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Exact soliton solution and inelastic two-soliton collision in a spin chain driven
by a time-dependent magnetic field
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We investigate dynamics of exactN-soliton trains in a spin chain driven by a time-dependent magnetic field
by means of an inverse scattering transformation. The one-soliton solution indicates obviously the spin pre-
cession around the magnetic field and periodic shape variation induced by the time-varying field as well. In
terms of the general soliton solutions,N-soliton interaction and particularly various two-soliton collisions are
analyzed. The inelastic collision by which we mean the soliton shape change before and after collision appears
is generally due to the time-varying field. We, moreover, show that complete inelastic collisions can be
achieved by adjusting spectrum and field parameters. This may lead to a potential technique of shape control
of soliton.
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I. INTRODUCTION

Over the past three decades, an enormous amount o
erature has appeared throughout soliton physics and the
derlying completely integrable models. The classical Heis
berg spin chain which exhibits both coherent and cha
structures depending on the nature of the magnetic inte
tions @1–4# has attracted considerable attentions in nonlin
science and condensed-matter physics. Solitons in quasi-
dimensional magnetic systems have already been probed
perimentally by neutron inelastic scattering@5,6#, nuclear
magnetic resonance@7,8#, Mossbauer linewidth measure
ments@9#, and electron spin resonance@10#. The correspond-
ing theoretical studies are based usually on the Land
Lifshitz equation @11#. The isotropic spin chain has bee
studied in various aspects@12–16#, and the construction o
soliton solutions of Landau-Lifschitz equation with an ea
axis has been also discussed@17,18#. It is demonstrated tha
the inverse scattering transformation@14,19–21# can be used
to solve the Landau-Lifschitz equation for an anisotro
spin chain. Great efforts@22,23# have been devoted to con
struct the soliton solution which is found by means of t
Darboux transformation@24#. The continuum spin chain in
an external magnetic field is of great interest and multisoli
solutions of Landau-Lifschitz equation for an isotropic sp
chain have been reported@25#. Using Darboux transforma
tion, the nonlinear dynamics of anisotropic Heisenberg s
chain in an external magnetic field is investigated and ex
soliton solutions are obtained@26#. Recently soliton interac-
tion has been investigated@16#. The main goal of this pape
is to study the new effect of soliton-soliton interaction in
spin chain driven by time oscillating magnetic field. We o
tain exact solution ofN-soliton trains in terms of an invers
scattering transformation. It is shown that inelastic collisio
generally appear due to the time-varying field and the co
plete inelastic collisions which may lead to an interest
technique of soliton filter and switch can be achieved in
special case.
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The outline of this paper is organized as follows. In S
II, the formalism obtained by an inverse scattering transf
mation is explained in detail and the generalN-soliton solu-
tion for reflectionless case is obtained. Precession of non
ear spin waves in the oscillating magnetic field is shown
Sec. III. Section IV is devoted to general two-soliton soluti
and soliton collisions. Finally, Sec. V will give our conclud
ing remarks.

II. EXACT SOLUTION OF N-SOLITON TRAIN

Our starting Hamiltonian describing the spin chain in
time oscillating magnetic field with an arbitrary direction ca
be written as

Ĥ52J (
^n,n8&

Ŝn•Ŝn82gmBB~ t !•(
n

Ŝn , ~1!

where Ŝn[(Ŝn
x ,Ŝn

y ,Ŝn
z) with n51,2, . . . ,N are spin opera-

tors, J.0 is the pair interaction parameter,g is the Lande
factor,mB is the Bohr magneton, andB(t)5B cos(vt)e is the
external magnetic field withe5(sinu,0,cosu) denoting the
unit vector of field direction, where chain axis and directi
of magnetic field are assumed inx-z plane. The angleu
between direction of magnetic field andz axis is arbitrary.

The equation of motion for the spin operator on thenth
site is (d/dt)Ŝn52( i /\)@Ŝn ,Ĥ#. At low temperatures, the
spin can be treated as a classical vector such thatŜn
→S(x). So that the equation of motion in a continuum sp
chain under a time-dependent magnetic field can be obta
as a Landau-Lifschitz type:

]

]t
S5S3S ]2

]x2
S1«D , ~2!

with «5gmBB(t)/(2J), where S(x,t)
5„Sx(x,t),Sy(x,t),Sz(x,t)…. We set the length of the spin
vector to unity for the sake of simplicity,S2(x,t)51. The
©2003 The American Physical Society02-1
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dimensionless timet and coordinatex in Eq. ~2! are scaled in
units 1/(2J) andd, respectively, whered denotes the lattice
constant.

The corresponding Lax equations for the equation of m
tion ~2! are written as

]

]x
C~x,t,l!5L~l!C~x,t,l!,

]

]t
C~x,t,l!5M ~l!C~x,t,l!, ~3!

wherel is the spectral parameter,C(x,t,l) is eigenfunction
corresponding tol, andL andM are given in the form

L52 il~S•s!,

M5
i

2
~«•s!1 i2l2~S•s!2l~S•s!S ]

]x
S"sD . ~4!

Heres is Pauli matrix. Thus Eq.~2! can be recovered from
the compatibility condition (]/]t)L2(]/]x)M1@L,M #
50. Based on the Lax equations~3!, we derive the exac
N-soliton solution by employing the inverse scattering tra
formation. We consider the following natural boundary co
dition of initial time (t50): S(x)[(Sx,Sy,Sz)
→(sinu,0,cosu) asuxu→`, namely, the spin vector is alon
the field direction. We then have the asymptotic form of E
~3! at uxu→`,

]xE~x,l!5L0~l!E~x,l!, ~5!

where

E~x,l!5Ue2 ilxs3, L0~l!52 ilU0 ~6!

and

U05S cosu sinu

sinu 2cosu D , U5S 1 2tan
u

2

tan
u

2
1

D . ~7!

The Jost solutionsC1(x,l) and C2(x,l) of Eq. ~3! are
defined as

C1~x,l!→E~x,l! as x→`,

C2~x,l!→E~x,l! as x→2`.

With standard procedures, one finds the following integ
representations of the Jost solutions in terms of the inte
tion kernelsK andN to be determined:

C1~x,l!5Ue2 ilxs31lE
x

`

dyK~x,y!Ue2 ilys3,

K~x,`!50, K~x,y!50 as y,x ~8!

and
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C2~x,l!5Ue2 ilxs31lE
2`

x

dyN~x,y!Ue2 ilys3,

N~x,2`!50, N~x,y!50 as y,x, ~9!

whereK andN are 232 matrices. SubstitutingC1(x,l) of
Eq. ~8! into Eq. ~3! and notingUs3U215U0, we obtain

S•s5@ I 2 iK ~x,x!U0#U0@ I 2 iK ~x,x!U0#21, ~10!

whereI is a unit matrix. It is obvious that Eq.~10! gives rise
to a relation between kernelK and spin vectorS to be ob-
tained.

The scattering data for the operatorL(x,l) are the sets
5$a(l),b(l);ln ,cn ,Iml.0,n51, . . . ,N%, where ua(l)u2
1ub(l)u251, and the functiona(l) can be analytically con-
tinued to the half plane Iml.0. The discrete eigenvaluesln
for the operatorL(x,l) are zeros ofa(l) such thata(ln)
50 ~for simplicity we consider only simple zeros!. The func-
tions a(l) andb(l) are seen to be transmission and refle
tion coefficients of the operatorL, respectively. The param
eter cn denotes the asymptotic characteristics of t
eigenfunctions.

The time dependence of the scattering datas(t) can be
obtained from the second Lax equation~3!,

a~l,t !5a~l,0!,

b~l,t !5expS 24il2t2 i
gmBB sinvt

Jv Db~l,0!,

ln~ t !5ln~0!,

cn~ t !5expS 24iln
2t2 i

gmBB sinvt

Jv D cn~0!, ~11!

wherecn(0), b(l,0) anda(l,0), are constants determine
by initial conditions. The Gelfand-Levitan-Marchenko equ
tion establishes a relation between the kernelK(x,y,t) and
the scattering datas(t) and has the form

K~x,y,t !US 1

0D 1F11
1

2pE2`

`

l21r ~l!F2dl50, ~12!

asy.x, wherer (l)5b(l)/a(l) and

F15US 0

1D (
n51

N
cn~ t !

ln
eiln(x1y)

1E
x

`

K~x,z,t !US 0

1D (
n51

N

cn~ t !eiln(y1z)dz,

F25US 0

1D eilx1lE
x

`

K~x,z,t !US 0

1D eilzdz. ~13!

For the reflectionless case,r (l)50, Eq.~12! becomes a se
of algebraic equations and after tedious calculation the
trix elements of the kernelK are obtained as
2-2
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K11~x,x,t !5cos2
u

2 FB11B2tan
u

2G ,
K12~x,x,t !5cos2

u

2 FB1tan
u

2
2B2G , ~14!

with

B15

detF I 1G9G81DTS Ctan
u

2
2C̄G8D G

det~ I 1G8G9!
21,

B25

detF I 1G8G92D̄TS C̄1CG9tan
u

2D G
det~ I 1G8G9!

21, ~15!

where C(x,t), C8(x,t), D(x) are 13N matrices and
G8(x,t), G9(x,t)N3N matrices, respectively. The supe
scriptT means the transposed matrix and the overbar den
complex conjugate,

C~x,t !n5cn~ t !ln
21D~x!n ,

C8~x,t !n5cn~ t !D~x!n ,

D~x!n5exp~ ilnx!,

G8~x,t !nm5
1

i ~ l̄n2lm!
D~x!nC8~x,t !m ,

G9~x,t !nm5
1

2 i ~ln2l̄m!
D~x!nC8~x,t !m . ~16!

Substituting Eq.~14! into Eq. ~10!, we obtain the genera
form of N-soliton trains,

Sx5
1

D
Re$2 i2K12@12 iK 11cosu#1@11K11

2 2K12
2 #sinu%,

Sy5
21

D
Im$2 i2K12@12 iK 11cosu#1@11K11

2 2K12
2 #sinu%,

Sz5
1

D
$@11uK11u22uK12u2#cosu

12Im@K11~11 iK̄ 12sinu!#%, ~17!

whereK̄12 is the complex conjugate ofK12,

D5u12 i @K11cosu1K12sinu#u21uK11sinu2K12cosuu2.
~18!

According to exactN-soliton solutions in Eq.~17!, we, gen-
erally speaking, can investigate the dynamics of soli
trains and soliton interaction. The neighboring solitons m
repulse or attract each other with a force depending on t
phase difference. Particularly we in the following shall co
03610
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y
ir

-

centrate on the analyses of one-soliton dynamics and t
soliton collisions which may be of more interest.

III. ONE-SOLITON DYNAMICS AND SPIN PRECESSION
WITH TIME-VARYING AMPLITUDE

WhenN51, from Eqs.~14! and~17!, we obtain the gen-
eral form of the exact one-soliton solution as follows:

Sx5
R1

ul1u4cosh2Q1

,

Sy5
R2

ul1u4cosh2Q1

,

Sz5R3cosu1R4sinu, ~19!

where

R15@ ul1u4cosh2Q11b1
2~a1

22b1
2cos 2u!e22Q1#sinu

1b1
2ul1u2~2 cos2u sin2F121!sinu

12b1
2ul1u~2b1sinF1sin2u1a1cosF1!e2Q1cosu

22b1~b1e2Q1sinu1ul1usinF1cosu!@ ul1u2coshQ1

1b1~ ul1usinF1sinu2b1e2Q1cosu!cosu#,

R252a1b1
2ul1ue2Q1sinF112b1ul1u3cosF1coshQ1

22b1
3ul1u~sinu1cos2u!e2Q1cosF1 ,

R3512
2b1

2

ul1u2cosh2Q1

,

R45
1

ul1u2cosh2Q1

@2b1
2cos~F12f1!sinhQ1

12a1b1sin~F12f1!coshQ1#, ~20!

with

Q152b1~x2V1t !2x1 ,

V154a1 , x15 ln@c1~0!/~2b1!#,

F152a1x24~a1
22b1

2!t2
gmBB

vJ
sin~vt !2f1 ,

V15@2~a1
22b1

2!#/a11VB ,

VB5@gmBB cos~vt !#/~2a1J!, ~21!

heref15argl1 andl15a11 ib1 is the eigenvalue param
eter. Solution~19! describes a spin precession around m
netic field direction characterized by four real paramete
velocity V1, frequencyV1, coordinate of the center of th
solitary wavex1, and initial phasef1. The center of solitary
wave moves with a velocityV1, while the wave depth and
2-3
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width vary periodically with time. The wave shape is mod
lated periodically by frequencyV1 depending on magneti
field. Therefore, solution~19! cannot be written as the form
of separating variables. AmplitudeA and phaseF1 are com-
plicated functions ofJ, B, v, and l1. When a15b1, the
frequencyV1 depends on magnetic field only, and we ha
V15VB . If a15b1 andB50, solution~19! reduces to the
usual soliton without shape changing. Therefore, we can
magnetic field to adjust spin precession and the wave sh
as well.

For a special case,u50, namely the magnetic field i
along thez-axis, Sz is independent of magnetic field,Sz

5R3, while Sx andSy precess around the magnetic fieldz
axis!. The precession frequencyV1 is determined by mag
netic field. As the magnetic field rotates fromu50 (z axis!
to u5p/2 (x axis!, we can find the correspondence such t
Sx→2Sz, Sy→Sy, Sz→Sx. The three components of spi
vector satisfy ‘‘left-hand rule.’’ Whenu5p/2, Sx is indepen-
dent of magnetic field, whileSy and Sz precess around th
magnetic field (x axis!. These results show that the magne
field results in the motion of the center of solitary wav
along the field direction and the spin vector rotates aro
the field in any case.

IV. TWO-SOLITON COLLISION

WhenN52, from Eqs.~14! and~17!, the general form of
the exact two-soliton solution is seen to be

Sx5Re@2 i2Q2~12 iQ1cosu!1~11Q1
22Q2

2!sinu#,

Sy5Im@ i2Q2~12 iQ1cosu!2~11Q1
22Q2

2!sinu#,

Sz5~11uQ1u22uQ2u2!cosu12Im@Q1~11 iQ̄2sinu!#,
~22!

where

Q15

cos2
u

2

W H ~ f 12 f 3! f 61~ f 22 f 4! f 51tan
u

2
@~ f̄ 12 f̄ 3! f 8

1~ f̄ 22 f̄ 4! f 7#J ,

Q25
cos2

u

2
WH @~ f 12 f 3! f 61~ f 22 f 4! f 5#tan

u

2
2~ f̄ 12 f̄ 3! f 8

2~ f̄ 22 f̄ 4! f 7J , ~23!

with

f 1511uq1u21x1x̄2q1q̄2 ,

f 2511uq2u21x̄1x2q̄1q2 ,

f 35x̄1uq1u21x1q1q̄2 ,
03610
-
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f 45x̄2uq2u21x2q̄1q2 ,

f 55j1S q1tan
u

2
2uq1u2D2x1j2q1q̄2 ,

f 65j2S q2tan
u

2
2uq2u2D2x2j1q̄1q2 ,

f 752j1S q̄11uq1u2tan
u

2D2j2x̄1q̄1q2tan
u

2
,

f 852j2S q̄21uq2u2tan
u

2D2j1x̄2q1q̄2tan
u

2
,

x15
2b1l1

2 i ~l12l̄2!ul1u
, x25

2b2l2

2 i ~l22l̄1!ul2u
,

W5 f 1f 22 f 3f 4 ,

qj5e2Q j 1 iF j ,

j j52b j ul j u21, ~24!

and

Q j52b j~x2Vjt !2xj ,

Vj54a j , xj5 ln@cj~0!/~2b j !#,

F j52a j x24~a j
22b j

2!t2
gmBB

vJ
sin~vt !2f j ,

V j5@2~a j
22b j

2!#/a j1VB ,

VB5@gmBB cos~vt !#/~2a j J!, ~25!

FIG. 1. Inelastic head on collision between two solitons
profiles ofz componentSz(x,t) of spin vector in Eq.~22! in a spin
chain under a time-dependent magnetic field showing two differ
dramatic scenarios of the shape changing collision, whereu
5p/36, l1520.21 i0.45, l250.31 i0.65, c1(0)50.2, c2(0)
53.5, (gmBB)/J50.01, v510, V1520.8, V251.2. All quanti-
ties plotted are dimensionless.
2-4
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here f j5argl j and l j5a j1 ib j is the eigenvalue param
eter, j 51,2. Solutions~22! describe a general inelastic sca
tering process of two solitary waves with different cen
velocities V1 and V2, different shape-variation frequencie
V1 andV2. Before collision, they move towards each oth
one with velocityV1 and shape-variation frequencyV1, the
other withV2 andV2. The interaction potential between tw
solitons is a complicated function of parametersJ,B,v, and
l j . When a j5b j , two-soliton shape-variation frequencie
V j ( j 51,2) are determined by magnetic field. In the case
B50, solutions~22! reduce to that of the usual two solito
with two center velocities while without a change in shap
where an interesting process in the absence of magnetic
is that the collision can result in the interchange of amplitu
Aj and phaseF j ( j 51,2) like exactly in the case of elasti
collision of two particles.

In order to understand the nature of two-soliton inter
tion, we analyze asymptotic behavior of two-soliton so
tions ~22!. Asymptotically, the two-soliton waves~22! can be
written as a combination of two one-soliton waves~19! with
different amplitude and phase. The formation of two-solit
waves in the corresponding limitsx→2` andx→` is simi-
lar to that of one-soliton waves~19!. Analysis reveals tha
there is an amplitude exchange among three componentSx,
Sy, and Sz of each soliton during collision, which can b

FIG. 2. ~a! Complete inelastic head on collision expressed
Eq. ~22! when S1 suppressed, whereu50, l1520.351 i0.4, l2

50.22 i0.6, c1(0)50.2, c2(0)52.5, (gmBB)/J50.01, v510,
V1521.4, V250.8. All quantities plotted are dimensionless.~b!
Complete inelastic head on collision expressed by Eq.~22! whenS2

suppressed, whereu50, l1520.352 i0.4, l250.21 i0.6, c1(0)
50.2, c2(0)52.5, (gmBB)/J50.01, v510, V1521.4, V250.8.
All quantities plotted are dimensionless.
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described by a transition matrixTl
k such thatAl

k15Al
k2Tl

k ,
where the subscriptl 51,2, respectively, represents the fir
and the second soliton,k5x,y,z denote three components o
each soliton, and the sign6 denotes the asymptotic limits o
the corresponding amplitudeAl

k6 , at x→6`. As a conse-
quence, change in amplitude of the three componentsS1

k of
the first soliton fromA1

k2 to A1
k1 is given by square of tran

sition matricesuT1
ku2 along with phase shiftdF1

k during col-
lision. In a similar fashion, the three componentsS2

k of the
second soliton also change amplitudes fromA2

k2 to A2
k1 with

a quantity uT2
ku2. The associate phase shift for the seco

soliton is dF2
k . We also note a net change of separati

distance between two solitons bydX12.
For the special caseuTl

ku51, which is possible only when

l252l̄1, we have the standard elastic collision. For
other cases, we have the quantityuTl

kuÞ1, which corre-
sponds to the relative change among three components o
spin vector leading to the deformation of soliton shap
However, the total amplitude of individual solitonsS1 andS2

is a conserved quantity, i.e.,( l uAl
k6u2 is constant for l

51,2.
It is interesting to show the inelastic collision graphical

The general inelastic head on collision is explained in Fig

y
FIG. 3. ~a! Complete inelastic overtake collision expressed

Eq. ~22! when S1 suppressed, whereu50, l1520.551 i0.4, l2

520.12 i0.45, c1(0)50.2, c2(0)52.5, (gmBB)/J50.01, v
510, V1522.2, V2520.4. All quantities plotted are dimension
less.~b! Complete inelastic overtake collision expressed by Eq.~22!
when S1 suppressed, whereu50, l1520.552 i0.4, l2520.1
1 i0.45, c1(0)50.2, c2(0)52.5, (gmBB)/J50.01, v510, V1

522.2, V2520.4. All quantities plotted are dimensionless.
2-5
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from which it is seen that the amplitudes ofS1 ,S2 are, re-
spectively, suppressed and enhanced after collision. Figu
is devoted to the complete inelastic head on collisions. T
amplitudes ofS1 and S2 are, respectively, suppressed af
the collision shown in Figs. 2~a! and 2~b!. The complete
inelastic overtake collision is shown in Fig. 3 with the am
plitudes ofS1andS2 suppressed, respectively.

V. CONCLUSION

In terms of an inverse scattering transformation, the ex
solution ofN-soliton trains in a spin chain driven by a tim
oscillating magnetic field is obtained. From the general so
.
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tion, the dynamics and soliton interactions are analyzed.
one-soliton solution gives rise explicitly to the spin prece
sion along with the soliton shape variation induced by
time-varying field. It is also shown that the time-varyin
field leads generally to the inelastic and particularly the co
plete inelastic two-soliton collisions, which may be useful
developing a soliton-shape control technique.
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