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Exact soliton solution and inelastic two-soliton collision in a spin chain driven
by a time-dependent magnetic field
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We investigate dynamics of exaldtsoliton trains in a spin chain driven by a time-dependent magnetic field
by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin pre-
cession around the magnetic field and periodic shape variation induced by the time-varying field as well. In
terms of the general soliton solutiors;soliton interaction and particularly various two-soliton collisions are
analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears
is generally due to the time-varying field. We, moreover, show that complete inelastic collisions can be
achieved by adjusting spectrum and field parameters. This may lead to a potential technique of shape control
of soliton.
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[. INTRODUCTION The outline of this paper is organized as follows. In Sec.
I, the formalism obtained by an inverse scattering transfor-
Over the past three decades, an enormous amount of liation is explained in detail and the genexasoliton solu-

erature has appeared throughout soliton physics and the uton for reflectionless case is obtained. Precession of nonlin-
derlying completely integrable models. The classical Heisen€ar spin waves in the oscillating magnetic field is shown in
berg spin chain which exhibits both coherent and chaotic€c- Ill. Section IV is devoted to general two-soliton solution
structures depending on the nature of the magnetic intera@-”d soliton collisions. Finally, Sec. V will give our conclud-
tions[1—4] has attracted considerable attentions in nonlineal"d remarks.
science and condensed-matter physics. Solitons in quasi-one-
dimensional magnetic systems have already been probed ex- !l EXACT SOLUTION OF N-SOLITON TRAIN

perimentally by neutron inelastic scatteriii§,6], nuclear Our starting Hamiltonian describing the spin chain in a

magnetic resonancg?,8], Mossbauer linewidth measure- ime oscillating magnetic field with an arbitrary direction can
ments[9], and electron spin resonanc]. The correspond- pe written as

ing theoretical studies are based usually on the Landau-
Lifshitz equation[11]. The isotropic spin chain has been N o oa A
studied in various aspecf¢2-16, and the construction of A=-32> &5 -gusB(t)- 2 &, @

. . . . . . (n,n") n
soliton solutions of Landau-Lifschitz equation with an easy
axis has been also discusddd,1§. It is demonstrated that where $,=(8,%/,&) with n=1,2, ... N are spin opera-
the inverse scattering transformatidt,19—-2] can be used tors, J>0 is the pair interaction parametey,is the Lande
to solve the Landau-Lifschitz equation for an anisotropiCtactor, 44 is the Bohr magneton, ar(t) = B cost)eis the
spin chain. Great effortf22,23 have been devoted to con- external magnetic field witle= (sin 6,0,cos) denoting the
struct the soliton solution which is found by means of theynit vector of field direction, where chain axis and direction
Darboux transformatioi24]. The continuum spin chain in  of magnetic field are assumed iz plane. The angled
an external magnetic field is of great interest and multisolitorbetween direction of magnetic field amdhxis is arbitrary.
solutions of Landau-Lifschitz equation for an isotropic spin  The equation of motion for the spin operator on tita

chain have been reportg@5]. Using Darboux transforma- site is (d/dt)énz—(i/h)[éh,ﬂ]. At low temperatures, the
tion, the nonlinear dynamics of anisotropic Heisenberg spin

chain in an external magnetic field is investigated and exactP!n can he treated as a classpal yector S.UCh m'at.
soliton solutions are obtaind@6]. Recently soliton interac- _’S.(X)' S0 thaF the equation of mot|or) In a continuum spin
tion has been investigatdd6]. The main goal of this paper chain under at_lme-_depend.ent magnetic field can be obtained
is to study the new effect of soliton-soliton interaction in a®sa Landau-Lifschitz type:

spin chain driven by time oscillating magnetic field. We ob- 5

tain exact solution oN-soliton trains in terms of an inverse ES: Sx ( ‘9_5+ 8) 2
scattering transformation. It is shown that inelastic collisions ot ax? '

generally appear due to the time-varying field and the com-

plete inelastic collisions which may lead to an interestingwith e=gugB(t)/(2J), where S(x,t)
technique of soliton filter and switch can be achieved in a= (S'(x,t),9(x,t),S%(x,t)). We set the length of the spin
special case. vector to unity for the sake of simplicitys?(x,t)=1. The
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dimensionless timeand coordinate in Eq. (2) are scaled in
units 1/(2J) andd, respectively, where denotes the lattice
constant.

The corresponding Lax equations for the equation of mo-

tion (2) are written as

Jd
&\P(x,t,)\)= LMW (X,t,N),

%\P(X,I,A)IM(A)\I’(X,I,)\), (3

where\ is the spectral parametéb,(x,t,\) is eigenfunction
corresponding ta.,, andL andM are given in the form

L=—ix(S o),
M= 'E(a 0)+i2\%(S- o) -\ (S 0')(%8-0'). (4)

Here o is Pauli matrix. Thus Eq(2) can be recovered from
the compatibility condition {/dt)L—(d/dx)M+[L,M]
=0. Based on the Lax equatiorni8), we derive the exact

N-soliton solution by employing the inverse scattering trans-
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\If,(x,)\)=Ue")‘x”3+)\f dyN(x,y)Ue Mo,

N(X,—©)=0, N(x,y)=0 asy<x, 9

whereK andN are 2<2 matrices. Substituting”, (x,\) of

Eq. (8) into Eq.(3) and notingUo3U ~"1=U,, we obtain
S o=[1—iK(x,X)Ug]Uq[ 1 —iK(x,x)Uo] %,  (10)

wherel is a unit matrix. It is obvious that Eq10) gives rise

to a relation between kern&l and spin vectolS to be ob-

tained.

The scattering data for the operatofx,\) are the ses
={a(\),b(A\);\,,Cqh, IMA>0n=1, ... N}, where|a(\)|?
+|b(\)|?=1, and the functiom(\) can be analytically con-
tinued to the half plane lim>0. The discrete eigenvaluas
for the operatoiL(x,\) are zeros ofa(\) such thata(\,)
=0 (for simplicity we consider only simple zeroS he func-
tionsa(\) andb(\) are seen to be transmission and reflec-
tion coefficients of the operatdr, respectively. The param-
eter c, denotes the asymptotic characteristics of the
eigenfunctions.

The time dependence of the scattering dgtg can be

formation. We consider the following natural boundary con-obtained from the second Lax equati(8),

dition of initial time (t=0): S(x)=(S%9,%9)

—(sin6,0,cosf) as|x|— 2, namely, the spin vector is along

a(\,t)=a(A,0),

the field direction. We then have the asymptotic form of Eq.

(3) at x| -,
AE(X,N)=Lo(N)E(X,\), (5)

where
E(x,\)=Ue Mxo3,

Lo(AM)=—iAUg (6)

and

0
1 —tani
U= .
0 (7
tani 1
The Jost solutionsl . (x,\) and ¥ _(x,\) of Eq. (3) are
defined as

cosd
Uo=

sing
siné '

—Ccosé

T, (X,N\)—E(X,\) as x—oo,

V_(X,\)—E(X,\) as x— —oo,

With standard procedures, one finds the following integral
representations of the Jost solutions in terms of the integra-

tion kernelsK andN to be determined:
\If+(x,)\)=Ue’i“"3+)\f dyK(x,y)Ue Nvos,
X

K(x,0)=0, K(x,y)=0 asy<x (8)

and

B sinwt
b(x,t)zex;{ —4i>\2t—ig“BJ—w‘") b(X,0),

An(t)=An(0),

cn(t):exp(—4ix§t—iw)cn(0), (11)
Jw

wherec,(0), b(\,0) anda(\,0), are constants determined
by initial conditions. The Gelfand-Levitan-Marchenko equa-
tion establishes a relation between the ketdék,y,t) and
the scattering dats(t) and has the form

K(x,y,t)U

1 1 (=
il -1 _
o tFit wa_mx r(\F,d\=0, (12)

asy>x, wherer(\)=b(\)/a(\) and

0\ & ¢, (t)
F :U _el)\n(x+y)
! (1);1 An
N

+f K(x,z,t)U(l) E cn(t)emn(y”)dz,

n=1

0\ o 0\ .
F2=U(1 e”‘x+)\J K(x,z,t)U(l)e'“dz. (13
X

For the reflectionless casg,\) =0, Eq.(12) becomes a set
of algebraic equations and after tedious calculation the ma-
trix elements of the kerne{ are obtained as
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centrate on the analyses of one-soliton dynamics and two-

0 0
Ku(X,th):COS?E B+ Botan; |, soliton collisions which may be of more interest.

IIl. ONE-SOLITON DYNAMICS AND SPIN PRECESSION

0 0
Ko X,X,t)= co§§ Bytan; - BZ} , (14 WITH TIME-VARYING AMPLITUDE

WhenN=1, from Egs.(14) and(17), we obtain the gen-

with eral form of the exact one-soliton solution as follows:
- b = R
det1+G"G'+D CtanE—CG’ S 1
B,= -1, I\1|*cosH®;
det(l+G’'G")
R,
—[ = 0 =
det|+G'G"~D'| C+CG'tan; IN1|%cost®,
B,= -1, (19 .
de(1 +G'G") S*=R3c0s0+ R,Sin 0, (19

where C(x,t), C’(x,t), D(x) are IXN matrices and Wwhere
G'(x,t), G"(x,t)NXN matrices, respectively. The super- 4 5 2 o
scriptT means the transposed matrix and the overbar denoted = [\ 1|*costf® 1+ B1(a1— Bicos 20)e 2 1]sing

complex conjugate, + B2\ 1]%(2 cog g sirPd, — 1)sing
C(XDn=Cn(t)N 7 D (X)n, +2B2|\1|(2B418ind,sirP O+ aycosd;)e” O1cosh
C'(X,1)y=Cn(t)D(X), —2B1(B1e 918in 0+ |\ 4|sind,cosh)[|\4|>cosh®
D(X), = expiAX), + B1(|\q]sin®,sing— B,e ®1cosh)cosb],

1 Ro=2a1 82|\ q|e” ®1sind, + 28, |\ 4| >cos®,cosh® ;
G'(X,t)nmzi——D(X)nC'(X,t)m,

(Ny—Ap) —2B3|\4|(sinf+cogh)e ®1cosd,,
G"(x,1) - D(x)nC' (x,1) (16) Ry=1 2P
X, = X X, . 37+ ’
" iAo " I\4]cosit®,

Substituting Eq.(14) into Eq. (10), we obtain the general

form of N-soliton trains, [2,85005{(1)1— ¢1)Sinh®

sz%Rq—i2K12[1—iK11c030]+[1+ K2,—K3,]sin6}, +2a,1B:8IN(P 31— ¢py)coshO ], (20
with

SY=_T1Im{—i2K12[1—iKllcos¢9]+[1+ K2, —K2,]sin6}, 0,=28,(x—Vit) =Xy,

Vi=4ay, x;=In[c1(0)/(261)],

Szzi{[l+|K |2—|K15%]cos8
A 111 12|

gugB .
©1=2ax— 4(af~ ft—=-sin(wt) — ¢1,

+2IM[K 14(1+iK 1,sin6) 1}, 17
— _ 2 2
whereK, is the complex conjugate o€, 0=[2(a1= D] a1+ Qp,
A=|1-i[K;,c080+ K ,sin 8]|%+|K 1;5in 6— K 1 ,c086)2. Qg=[gueB cogwt)]/(2a,J), (21)
(18

here ¢,=arg\,; andA ;= a4 +ipB is the eigenvalue param-
According to exactN-soliton solutions in Eq(17), we, gen-  eter. Solution(19) describes a spin precession around mag-
erally speaking, can investigate the dynamics of solitometic field direction characterized by four real parameters:
trains and soliton interaction. The neighboring solitons mayvelocity V,, frequency(),, coordinate of the center of the
repulse or attract each other with a force depending on thesolitary wavex,, and initial phasep,. The center of solitary
phase difference. Particularly we in the following shall con-wave moves with a velocity/;, while the wave depth and
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width vary periodically with time. The wave shape is modu-

lated periodically by frequenc{); depending on magnetic

field. Therefore, solutiori19) cannot be written as the form

of separating variables. Amplitudeand phaseb, are com- fg=¢&;

plicated functions of], B, w, and\;. When a;=;, the

frequency(),; depends on magnetic field only, and we have

Q,=Qp. If ;= andB=0, solution(19) reduces to the fg=&

usual soliton without shape changing. Therefore, we can use

magnetic field to adjust spin precession and the wave shape

as well. fo=—&
For a special case#=0, namely the magnetic field is

along thez-axis, $* is independent of magnetic fiel&*

=R;, while S* and S precess around the magnetic field ( fom — &

axig). The precession frequendy; is determined by mag- 8 2

netic field. As the magnetic field rotates frofi=0 (z axis)

to 6= /2 (x axig), we can find the correspondence such that 2B\ 282\,

S——-%, 99, S~ The three components of spin Xl:—i()\——m, Xz:—i(h——f)lﬂ,

vector satisfy “left-hand rule.” Wher= 7/2, S* is indepen- o2t 2 RUI%2

dent of magnetic field, whil&’ and S* precess around the W=, f,—faf

magnetic field x axis). These results show that the magnetic ’

field results in the motion of the center of solitary waves gi=e ©iti®

along the field direction and the spin vector rotates around . ’

the field in any case. &= 2,3]|7\j|—1, (24)

f4:;2|Q2|2+X251(12a

0 _
gutan; — |q1|2) ~x1620192,

6 ) —
Q2tan§ —]a2|%| = x2¢10192,

_ 5 0 - 0
q:+qq tani _§2X1Q1Q2tan§,

- — 0
- §1X2Q1Q2tan§v

— ) 0
G2t |dz|*tan;

IV. TWO-SOLITON COLLISION and

WhenN=2, from Eqgs.(14) and(17), the general form of 0;=28;(x=V;t)=x;,

the exact two-soliton solution is seen to be

S'=Rd —i2Q,(1—iQ;c0s6) + (1+ Q?—Q3)sind],

O =2a;x—4( 2—,fo’z)t—WBBsirl( t)— ¢
&=1m[i2Q,(1-1Q,c0s6) — (1+ Q23— Qd)sin ], R A P Il b R
= (1+]Q4]2— Q4|2 cosh+2Im[Q,(1+iQ,sin )], Q=[2(af = B}V aj+ Qg
22
(22 Qg=[gusB coqwt)]/(2a;J), (25

where
— -05 g7

0
cog 5 L 00

0 _ _
Q.= W ((fl_f3)f6+(f2_f4)f5+tan§[(f1_f3)f8

— 0.5

— 1.0

+<f_2—f_4>f7]j,

(&

b

Q2= 0 0 — —
CO§§W[[(f1—f3)f6+(f2—f4)f5]tan§—(f1—f3)f8 t
_(fz_f4)f7]: (23
-20
with
FIG. 1. Inelastic head on collision between two solitons—
fi=1+ |q1|2+x§2q152, profiles ofz componentS*(x,t) of spin vector in Eq(22) in a spin
chain under a time-dependent magnetic field showing two different
. 2, — dramatic scenarios of the shape changing collision, where
fa=1+1]0,|"+ x1x20102, = /36, \y=—0.2+10.45, A\,=0.3+i0.65, c;(0)=0.2, c,(0)
_ _ =3.5, (gugB)/J=0.01, =10, V,=-0.8, V,=1.2. All quanti-
f3=x1]01]%+ 19192, ties plotted are dimensionless.
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FIG. 2. (a) Complete inelastic head on collision expressed by

Eg. (22) when S, suppressed, wheré=0, \;=—0.35+i0.4, \, FIG. 3. (a) Complete inelastic overtake collision expressed by
=0.2-i0.6, ¢4(0)=0.2, c,(0)=2.5, (QugB)/J=0.01, w=10, Eq. (22) when S, suppressed, wheré=0, \;=—0.55+i0.4, \,
V;=-1.4, V,=0.8. All quantities plotted are dimensionlegb) =-—0.1-i0.45, ¢4(0)=0.2, c,(0)=2.5, (QugB)/J=0.01, w
Complete inelastic head on collision expressed by(E#).whenS, =10, V,=-2.2,V,=—0.4. All quantities plotted are dimension-

suppressed, wheré=0, \;=—0.35-i0.4, \,=0.2+i0.6, ¢,(0) less.(b) Complete inelastic overtake collision expressed by(E9).
=0.2,c,(0)=2.5, (QugB)/J=0.01, =10, V,;=—-1.4,V,=0.8. when S; suppressed, wher6=0, A\;=—-0.55-10.4, A\,=—-0.1
All quantities plotted are dimensionless. +i0.45, ¢1(0)=0.2, c,(0)=2.5, QugB)/J=0.01, =10, V,
=—2.2,V,=—0.4. All quantities plotted are dimensionless.
here ¢;=arg\; and \j=«;+ig; is the eigenvalue param-
eter,j=1,2. Solutions22) describe a general inelastic scat- described by a transition matrik such thatAf" = Al TF,
tering process of two solitary waves with different centerwhere the subscrigt=1,2, respectively, represents the first
velocitiesV; and V,, different shape-variation frequencies and the second solitok=Xx,y,z denote three components of
Q, and(,. Before collision, they move towards each other,each soliton, and the sigh denotes the asymptotic limits of
one with velocityV; and shape-variation frequen€y,, the  the corresponding amplitudlézlki , atx— *o. As a conse-
other withV, and(},. The interaction potential between two quence, change in amplitude of the three componghisf
solitons is a complicated function of parametd/B,w, and  the first soliton fromAfL* to A‘i* is given by square of tran-
Aj. When a;=B;, two-soliton shape-variation frequencies sition matriceg TX|? along with phase shifs® during col-
Q;(j=1,2) are determined by magnetic field. In the case Ofision. In a similar fashion, the three componestsof the
B=0, solutions(22) reduce to that of the usual two soliton second soliton also change amplitudes frAEﬁ to A'é* with

with two center V.GIOC't'eS wh|_le without a change in sh_ap_e,ﬁ quantity|T'§|2. The associate phase shift for the second
where an interesting process in the absence of magnetic flesdOliton is 50X We also note a net change of separation
is that the collision can result in the interchange of amplitude 2- 9 eparatio

A; and phaseb;(j=1,2) like exactly in the case of elastic distance between two solitons X, .

collision of two particles. For the special cadd}|=1, which is possible only when

In order to understand the nature of two-soliton interac-A2=—\1, we have the standard elastic collision. For all
tion, we analyze asymptotic behavior of two-soliton solu-other cases, we have the quantlfyﬂaﬁl, which corre-
tions (22). Asymptotically, the two-soliton wave®2) can be  sponds to the relative change among three components of the
written as a combination of two one-soliton wav@$§) with ~ spin vector leading to the deformation of soliton shape.
different amplitude and phase. The formation of two-solitonHowever, the total amplitude of individual solito8g andS,

waves in the corresponding limits— — o andx—o is simi-  is a conserved quantity, i.e2||A|ki|2 is constant forl
lar to that of one-soliton wave€l9). Analysis reveals that =1,2.
there is an amplitude exchange among three compoi®nts It is interesting to show the inelastic collision graphically.

S, and $* of each soliton during collision, which can be The general inelastic head on collision is explained in Fig. 1
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from which it is seen that the amplitudes §f,S, are, re- tion, the dynamics and soliton interactions are analyzed. The
spectively, suppressed and enhanced after collision. Figure @e-soliton solution gives rise explicitly to the spin preces-
is devoted to the complete inelastic head on collisions. Theion along with the soliton shape variation induced by the
amplitudes ofS; and S, are, respectively, suppressed aftertime-varying field. It is also shown that the time-varying
the collision shown in Figs. (3 and 2Zb). The complete field leads generally to the inelastic and particularly the com-
inelastic overtake collision is shown in Fig. 3 with the am- plete inelastic two-soliton collisions, which may be useful in

plitudes ofS;and S, suppressed, respectively.

V. CONCLUSION

developing a soliton-shape control technique.
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