossless nonlinear LC transmission network is considered. With the use of the reductive perturbation method
in the semidiscrete limit, we show that the dynamics of matter-wave solitons in the network can be modeled
by a one-dimensional Gross-Pitaevskii (GP) equation with a time-dependent linear potential in the presence of
a chemical potential. An explicit expression for the growth rate of a purely growing modulational instability
(MI) is presented and analyzed. We find that the potential parameter of the GP equation of the system does not
affect the different regions of the MI. Neglecting the chemical potential in the GP equation, we derive exact
analytical solutions which describe the propagation of both bright and dark solitary waves on continuous-wave
(cw) backgrounds. Using the found exact analytical solutions of the GP equation, we investigate numerically the
transmission of both bright and dark solitary voltage signals in the network. Our numerical studies show that
the amplitude of a bright solitary voltage signal and the depth of a dark solitary voltage signal as well as their
width, their motion, and their behavior depend on (i) the propagation frequencies, (ii) the potential parameter,
and (iii) the amplitude of the cw background. The GP equation derived in this paper with a time-dependent
linear potential opens up different ideas that may be of considerable theoretical interest for the management of
matter-wave solitons in nonlinear LC transmission networks.
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I. INTRODUCTION

For many decades, the formation and propagation of
nonlinear matter waves in nonlinear dispersive media have
been the subjects of intensive studies [1–12]. Many studies
show that nonlinear electrical networks (NLENWs) appear as
a good example of real nonlinear dispersive media that allows
one to study the different properties of solitary waves and to
model the exotic properties of new systems [3,5,12–21].

A NLENW comprises a transmission line periodically
loaded with varactors, where capacitance nonlinearity arises
from a variable depletion layer width, which depends
both on the dc bias voltage and on the ac voltage of
the propagating wave. For example, the model shown in
Fig. 1 [22] is a one-dimensional (1D) discrete electrical
network made of ladder-type LC circuits containing constant
inductors, voltage-dependent capacitors, and dissipative
elements [16,18,22]. The nonlinear capacitors are usually
reverse-biased capacitance diodes.

As far we know, work on the dynamics of matter-wave
solitons in Noguchi electrical networks based on the Gross-
Pitaevskii (GP) equation are lacking. In this paper, we aim to
apply the reductive perturbation method in the semidiscrete
limit [6] to show that the dynamics of modulated waves in a
modified lossless Noguchi electrical network shown in Fig. 1
can be governed by a Gross-Pitaevskii equation with a linear
potential. We investigate the modulational instability of our
system and derive the analytical expression for the growth rate
(gain) in terms of the coefficients of the derived GP equation.
Then, we derive some analytical solitary wave solutions of
the derived GP equation of the dynamics. Obtaining such
analytical solutions allows one to test the validity of the
Gross-Pitaevskii equation, obtain the long-time evolution of
the soliton where numerical techniques may fail, and helps to

understand soliton formation and propagation in the network.
The outline of the paper is as follows. In Sec. II, we present
our model, derive a Gross-Pitaevskii equation with a linear
potential that describes the dynamics of modulated waves in
the networks, and investigate the modulational instability (MI)
of the continuous-wave solution of the derived GP equation.
Through exact solitonic solutions of the GP equation of the
dynamics, we investigate analytically the soliton propagation
in our model in Sec. III. Section IV concludes our paper.

II. MODEL DESCRIPTION AND GP EQUATION
OF THE DYNAMICS

A. Model description and basic equations

The model used in this paper is the modified Noguchi
one-dimensional (1D) electrical network illustrated in Fig. 1.
The nonlinear capacitor C of the network consists of a
reverse-biased diode with differential capacitance functions
of the voltage Vn across the nth capacitor. This capacitor
is biased by a constant voltage Vb and depends on the
voltage Vn, for low voltage, at cell n as C(Vb + Vn) = dQn

dt
≈

C0(1 − 2αVn + 3βV 2
n ), where C0 = C(Vb) is the characteris-

tic capacitance, α and β are the nonlinear coefficients of the
electrical stored charge Qn, and n is for the number of cells in
the network [3,22,23].

Applying Kirchhoff’s laws on the network of Fig. 1 yields
a system of nonlinear discrete equations

d2Vn

dt2
+ u2

0(2Vn − Vn−1 − Vn+1) + ω2
0Vn + G2

C0

dVn

dt

+ λS

d2

dt2
(2Vn − Vn−1 − Vn+1)

= d2

dt2

(
αV 2

n − βV 3
n

)
, n = 1,2, . . . ,N, (1)
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FIG. 1. Schematic representation of one unit cell of a dissipative
modified discrete Noguchi electrical network with the linear inductor
L1 in parallel with a linear capacitance CS in a series branch and a
linear inductor L2 in parallel with a nonlinear capacitor C in a parallel
branch. The network is composed of N identical cells.

where u0 =
√

(L1C0)−1 and ω0 =
√

(L2C0)−1 are the charac-
teristic frequencies of the network, and λS = CS/C0. When
using Eq. (1) to experience the transmission of matter-wave
solitons through the model shown in Fig. 1, one excites the left
extremity of the line and chooses the total number N of cells
of the network so as not to encounter the wave reflection at the
end of the network. In the numerical simulations, we will use
the following typical line parameters [22],

L1 = 220 μH, L2 = 470 μH,

Vb = 2 V, C0 = C(Vb) = 370 pF,

CS = 56 pF, α = 0.21 V−1, β = 0.0197 V−2. (2)

B. Gross-Pitaevskii equation of the dynamics

In this paper, we focus on waves with a slowly varying
envelope in time and space with regard to a given angular
frequency ω = ωp = 2πfp and wave number k = kp. In order
to apply the reductive perturbation method [6,18] to obtain
short-wavelength envelope solitons, we introduce the slow
envelope spatial and temporal variables x = ε(n − υgt) and
τ = ε2t , where ε is a small parameter that measures the
smallness of the modulation frequency and the amplitude of
the input waves, n is the cell number, and υg is the group
velocity of the linear wave packets. Therefore, voltage Vn(t)
of cell n at time t depends explicitly on the slow envelope
variables x and τ so that we will be able to separate fast and
slow variations of Vn in both space and time. The solution of
(1) is then sought in the following general form [6],

Vn(t) = εu(x,τ ) exp [iθ ] + ε2ψ1(x,τ )

+ ε2ψ2(x,τ ) exp[2iθ ] + c.c., (3)

where θ = kn − ωt is the rapidly varying phase (k and ω

are respectively the wave number and the angular frequency),
and c.c. stands for the complex conjugation. The ε2 terms,
that is, the dc term ψ1(x,τ ) and the second-harmonic term
ψ2(x,τ ), are added to the fundamental term u(x,τ ) in order to
take into account the asymmetry of the charge-voltage relation
given by Eq. (1). During the computations, nonzero voltages
Vn±1(t) lead to functions of the form F (x ± ε,τ ), which will

be expanded in the continuum limit around F (x,τ ), that is,
F (x ± ε,τ ) ≈ F (x,τ ) ± ε ∂F

∂x
+ ε2

2
∂2F
∂x2 + · · · , so that the fast

changes of the phase θ in Eq. (3) are correctly taken into
account by considering differences in the phase for the discrete
variable n. Then we keep up to second order the derivative
terms of F to balance dispersion and nonlinearity. Substituting
Eq. (3) into Eq. (1) yields a series of inhomogeneous equations
at a different order (ε, exp [iθ ]).

The terms of O(ε) for the first harmonic, that is, the equation
at order (ε, exp [iθ ]), leads to the linear dispersion relation of
a typical passband filter,

ω2 = ω2
0 + 4u2

0 sin2 k
2

1 + 4λs sin2 k
2

, (4)

in which the wave number k is taken in the Brillouin zone
(0 � k � π ). It is clear that the linear spectrum corresponding
to the linear dispersion law (4) has a gap f0 = ω0/2π

(corresponding to k = 0), which is the lower cutoff frequency
introduced by the parallel inductance L2 and is limited by

the cutoff frequency fmax =
√

(ω2
0 + 4u2

0)/(1 + 4λs)/2π due
to the intrinsic discrete character of the lattice.

An equation at order (ε2, exp [iθ ]) leads to the equation

∂u

∂τ
+ dω

dk

∂u

∂x
= 0. (5)

Equation (5) means that u(x,τ ) represents a traveling wave
moving with group velocity,

υg = dω

dk
=

(
u2

0 − λSω
2
)

sin k

ω
(
1 + 4λS sin2 k

2

)
=

(
L2
L1

C0 − CS

)
sin k

L2C0ω
(
C0 + 4Cs sin2 k

2

)2 .

For υg to be non-negative in the Brillouin zone (0 � k � π ),
the linear capacitance CS must satisfy the condition CS �
L2C0/L1. At the limit CS = L2C0/L1, the group velocity υg

will be zero and the packets will not move (standing wave
packets). When CS → L2C0/L1 − 0, the group velocity υg

becomes nearly zero. It is important to notice that group
velocities associated with the cutoff frequencies f0 and fmax

are also zero. Therefore, wave packets with cutoff frequencies
are standing waves.

An equation at order (ε4, exp [0iθ ]) leads to the equation

∂2ψ1

∂x2
= 2αωυ2

g

υ2
g − u2

0

∂2|u|2
∂x2

,

with the general solution

ψ1(x,τ ) = 2αωυ2
g

υ2
g − u2

0

|u|2 + χ0(τ )x + χ1(τ ), (6a)

where χ0(τ ) and χ1(τ ) are two arbitrary real functions of time
τ . In the limit of standing waves, that is, when CS = L2C0/L1,

Eq. (6a) leads to ψ1(x,τ ) = χ0(τ )x + χ1(τ ).
At order (ε2, exp [2iθ ]), we obtain the second-harmonic

term ψ2(x,τ ) in terms of the fundamental term u(x,τ ) as

ψ2(x,τ ) = 4αω2

4ω2 − ω2
0 + 4

(
4λSω2 − u2

0

)
sin2 k

u2. (6b)
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With the use of Eqs. (6a) and (6b), we obtain at order
(ε3, exp [iθ ]) the following equation,

i
∂ψ

∂τ
+ P

∂2ψ

∂x2
+ Q|ψ |2ψ + λ(τ )xψ = 0, (7a)

where

ψ(x,τ ) = ue−i
∫

χ(τ )dτ , λ(τ ) = − αω

1 + 4λs sin2 k
2

χ0(τ ),

χ (τ ) = − αω

1 + 4λs sin2 k
2

χ1(τ ),

P = − υ2
g

2ω

(
1 + 4λS sin2 k

2

)
+

(
u2

0

2ω
− λSω

2

)
cos k − 2λSυg sin k,

Q = ω

(
3β

2
− 4α2ω2

4ω2 − ω2
0 + 4

(
4λSω2 − u2

0

)
sin2 k

− 2α2υ2
g

υ2
g − u2

0

)
. (7b)

When λ(τ ) = 0, Eq. (7a) coincides with the nonlinear
Schrödinger equation obtained in Ref. [22] when the dissi-
pative term is ignored. Henceforth, we focus on the case when
λ(τ ) is not a trivial function. Equation (7a) under the condition
λ(τ ) �= 0 is known as a Gross-Pitaevskii equation with a linear
potential [24,25]. In the context of Bose-Einstein condensates,
ψ(x,τ ) is the macroscopic wave function of the condensate, x

is the coordinate normal to the surface of the condensate such
that the bulk of the condensate exists in the region x < 0, and
V (x,τ ) = λ(τ )x is the background or linear trapping potential
and may correspond to the gravitational field with strength
λ(τ ). Also, χ (τ ) appearing in Eq. (7b) corresponds to the
chemical potential of the system. In the absence of an external
potential (i.e., λ = 0), Eq. (7a) becomes exactly integrable and
supports both bright (PQ > 0) and dark (PQ < 0) solitary
wave solutions. In the numerical calculations below, we will,
for simplicity, work with χ1(τ ) = 0 so that ψ(x,τ ) = u(x,τ ).

C. Modulational instability investigations
in Noguchi electrical network

Equation (7a) admits the continuous-wave (cw) solution

ψc(x,τ ) = Ac exp [i�c(x,τ )], (8a)

in which Ac is the constant real amplitude, �c(x,τ ) =
Kc(τ )x + QA2

cτ − Pωc(τ ) + δ0c is the phase, and Kc(τ ) and
ωc(τ ) are respectively the wave number and frequency of the
carrier, satisfying the equations

dKc

dτ
= λ(τ ),

dωc

dτ
= K2

c . (8b)

To investigate the modulational instability of the carrier, we
consider a small perturbation of the continuous-wave solution
(8a) as follows,

ψ(x,τ ) = [1 + δψ(x,τ )]Ac exp [i�c(x,τ )], (8c)

where δψ(x,τ ) is a small perturbation on the wave amplitude.
Substituting Eq. (8c) into Eq. (7a) and keeping only linear
terms in δψ and its complex conjugate yields

i
∂δψ

∂τ
+ P

∂2δψ

∂x2
+ 2iPKc

∂δψ

∂x
+ QA2

c

[
δψ + δψ∗] = 0.

(8d)

Now, we seek a solution for Eq. (8d) in the form

δψ(x,τ ) = B1 exp

[
i

(
Kx −

∫ τ

0
�(y)dy

)]
+B∗

2 exp

[
−i

(
Kx −

∫ τ

0
�∗(y)dy

)]
, (9)

where Kx − ∫ τ

0 �(y)dy is the modulation phase, K and �

are respectively the wave number and complex frequency of
the modulation waves, and B1 and B2 two complex constants
satisfying the condition |B1| + |B2| > 0. Inserting Eq. (9) into
Eq. (8d) leads to the following homogeneous algebraic system
with respect to B1 and B2,[

� + QA2
c − PK2 − 2PKcK

]
B1 + QA2

cB2 = 0, (10a)

−QA2
cB1 + [

� − QA2
c − 2PKcK + PK2

]
B2 = 0. (10b)

For system (10a) and (10b) to admit nontrivial solutions, it is
necessary and sufficient that its determinant should be zero:

(� − 2KPKc)2 − K2P 2
(
K2 − 2P −1QA2

c

) = 0. (10c)

Solving Eq. (10c) in � yields

�(τ ) = 2PKKc(τ ) ± |P |K
√

K2 − 2P −1QA2
c , (10d)

with Kc = Kc(τ ) being any solution of the first equation in
Eq. (8b). It follows from Eq. (10d) that for negative PQ, the
frequency of modulation �(τ ) will be real for all wave numbers
K , and the plane wave (8a) will be stable under modulation.
For positive PQ, �(τ ) remains non-negative for wave number
K satisfying the condition K2 � 2P −1QA2

c , leading to the
modulational stability of the plane wave (8a). For wave
numbers K satisfying the condition 0 < K2 < 2P −1QA2

c ,
�(τ ) will have non-nil imaginary part for positive PQ, leading
to the growth rate (gain) of modulational instability

|Im[�(τ )]| = |P |K
√

2P −1QA2
c − K2. (11)

In Eq. (11) the potential parameter λ(τ ) defined by Eq. (7b)
does not affect the domain of the MI of the continuous
plane wave (8a). We have thus shown that the modulational
(in)stability of the continuous plane wave solution (8a) of the
GP Eq. (7a) with a linear potential only depends on the sign of
the product PQ. With the use of the network parameters (2),
we show in Fig. 2(a) the evolutions of the dispersive coefficient
P (solid line) and nonlinear coefficient Q (dotted-dashed line)
as functions of the wave number k of the carrier (dashed line).
As we can see from the plot of P , the dispersive coefficient P

is null for k = kz, while the nonlinear coefficient Q is null for
two values of k, kq1 and kq2 . From the plots of P and Q, it is
seen that the product PQ is positive for k ∈]kq1 ,kz[∪]kq2 ,π [,
and negative for k ∈]0,kq1 [∪]kz,kq2 [. Figure 2(b) shows the
evolution of the frequency f = ω/2π as a function of wave
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FIG. 2. (a) Behavior of the dispersive coefficient P (solid line) and plots of the nonlinear coefficient Q (dotted-dashed line) as functions of
the wave number k for network parameters (2). (b) Linear dispersive curve showing the evolution of the frequency f = ω/2π as a function of
the wave number k for network parameters (2). Here, fz = ω(kz)/2π , fq1 = ω(kq1 )/2π , and fq2 = ω(kq2 )/2π , with kz and kq1 and kq1 being
respectively the zeros of P (k) and Q(k).

number k. With the help of Fig. 2(a), we have divided, as
one can see from Fig. 2(b), the frequency domain [f0,fmax]
into four regions concerning the modulational instability of
the plane wave and the possible soliton solutions of the GP
Eq. (7a): two regions of positive PQ (]fq1 ,fz[ and ]fq2,fmax])
corresponding to the MI of the plane wave and leading to
envelope solitons, and two regions of negative PQ ([f0,fq1

[ and ]fz,fq2 [) corresponding to the modulational stability of
the plane wave and leading to hole solitons.

III. ANALYTICAL INVESTIGATION OF SOLITON
PROPAGATION IN THE NETWORK OF FIG. 1

With the help of the solitary wave solutions of the GP
Eq. (7a), we investigate in this section the propagation of both
bright (PQ > 0) and dark (PQ < 0) solitary waves in the
network of Fig. 1. To experience the propagation of solitary
waves through the model shown in Fig. 1 for several bands
of frequencies, we follow Marquie et al. [26] and excite the
left extremity of the network with a solitary wave solution of
the GP Eq. (7a). To avoid signal reflection that disturbs the
accurate observation of the wave propagation in the line, the
voltage across the right extremity is set to zero.

A. Propagation of bright solitary voltage signal
in the network of Fig. 1

The propagation of bright solitary waves in the network
of Fig. 1 is associated with the positivity of product PQ. As
we have shown in the previous section, Eq. (7a) admits the
continuous-wave solution

ψc(x,τ ) = Ac exp[i�c(x,τ )], (12a)

�c(x,τ ) = Kc(τ )x + A2
cQτ − Pωc(τ ) + δ0c,

dKc

dτ
= λ(τ ),

dωc

dτ
= K2

c (τ ). (12b)

Using the cw solution (12a) and (12b) as a seed solution, we
follow Kengne and Talla [27] and look for bright solitonic
wave solutions of Eq. (7a) in the form

ψ(x,τ ) = [Ac + �(x,τ )] exp [i�c(x,τ )], (13)

where �(x,τ ) is a complex function. Inserting Eq. (13) into
Eq. (7a) yields

i
∂�

∂τ
+ P

∂2�

∂x2
+ Q|�|2� + 2iPKc

∂�

∂x

+QA2
c(� + �∗) + QAc(�2 + 2|�|2) = 0. (14)

Now, we seek solitary wave solutions of Eq. (14) in the form

�(x,τ ) = As

γ cosh ξ + cos ϕ + iμ sin ϕ

cosh ξ + γ cos ϕ
, (15)

where As , γ , and μ are three real constants with μ �= 0,
and ξ = ξ (x,τ ) and ϕ = ϕ(τ ) are two real functions to be
determined. Asking that function (15) satisfies Eq. (14), we
obtain for As �= 0, after some long calculations,

ξ (x,τ ) = Asμ

√
Q

2P
[x − 2Pυ(τ ) + ξ̃0],

ϕ(τ ) = A2
sμ

Q

2P
τ + η0,

μ2 = A2
s − 4A2

c

A2
s

, γ = −2Ac

As

,
dυ

dτ
= Kc(τ ), (16)

under the condition A2
s − 4A2

c > 0. Inserting Eq. (15) into
Eq. (13), we obtain the following bright solitonic solution of
Eq. (7a),

ψ(x,τ ) =
(

Ac + As

γ cosh ξ + cos ϕ + iμ sin ϕ

cosh ξ + γ cos ϕ

)
× exp [i�c(x,τ )]. (17)

where ξ , ϕ, γ , and μ are defined by Eq. (16). Inserting
solution (17) into Eq. (3) [we remember that χ1(τ ) = 0 so
that ψ(x,τ ) = u(x,τ )] and using Eqs. (6a) and (6b), we can
analytically instigate the propagation of bright solitary waves
in the network of Fig. 1.
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FIG. 3. Propagation of bright solitary signals [associated with solution (20) of the GP Eq. (7a)] at different frequencies through cell n = 250
of the network of Fig. 1 for solution parameters λ0 = 0.2, υ0 = 10−5, K0 = −100, δ̃0c = 0, and As = 6. Solitary wave propagating at frequency
(a) f = 930.524 kHz, (b) f = 930.56 kHz, (c) f = 930.589 kHz and (d) frequency f = 930.61 kHz. Different plots are obtained with the use
of network parameters (2) and ε = 10−3.

In solution (17) with parameters (16), Ac, As , ξ̃0, and η0

are arbitrary real constants. The constants ξ̃0 and η0 have
the trivial effect of shifting the solutions in the x and t

coordinates, respectively. Therefore, from now on we set ξ̃0 =
η0 = 0. In what follows, we focus on two cases, AcAs = 0
and AcAs �= 0.

1. Case Ac As = 0 and |Ac| + |As|〉0

When As vanishes or Ac vanishes, Eq. (17) turns into the
cw background,

ψ(x,τ ) = Ac exp [i�c(x,τ )], (18a)

FIG. 4. Profile of bright solitary signals [associated with solution (20) of the GP Eq. (7a)] at time t = 0.1 s propagating at different
frequencies for the network parameters (2) with ε = 10−3 and solution parameters λ0 = 0.2, υ0 = 10−5, K0 = −100, δ̃0c = 0, and As = 6.
Solitary wave propagating at frequency (a) f = 930.524 kHz, (b) f = 930.56 kHz, (c) f = 930.589 kHz, and (d) f = 930.61 kHz.
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FIG. 5. Bright solitary signal voltage (in V) as a function of cell
number n of the network at times t = 0.105 s of the propagation of
a wave moving with different group velocities. Bright solitary wave
moving with (a) group velocity υg = 4993.44 cell/ms at carrier fre-
quency f = 930.626 kHz, (b) group velocity υg = 16 355.4 cell/ms
at carrier frequency f = 930.6 kHz, and (c) group velocity υg =
31 507.9 cell/ms at carrier frequency f = 930.524 kHz. To generate
different plots, we have used the same network and solution
parameters as in Figs. 3 and 4.

and into the bright soliton,

ψ(x,τ ) = As

cosh
[
As

√
Q

2P
[x − 2Pυ(τ )]

]
× exp [i�c(x,τ ) ± iϕ], (18b)

respectively, where the analytical expression for υ(τ ) can be
obtained by combining Eqs. (12b) and (16),

υ(τ ) =
∫ τ

0

[∫ y

0
λ(z)dz + K0

]
dy + υ0, (18c)

with υ0 = υ(0) and K0 = Kc(0) being two arbitrary real
constants. Therefore, in general, the exact solution (17)
describes a solitary wave embedded on a cw background
[28], and when Ac � As , the background is small within the
existence of the bright soliton. It is seen from solution (18b)

that (i) As is the amplitude of the bright soliton, and (ii) the
center of the bright soliton is ζ (τ ) = 2Pυ(τ ) and satisfies the
equation

d2ζ

dτ 2
+ 2κ(τ )ζ = 0, (19)

with κ(τ ) = − λ(τ )
2υ(τ ) . Equation (19) means that the center of

mass of the wave packet behaves as a classical particle, and
allows one to manipulate the motion of bright solitons in the
network by controlling the potential parameter λ(τ ). (iii) The
trajectory of a given soliton peak is obtained from the condition
ξ = 0, leading to x = 2Pυ(τ ). In what follows, we take some
examples to demonstrate the dynamics of bright solitons in the
network of Fig. 1 associated with different kinds of strength
λ(τ ).

First, we consider the time-independent linear potential
with strength λ(τ ) = λ0 [see Eq. (7b)] and obtain the bright
soliton solution

ψ(x,τ ) = As

cosh
[
As

√
Q

2P

(
x − 2P

{
λ0
2 τ 2 + K0τ + υ0

})]
× exp [i�(x,τ )], (20)

where �(x,τ ) = [λ0τ + K0]x − P [ λ2
0

3 τ 3 + λ0K0τ
2 + K2

0 τ ]
+A2

s
Q

2P
τ + δ̃0c. In this situation, the trajectory of a given

soliton peak is x(τ ) = Pλ0τ
2 + 2PK0τ + 2Pυ0. The tra-

jectory is thus parabolic in time with an acceleration of
d2x/dτ 2 = 2Pλ0. Mathematically, the trajectory of a given
soliton peak will be concave left on (the curve is situated at the
left of the tangent at each of its points) if Pλ0 > 0 and concave
right on (the curve is situated at the right of the tangent at each
of its points) if Pλ0 < 0.

With the use of solution (20) of the GP Eq. (7a), we show
respectively in Figs. 3 and 4 the time evolution of solitary
signals at different frequencies through cell n = 250 of the
network of Fig. 1 and the solitary wave profiles at time t = 0.1 s
propagating at different frequencies. As we can see from these
plots, the form of a solitary wave along both the time and space
axes depends on its frequency. Waves shown in plots (a)–(d) of

FIG. 6. Effects of strength λ(τ ) of the linear trapping potential on a bright solitary signal voltage propagating at a frequency f = 930.6 kHz
through the network of Fig. 1. Plots of the left panel (I) show the profiles of a bright solitary signal voltage at time t = 0.115 s for (a) λ0 = 0.2,
(b) λ0 = 108, and (c) λ0 = 1.5 × 108, while plots of the right panel (II) show the profiles of a bright solitary signal voltage at time t = 0.115 s for
(a) λ0 = −0.2, (b) λ0 = −108, and (c) λ0 = −1.5 × 108. To generate different plots, we have used the same network and solution parameters
as in Fig. 3.
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Figs. 3 and 4 propagate with group velocities υg = 31 507.9,
25 446.3, 19 385.5, and 13 325.4 cell/ms, respectively. The
plots of Figs. 3 and 4 also show that the wave speed increases
with the group velocity of the propagating wave. This behavior
is well seen in Fig. 5. Figures 3–5 also reveal that the bright
solitary voltage oscillates symmetrically around the zero volt-
age as the carrier frequency approaches the cutoff frequency
fmax = 930.628 kHz. Figure 6 shows the profiles at time t =
0.115 s of bright solitary signal voltages obtained for different
strengths λ(τ ) = λ0 of the linear trapping potential. The plots
of this figure reveal that (i) the bright solitary wave velocity
decreases as strength λ(τ ) = λ0 > 0 increases and λ(τ ) =
λ0 < 0 decreases, and (ii) the bright solitary wave oscillates
symmetrically around the zero voltage for only small λ0. This
last behavior is well seen in Fig. 6(d). The plots of Fig. 6 thus

show how much strength λ(τ ) = λ0 of the linear trapping
potential may affect the wave trajectory and its velocity. It is
important to note that all carrier frequencies f used in Figs. 3–6
are taken in the MI region satisfying the conditions P (k) <

0 and Q(k) < 0 (the rightmost region in Fig. 2). Therefore,
Pλ0 > 0 for negative λ0 and Pλ0 < 0 for positive λ0.

Second, we consider the temporal periodic modulation of
the linear potential with strength λ(τ ) = λ0(1 + m sin aτ ),
where λ0 �= 0 and a �= 0 are any real numbers, and 0 < m < 1.
According to Eqs. (12b) and (18c), we have Kc(τ ) =
λ0(τ − m

a
cos aτ ) + K0, υ(τ ) = λ0( 1

2τ 2 − m
a2 sin aτ ) +

K0τ + υ0, and ωc(τ ) = λ2
0

3 τ 3 + K0λ0τ
2 + (K2

0 + λ2
0m

2

2a2 )τ −
( 2K0λ0m

a2 + 2mλ2
0

a2 τ ) sin aτ − 2mλ2
0

a3 cos aτ + m2λ2
0

4a3 sin 2aτ + ωc0.
According to Eq. (18b), we get the bright one-solitary wave

FIG. 7. Effects of the strength λ(τ ) on bright solitary waves propagating at a carrier frequency f = 930.626 kHz for the network
parameters (2) with ε = 10−3 and for the solution parameters [see Eq. (21)] υ0 = 15 × 10−6, K0 = −100, δ̃0 = ωc0 = 0. The top plots (I) and
(II) respectively show the spatial evolution at time t = 0.022 s and the temporal evolution through cell n = 250 of a bright solitary signal
voltage in the network for m = 0.1, a = 0.2, and three values of parameter λ0: (a) λ0 = 1350, (b) λ0 = 1450, and (c) λ0 = 1550. The middle
plots (III) and (IV) respectively show the spatial evolution at time t = 0.025 s and the temporal evolution through cell n = 250 of a bright
solitary signal voltage in the network for λ0 = 1500, m = 0.1, and three values of parameter a: (a) a = 0.2, (b) a = 0.22, and (c) a = 0.24.
The bottom plots (V) and (VI) respectively show the spatial evolution at time t = 0.2 s and the temporal evolution through cell n = 250 of
a bright solitary signal voltage in the network for λ0 = 1500, a = 0.2, and three values of parameter m: (a) m = 0.11, (b) m = 0.12, and (c)
m = 0.13.
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solution

ψ(x,τ ) = As

cosh
[
As

√
Q

2P

(
x − 2P

{
λ0
2 τ 2 + K0τ − λ0m

a2 sin aτ + υ0
})] exp [i�(x,τ )], (21)

where �(x,τ ) = Kc(τ )x + A2
s

Q

2P
τ − Pωc(τ ) + δ̃0. In the

present situation, the trajectory of a given soliton peak is
x(τ ) = Pλ0τ

2 + 2PK0τ − 2Pλ0m

a2 sin aτ + υ0.
With the use of solution (21), we show in Fig. 7, for different

parameters of the strength λ(τ ), the spatial (left panels) and
temporal (right panel) evolution of the bright solitary signal
voltage. The top, middle, and bottom plots are obtained with
different values of λ0, a, and m, respectively. Plot (I) shows
that the bright solitary wave oscillates symmetrically around
the zero voltage with a velocity that increases with λ0, while
plot (II) reveals that the lifetime of a bright solitary signal
through a given cell increases as the parameter λ0 decreases.
Comparing the top and middle plots, we conclude that λ0 and

a have opposite effects on the propagation of bright solitary
waves through the network. It is seen from the top and bottom
plots that parameters λ0 and m have the same effect as the
wave propagation; indeed, when parameter a is chosen such
that sin aτ remains positive, the strength λ(τ ) of the trapping
potential increases with each λ0 and m.

2. Case Ac As �= 0

Here, we investigate the situation when solution (17)
with parameters (16) describes solitary waves embedded on
continuous-wave backgrounds. Let us rewrite solution (17)
here,

ψ(x,τ ) =
(

Ac + As

−2Ac cosh ξ + As cos ϕ ± i
√

A2
s − 4A2

c sin ϕ

As cosh ξ − 2Ac cos ϕ

)
exp [i�c(x,τ )], (22a)

ξ (x,τ ) = As

√
Q

(
A2

s − 4A2
c

)
2PA2

s

[x − 2Pυ(τ )], ϕ(τ ) = As

√
A2

s − 4A2
c

Q

2P
τ . (22b)

An analysis of Eqs. (22a) and (22b) reveals that the velocity
for the solitary wave still satisfies Eq. (19). In particular, when
λ(τ ) = λ0 exp [aτ ] with real parameters λ0 and a satisfying the
condition λ0a �= 0, we find υ(τ ) = λ0

a2 exp [aτ ] + Kc0τ + υ0

and �c(x,τ ) = ( λ0
a

exp [aτ ] + Kc0)x + (QA2
c − PK2

c0)τ −
P ( 2Kc0λ0

a2 exp [aτ ] + λ2
0

2a3 exp [2aτ ]) + �c0, with Kc0, υ0,
and �c0 being three arbitrary real constants. For the
network parameters (2), ε = 10−2, for solution parameters
�c0 = ωc0 = 0, Kc0 = 2 × 10−5, υ0 = 0, As = 1, and for the
strength λ = 570 exp [−12t] (that is, λ0 = 570 and a = −12),
we show in Fig. 8, for different values of Ac, the propagation of
bright solitary voltage signals embedded on continuous-wave
backgrounds. In Figs. 8(a) and 8(b), Ac = 10−3 � 1 = As

and the background is neglected (invisible) within the

existence of the bright solitary wave. In Figs. 8(c) and 8(d),
Ac = 0.1 = As/10 and the background is small (but visible)
within the existence of the bright solitary wave. In Figs. 8(e)
and 8(f), Ac = 0.499 	 As/2 and the background is large
within the existence of the bright solitary wave.

B. Propagation of dark solitary voltage signal
in the network of Fig. 1

Now, we consider the case when PQ < 0, leading to
a dark soliton solution of the GP Eq. (7a). In this case,
we seek a dark soliton solution of Eq. (7a) in the form
ψd (x,τ ) = (Ac + iAs tanh [y(x,τ )]) exp [iKd (τ )x + i�d (τ )],
where y(x,τ ) = ρ0x + y0(τ ), Kd (τ ), and �d (τ ) are functions
to be determined, and ρ0, ρc, and ρs are three real parameters.
Asking that ψd (x,τ ) satisfies Eq. (7a) leads to

ψd (x,τ ) =
√

−2P

Q

(
ρc ± iρs tanh

[
ρs

(
x ±

√
− Q

2P
y0(t)

)])
exp [iKd (τ )x + i�d (τ )], (23)

dKd

dτ
= λ(τ ), (24)

d�d

dτ
= −2P

(
ρ2

c − ρ2
s

) − PK2
d , (25)

dy0

dτ
= −2P

√
− Q

2P
(ρc ± Kd ), (26)
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FIG. 8. Propagation at frequency f = 930.62 kHz of bright solitary voltage signals associated with the solitary wave embedded on a
continuous-wave background (22a) and (22b) for different values of the solution parameter Ac: (a), (b) Ac = 10−3; (c), (d) Ac = 0.1; (e), (f)
Ac = 0.499. The left plots show the evolution of solitary bright signals embedded on continuous-wave backgrounds through cell n = 600.
The right plots show the spatial profile at time t = 0.1 s of solitary bright signals embedded on continuous-wave backgrounds in the network.
Different parameters used to generate these plots are given in the text.

where ρs = As

√
− Q

2P
and ρc = Ac

√
− Q

2P
. When

ρs = 0 or ρc = 0, ψd (x,τ ) reduces respectively to the

background ψd (x,τ ) = ρc

√
− 2P

Q
exp [iKd (τ )x + i�d (τ )]

and the dark solitary wave ψd (x,τ ) = ±iρs

√
− 2P

Q

tanh [ρs(x ±
√

− 2P
Q

y0(t))] exp[iKd (τ )x +i�d (τ )]. Thus,

ψd (x,τ ) represents a dark solitary wave embedded in the
background. It is seen from Eq. (23) that the amplitude of
the dark soliton is proportional to

√−2P/Q, while the width
is inversely proportional to

√−2P/Q. Thus Eq. (23) can
be used to describe the compression of dark solitary waves
when

√−Q/2P increases with the wave number k. Because
of the relationships between λ(τ ) and Kd [see Eq. (24)], the
soliton speed υd (τ ) = dx/dτ = ∓Q(ρc ± Kd ) is intimately
dependent on the potential parameter λ(τ ). In our numerical
simulation, we focus on the case with the “+” sign in Eqs. (23)
and (26).

Inserting solution (23) into Eq. (3) [we remember that
χ1(τ ) = 0 so that ψ(x,τ ) = u(x,τ )] and using Eqs. (6a)
and (6b), we can analytically instigate the evolution of
a dark solitary voltage signal in the network of Fig. 1
when the wave frequencies are taken from the region

of modulational stability of the plane wave, i.e., when
product PQ is negative. In the special case of a time-
independent linear trap potential, that is, when λ(τ ) = λ0

is a nonzero constant, Eqs. (24)–(26) lead to Kd (τ ) =
λ0τ + Kd0, �d (τ ) = −2P (ρ2

c − ρ2
s )τ − P

3λ0
(λ0τ + Kd0)3 +

�d0, and y0(τ ) = −2P

√
− Q

2P
(ρcτ + 1

2λ0
(λ0τ + Kd0)2) + y00,

where Kd0, �d0, and y00 are three arbitrary real constants.
In this situation, the soliton speed is υd (τ ) = −Qλ0τ −
Q(ρc + Kd0). Depending on the size and the sign of the poten-
tial parameter λ0, the soliton speed υd (τ ) can either be positive
during its propagation or negative during its propagation.

The main parameters appearing in solution (23)–(26) in
the special case λ(τ ) = λ0 �= 0 are the wave amplitudes ρc

and ρs , the wave numbers k = kp leading to the propagating
frequencies f = fp = ω(kp)/2π , and the potential parameter
λ0. Other free parameters Kd0, �d0, and y00 appear when
integrating Eqs. (24)–(26). Figures 9–11 show the time
evolutions of a dark solitary voltage signal through cell
n = 350 of the network for respectively different Ac and As ,
different wave numbers k, and different values of parameters
λ. As it is seen from these figures, each main parameter ρc, ρs ,
k, and λ0 leads to a particular profile of a dark solitary wave
propagating through the network. Each of these three figures
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FIG. 9. Effects of the continuous-wave background on a dark solitary voltage signal propagating through cell n = 350 at frequency
f = fp = 381.655 kHz for ρs = 0.121 39, λ0 = 0.1, y00 = 11.2, Kd0 = 10−5, �d0 = 0, and (a) ρc = 0, (b) ρc = 0.060 694 9, (c) ρc = 0.121 39,
and (d) ρc = 0.182 085.

is obtained with the use of the network parameters (2) and
ε = 10−2. Figure 9 shows the effects of the continuous-wave
background on a dark solitary wave. Figure 9(a) shows a dark
solitary wave propagating on a vanishing continuous-wave
background, i.e., when ρc = 0. Figures 9(b)–9(d) show dark
solitary waves embedded on a continuous-wave background
with respectively ρc < ρs , ρc = ρs , and ρc > ρs . The plots of
Fig. 9 show that the depth of the dark soliton decreases as
the parameter ρc of the background increases. It is seen from
Figs. 9(a)–9(d) that when ρc � ρs or ρs � ρc, the background
is small within the existence of a dark soliton or the dark soliton
is small within the existence of a continuous-wave background.
Figure 10 shows how much the carrier frequency f = fp

impacts the behavior of dark solitary waves embedded on
continuous-wave backgrounds during its propagation through
a given cell of the network. The change in the behavior
(deformation) of the wave with its carrier frequency is due
to the coefficient of u2 in the expression of the second-
harmonic terms ψ2 given by Eq. (6b). The effects of the
potential parameter λ = λ0 on dark solitons embedded on
continuous-wave backgrounds are shown in Fig. 11, showing
the time evolution of the dark solitary voltage signal for
positive (top plots) and negative (bottom plots) values of the
parameter λ0. The top and bottom plots show that the velocity
of the dark soliton decreases when the potential parameter λ0

increases.

FIG. 10. Influence of the carrier frequency on wave behavior during its propagation through cell n = 350 of the network for ρs

√
− 2P

Q
= 1,

ρc

√
− 2P

Q
= 0.5, λ0 = 0.1, y00 = 11.2, Kd0 = 10−5, �d0 = 0. (a) Time evolution of a dark soliton embedded on a continuous-wave background

for the frequency f = fp = 381.655 kHz, (b) f = fp = 381.658 kHz, (c) f = fp = 381.679 kHz, and (d) f = fp = 381.74 kHz.
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FIG. 11. Effects of the linear trap potential parameter λ = λ0 on dark solitary waves propagating at a frequency f = fp = 381.656 kHz
through cell n = 350 of the network for ρs = 0.121 39, ρc = 0.036 417, y00 = 11.2, Kd0 = 10−5, �d0 = 0. The top plots show the time
evolution of dark soliton for positive λ0: (a) λ0 = 10, (b) λ0 = 5000, and (c) λ0 = 104. The bottom plots show the time evolution of a dark
soliton for positive λ0: (d) λ0 = −10, (e) λ0 = −500, and (f) λ0 = −103.

One of the features of Fig. 11 is that the behavior of
the dark soliton shown in Fig. 11(f) is different from that
of other waves [Figs. 11(a)–11(e)]. Does Fig. 11(f) show
an interaction of two dark solitons embedded on the same
continuous-wave background? Our numerical computations
have shown that the wave behavior in Fig. 11(f) occurs for
many other λ0 ∈ [λ01,λ02], where λ01 < −100 < λ02. As we
can see from Fig. 12, the behavior shown in Fig. 11(f) also
depends on ρc.

C. Experimental validation

Suppose we have a pulse generator, for example, a pro-
grammable generator that allows us to create highly custom
pulse shapes by varying the amplitude at various points.
Moreover, suppose we have a numerical oscilloscope XSC1
which has a high impedance that is used to avoid signal
reflection. Then, for the experimental validation of our results,
one can follow Marquie et al. [26] and consider a nonlinear
electrical network with N = 45 identical cells in which each

FIG. 12. Impacts of the continuous-wave background on the behavior of dark solitary voltage signals propagating through cell n = 350
at frequency f = fp = 381.656 kHz for ρs = 0.121 39, λ0 = −103, y00 = 11.2, Kd0 = 10−5, �d0 = 0, and (a) ρc = 0.036 417, (b) ρc =
0.012 139, (c) ρc = 0.001 213 9, and (d) ρc = 0.
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diode BB112 is biased by Vb = 2 V, and matched by a resistor
in order to simulate an infinite line. The waves are then created
by using the programmable generator, and the wave forms
are observed and stored by using the numerical oscilloscope
XSC1. After finding the best shape for unaltered propagation
(soliton), this could be compared to our theoretical results.

IV. CONCLUSION

In this paper, we have considered a modified Noguchi
electrical network and, by applying the reductive perturbation
method in the semidiscrete limit, we have showed that
the dynamics of the modulated waves in the network can
be governed by a Gross-Pitaevskii equation with a time-
dependent linear potential in the presence of a chemical
potential. We have shown that the potential parameter does
not affect the growth rate (gain) of the MI of our system.

We have found exact analytical solitary wave solutions of
the GP equation with derived time-dependent linear potentials
for both cases of modulational instability and modulational
stability of our system. Using these exact analytical solutions,
we have investigated numerically the transmission of both
bright and dark solitary voltage signals in the network, and
the effects of the potential parameter as well as those of the
carrier frequency on the propagation of solitary voltage waves
embedded on cw backgrounds in the network. Our studies
showed that the behavior of solitary waves propagating in
the network simultaneously depend on the wave frequency,
on the potential parameter, and on the amplitude of the cw
background. Our exact analytical solitary wave solutions can
be useful for investigating the dynamics of modulated waves
in other physical systems described by a GP equation with
a time-dependent linear potential, such as one-dimensional
Bose-Einstein condensates.
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