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We investigate the modulational instability of Stokes wave solutions on a system of coupled nonlinear
electrical transmission lines with dispersive elements. In the continuum limit, and in suitable scaled coordi-
nates, the voltage on the system is described by the two-dimensional coupled nonlinear Schrödinger equations.
The set of coupled nonlinear Schrödinger equations obtained is analyzed via a perturbation approach. No
assumption is made on the signs of the relevant coefficients such as the coefficients of nonlinearity and the
coupling coefficients. A set of explicit criteria of modulational stability and modulational instability is derived
and analyzed. It is numerically shown that the effect of the dispersive elements in the line is to decrease the
instability region and the instability growth rate.
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I. INTRODUCTION

The nonlinear dispersive propagation of light in an array
of linearly coupled optical fibers can be described by the
following difference in the partial differential equations
�PDE’s�:

i
�Am

�z
− �2

�2Am

�t2 + 2��Am�2Am − ��Am+1 + Am−1 − 2Am� = 0.

�1�

Here m=1,2 , . . . ,M is the fiber index, t is the retarded time,
� is the linear coupling, �2 is the group velocity dispersion
coefficient, and � is nonlinearity coefficient �1�. An initial
pulse of Gaussian amplitude, injected into an array of M
=15 fibers at z=0, was seen to “collapse” into the central
fiber mc=8 with compression ratios of about 6 over distances
of 200 m. This effect arises from the fact that Eq. �1� has a
continuum limit corresponding to the two-dimensional
Schrödinger equation in which “pulse blow-up” can occur.
The work presented here is an investigation to see whether
similar instabilities arise in the analogous electrical system
of coupled nonlinear-dispersive transmission lines �NTL’s�.
We are motivated by developments in the theory of nonlinear
waves, especially solitons. Solitons are localized pulses that
arise in many physical contexts through a balance of nonlin-
earity and dispersion. Since the 1970s, various investigators
have discovered the existence of solitons in nonlinear trans-
mission lines �NLTLs�, through both mathematical models
and physical experiments.

In Sec. II, we write down the circuit equations governing
small-amplitude pulses on systems of NTL’s coupled via
constant capacitors. After scaling coordinates and taking a
continuum limit, we reduce them to a well-known coupled

nonlinear partial system of equations which possesses a
traveling-wave solution that can be unstable under linear per-
turbation. In Sec. III, we first remind the reader of the phe-
nomenon of modulational instability �MI�, and then we un-
dertake an analytic study of the linear stability analysis and
modulational �in�stability of these Stokes wave solutions of
the coupled NLS equations obtained therein; computational
analysis of the modulational instability is also done in this
section. We summarize our results in Sec. IV.

II. NONLINEAR TRANSMISSION LINE MODEL

In this section, we review two-dimensional discrete trans-
mission line theory with the aim of clarifying the effects of
nonlinearity. Continuum equations that accurately model
these effects are derived.

Before examining coupled systems, we introduce our no-
tation by means of a single nonlinear-dispersive trans-
mission line, illustrated in Fig. 1 �see Refs. �2,3��. In
this line, the dispersive element is the linear capacitance

*Email address: ekengne6@yahoo.fr
FIG. 1. Part of the system of the nonlinear dispersive transmis-

sion line.
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CS. In this loop, we may write down Kirchhoff’s laws:

L
�In

1

�t =Vn−1−Vn, In− In
1=CS

�
�t �Vn−1−Vn�, and

�Qn

�t = In− In+1,
where Qn�Q�Vn�=�VnC�V�dV is the charge stored in the nth
capacitor. We may use the first two of these equations to
eliminate In and In

1 from the time derivative of the third one.

The result is
�2Qn

�t2 � �
�t
�C�Vn�

�Vn

�t
�=CS

�2

�t2 �Vn−1−2Vn+Vn+1�
+ 1

L �Vn+1−2Vn+Vn−1�. This is the circuit equation describing
the voltage Vn�t� on a single line.

Now we imagine coupling many identical lines such
as this by means of capacitors C2 at each node. Such a con-
figuration is shown in Fig. 2. The nodes in the system are
labeled with two discrete coordinates: n specifies the nodes
in the direction of propagation of the pulse, and m labels the
lines in the transverse direction. We apply Kirchhoff’s laws

again, this time in orthogonal loops: L
�In,m

1

�t =Vn,m−Vn+1,m;
In,m

2 =C2
�
�t �Vn,m−Vn,m+1�, In,m

1 − In,m
1,1 =CS

�
�t �Vn−1,m−Vn,m�, and

�Qnm

�t = In−1,m
1 − In,m

1 + In,m−1
2 − In,m

2 . The circuit equation for this
system is therefore

�2Qnm

�t2 =
1

L
�Vn+1,m + Vn−1,m − 2Vn,m� + CS

�2

�t2 �Vn+1,m + Vn−1,m

− 2Vn,m� + C2
�2

�t2 �Vn,m+1 + Vn,m−1 − 2Vn,m� . �2�

In our analysis, we shall take the nonlinear capacitance
C�Vn,m� to be of the form C�V�=C0 / �1+ V

V0
�, where C0 and

V0 are arbitrary capacitance and voltage scales, respect-
ively. In this paper, we only study the case in which
the perturbation voltage V is small enough compared to
the equilibrium voltage. We then take the continuum limit
of Eq. �2� in both the n and m directions, along with the
additional provisos that the amplitude of the voltage pulse
is small and its wavelength is much greater than the lattice
spacings. By treating n and m as continuous variables
and V as a function of n, m, and t, and assume that V�V0,

then Eq. �2� becomes LC0

�2�V−bV2�

�t2 = �2

�n2 �V+ 1
12

�2V
�n2 + ¯ �

+LCS
�4

�t2�n2 �V+ 1
12

�2V
�n2 + ¯ �+LC2

�4

�t2�m2 �V+ 1
12

�2V
�m2 + ¯ �, where

b= 1
2V0. Next, we transform to “stretched” coordinates that

reflect the fact that the dominant motion is in the n direction:
�=�1/2�n−vt�, �=�1/2m, �=�3/2t, and V=�u�� ,� ,��, where
��1 is a small parameter. Using these expressions, the
above equation becomes, to lowest order in �,

12C0b
�u2

��
+

24C0

v

�u

��
+ �C0 + 12CS�

�3u

��3 + 12C2
�3u

�� � �2 = 0,

�3�

where v2= 1
LC0

is the linear wave speed.
Let us consider the interaction of any two wave packets

centered at �kA ,�A� and �kB ,�B�; here, k j and � j are the
wave vectors and the frequencies, respectively. In order to
resolve the weakly nonlinear equation, two different low
time scales T1=�� and T2=�2� must be introduced in addi-
tion to the original time scale T0=�. Moreover, we introduce
the large spatial scale X1=�� and Y1=�� in addition to the
original X0=� and Y0=�, where ��1 is a small parameter.
Then the voltage in the transmission line is expanded as

u = �u1 + �2u2 + �3u3 + O��4� , �4�

where uj =uj�X0 ,X1 ,Y0 ,Y1 ,T0 ,T1 ,T2�; in Eq. �4� the small
parameter � measures the size of the amplitudes of the per-
turbation. To analyze the propagation of any two wave pack-
ets centered around �kA ,�A� and �kB ,�B�, we take the lowest-
order term u1 in the form

u1 = A exp�i�kA · r − �AT0�� + B exp�i�kB · r − �BT0�� + c.c. ,

�5�

where A=A�X1 ,Y1 ,T1 ,T2�, B=B�X1 ,Y1 ,T1 ,T2� are two com-
plex amplitudes, r= �X0 ,Y0�, and k j = �kj

X0 ,kj
Y0�, so that

C2�C0 + 12CS��kB
X0�2 − 4C2

2�kB
Y0�2 	 0, �6�

and c.c. stands for complex conjugate. The carrier wave
number k j and the frequency � j of each wave are related by

FIG. 2. Part of the system of the nonlinear dispersive transmis-
sion line coupled by a capacitor C2.

FIG. 3. Linear dispersion curve defined by the dispersion rela-
tions in the special case when kB

X0 =−kA
X0 =k and kB

Y0 =−kA
Y0 =−0.2 for

k� �0.12844, 0.2�. Here we take L=200 
H, C0=370 pF, C2

=100 pF, CS=0 pF �for curve �a�� and CS=50 pF �for curve �b��.
Comparing the two figures, we see that the gap zone is larger in the
presence of the linear capacitance CS.
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a dispersion relation function � j =� j�k j�. As we will show
below, nonlinearity is manifested via a slow modulation of
the wave amplitudes A and B, in time and space, say, along
the x axis and the y axis.

Inserting the perturbation expansions �4� into the
nonlinear equation �3� and equating coefficients of like pow-
ers of �, we obtain a system of three partial differential equa-
tions in u1, u2, and u3. The first of these equations contains
only u1, the second contains u1 and u2, and the third one
contains u1, u2, and u3: D0u1=� 24C0

v
�

�T0
+ �C0+12CS� �3

�X0
3

+12C2
�3

�X0�Y0
2�u1=0, D0u2=−

24C0

v
�u1

�T1
−3�C0+12CS�

�3u1

�X0
2�X1

−12C2� �3u1

�X1�Y0
2 +2

�3u1

�X0�Y0�Y1
�−12C0b

�u1
2

�X0
, and D0u3=−12C0b

��2
�u1u2

�X0
+

�u1
2

�X1
�−

24C0

v � �u2

�T1
+

�u1

�T2
�−3�C0+12CS�� �3u2

�X0
2�X1

+
�3u1

�X0�X1
2�

−12C2� �3u1

�X0�Y1
2 +2

�3u1

�Y0�X1�Y1
+2

�3u2

�X0�Y0�Y1
+

�3u2

�Y0
2�X1

�.
Substituting Eq. �5� in the first equation of the above sys-

tem leads to the dispersion relations
24C0

v � j + �C0+12CS�
��kj

X0�3+12C2kj
X0�kj

Y0�2=0, j=A, B. In the special case in
which kB

X0 =−kA
X0 =k and kB

Y0 =−kA
Y0 =−0.2, we plot in Fig. 3 the

linear dispersion curve �B=−�A=��k� for the line param-
eters L=200 
H, C0=370 pF, C2=100 pF, CS=0 pF �for
curve �a��, and CS=50 pF �for curve �b��. For these line pa-
rameters, we use Eq. �6� and find that k	0.207 95 �for both
values of CS�. On these curves, �1 min and �2 min are the
values of ��k� at k=0.207 96 and correspond to CS=0 and

50 pF, respectively. Let us denote by F01=
�1 min

2� �l=1,2� the
gap, which is the lower cutoff frequency corresponding to
curves �a� and �b�. Because �1 min
�2 min, we have F01

F02. Let �1 max=��0.5�=29 082 for curve �a� and �2 max

=��0.5�=60131 for curve �b�. Then the width of the interval
�F01,

�1 max

2�
� is 3751.7, while that of interval �F02,

�2 max

2�
� is

8337.8, that is, the width of the interval �F01,
�1 max

2�
� is

smaller than that of interval �F02,
�2 max

2�
�, and hence, intro-

duction of the dispersive element CS in the line has decreased
the propagation domain of the signal. For the future simula-
tions, we use the same line parameters as here.

Since � j and k j are related by the above dispersion rela-
tion, the particular solution of the second equation of the
system contains secular terms in either X0 or T0 or both,
which lead to a nonuniform expansion for either long times
or large distances or both. For a uniform expansion, we re-
quire the vanishing of terms that produce secular terms. This
solvability condition leads to the following equations for A
and B:

�A

�T1
= −

��A

�kA
X0

�A

�X1
−

��A

�kA
Y0

�A

�Y1
,

�B

�T1
= −

��B

�kB
X0

�B

�X1
−

��B

�kB
Y0

�B

�Y1
. �7�

Eliminating from the third equation of the system the terms
that produce secular terms and using Eqs. �6� and �7� lead to

i
�� j

��
= Mj�

2� j + �Vjj�� j�2 + Vj3−j��3−j�2 + 
 j�� j ,

j = 1,2, �8�

where

�1 = �1�x,y,�� = �A�x,y,��exp�− i��1x + �1y�� ,

�2 = �2�x,y,�� = �B exp�− i��1x + �1y�� ,

�1 = −
1

8

�C0 + 12CS�kA
X0

��A

�kA
Y0

− 4C2kY0

��A

�kA
X0

C2�C0 + 12CS��kA
X0�2 − 4C2

2�kA
Y0�2

,

�1 =
1

2��C0 + 12CS�C2�kB
X0�2 − 4C2

2�kB
Y0�2

��A

�kA
X0

,

�1 = −
1

8

�C0 + 12CS�kB
X0

��B

�kB
Y0

− 4C2kY0

��B

�kB
X0

C2�C0 + 12CS��kB
X0�2 − 4C2

2�kB
Y0�2

,

�1 =
1

2��C0 + 12CS�C2�kB
X0�2 − 4C2

2�kB
Y0�2

��B

�kB
X0

,

Mj =
2�C0 + 12CS�C2�kj

X0�2 − 8C2
2�kj

Y0�2

�C0 + 12CS�kj
X0

,

Vjj =
3C0v

2b2�kj
X0�2

12C0� j + 2v�kj
X0�2�C0 + 12CS� + 24vC2kj

X0�kj
Y0�2

,

Vj3−j =
v�bkj

X0

2
, with k1

X0 = kA
X0,k2

X0 = kB
X0,

� = 24C0b�kA
X0 + kB

X0�	12�kA
X0 + kB

X0��kA
Y0 + kB

Y0�2C2

+ ��A + �B�
24C0

v
+ �kA

X0 + kB
X0�3�C0 + 12CS�
−1

+ 24C0bv�kA
X0 − kB

X0��v�C0 + 12CS��kA
X0 − kB

X0�3

+ 24��A − �B�C0 + 12C2v�kA
X0 − kB

X0�

��kA
Y0 − kB

Y0�2�−1,


1 = 2
��C0 + 12CS�C2�kA

X0�2 − 4C2
2�kA

Y0�2

�C0 + 12CS�kA
X0

��A

�kA
X0

�1

−
1

2
� ��A

�kA
Y0

−
��A

�kA
X0

4C2kA
Y0

�C0 + 12CS�kA
X0
��1

− 2
��C0 + 12CS�C2�kA

X0�2 − 4C2
2�kA

Y0�2�
��1

2 + �1
2�−1�C0 + 12CS�kA

X0
,

MODULATIONAL INSTABILITY CRITERIA FOR¼ PHYSICAL REVIEW E 74, 036614 �2006�

036614-3




2 = 2
��C0 + 12CS�C2�kB

X0�2 − 4C2
2�kB

Y0�2

�C0 + 12CS�kB
X0

��B

�kB
X0

�1

−
1

2
� ��B

�kB
Y0

−
��B

�kB
X0

4C2kB
Y0

�C0 + 12CS�kB
X0
��1

− 2
��C0 + 12CS�C2�kB

X0�2 − 4C2
2�kB

Y0�2�
��1

2 + �1
2�−1�C0 + 12CS�kB

X0
,

x =
4C2kB

Y0

�C0 + 12CS�kB
X0

� − � ,

y =
2��C0 + 12CS�C2�kB

X0�2 − 4C2
2�kB

Y0�2

�C0 + 12CS�kB
X0

� ,

and �2= �2

�x2 + �2

�y2 is the Laplace operator �a two-dimensional
Cartesian geometry is considered for clarity�. Here, C2�0.

In the case of a single nonlinear transmission line �C2

=0�, we have

i
�� j

�T
= −

1

2

�2� j

��2 −
4�̃C0b

�C0 + 12CS��� j

�̃
�� j�2 + ��l�2�� j,

j, l = A, B, j � l , �9�

where � j =�j, � j =6vkj
X0C0b�24vC2kj

X0�kj
Y0�2+12C0� j

+2v�kj
X0�2�C0+12CS��−1, j=A ,B, and T=−

v�C0+12CS�kj
X0

16C0
�. Here

�̃ coincides with the above expression of � in which we take
C2=0. We have thus established that the dynamics of any
two wave packets in the discrete nonlinear transmission line
shown in Figs. 2 and 1 is described by the coupled nonlinear
Schrödinger equations �8� and �9�, respectively. In these
equations, � j�x ,y ,�� and � j�� ,T� are the complex amplitudes
of the signal in the coupled and noncoupled nonlinear trans-
mission lines of Figs. 2 and Fig. 1, respectively.

In Eq. �8�, the quantity Mj with sign “−,” that is, −Mj, is
the group-velocity dispersion, while in Eq. �9�, this group-
velocity dispersion is 1

2 . Vjj and Vj3−j in Eq. �8� model carrier
self-modulation and wave coupling, respectively. For Eq. �9�,
they are −

4�̃C0b

�C0+12CS�
� j

�̃
and −

4�̃C0b

�C0+12CS� , respectively. 
 j

=
 j�� j ,k j� is the growing �gain =−
0j 	0� complex eigen-
value. In the above set of coefficients, the quantities �� j /�kj

X0

and �� j /�kj
Y0 are known as group velocities.

Equations �8� are known as the coupled nonlinear
Schrödinger �NLS� equations with cubic nonlinearity �4–7�.
These equations act as a mathematical model for a periodi-
cally twisted elliptical birefringent fiber �8,9�. If 
1=
2=0,
then under the condition of equality of the nonlinear coeffi-
cients, Eqs. �8� become the celebrated integrable Manakov
model �10–12�. Equations �8�, in the case in which one of
� j =0, become the well-known nonlinear Schrödinger equa-
tion and appear in a great array of contexts �13�, such as for
example, in semiconductor electronics �14,15�, optics in non-
linear media �16�, photonics �17�, plasmas �18�, fundamen-
tation of quantum mechanics �19�, dynamics of accelerators

�20�, mean-field theory of Bose-Einstein condensates �21�, or
in biomolecular dynamics �22�. In some of these fields and
many others, the NLS equation appears as an asymptotic
limit for a slowly varying dispersive wave envelope propa-
gating in a nonlinear medium �23,24�.

Systems of the coupled NLS equations have been used to
describe motions and interactions of more than one wave
envelope in cases in which more than one order parameter is
needed to specify the system. The coupled NLS equations,
also called the coupled Gross-Pitaevskii �GP� equations in
the theory of Bose-Einstein condensate, have been receiving
a lot of attention with recent experimental advances in mul-
ticomponent Bose-Einstein condensates �BECs� �25–32�. In
this case, � j are the wave functions of the condensates, and
mj =−� /2Mj 	0 represents the mass of the jth condensate.
According to standard theory, the nonlinearity coefficients
�Vjj are proportional to the scattering lengths aj via �Vjj
=4��aj /mj =−8�ajMj, while the coupling coefficients
�Vj3−j are related to the mutual interaction scattering lengths
aj3−j via �Vj3−j =2��aj3−j /mj3−j, where mj3−j =mjm3−j / �mj

+m3−j� is the reduced mass. The �linear� last terms in each
equation involve the chemical potential−�
 j, which corre-
sponds to a ground state of the condensate, in a simplified
model. These terms may readily be eliminated via a simple
phase-shift transformation; this is, however, deliberately not
done at this stage, for generality. Nevertheless, one therefore
intuitively expects no major influence of the chemical poten-
tials on the coupled BEC dynamics �at least for the physical
problem studied here�.

Equations �9� can be derived from Hamiltonian

H = �−�
+ �
� ��A

�� �2+� ��B

�� �2 −
8C0b�

�C0 + 12CS� ��A�2��B�2 −
2C0b��A+�B�

�C0+12CS�

����A�4+ ��B�4��d�, which is a dynamical invariant of the

model �dH /d�=0�. In addition, Eqs. �9� conserve the mo-

mentum, P= i�−�
+���A

* ��1

�� +�B
* ��2

��
�d�, where * stands for the

complex conjugate. Equations �9� are tantamount to those
describing light transmission in bimodal nonlinear optical
fibers, with two modes representing either different wave-
lengths or two orthogonal polarizations �6�. The two nonlin-
ear terms in Eqs. �9� account for, respectively, the SPM and
XPM �self- and cross-phase-modulation� interactions of two
waves.

In the case in which one of � j is zero, Eq. �9� becomes a
one-component nonlinear Schrödinger equation that is of
major importance in continuum mechanics, plasma physics,
nonlinear optics, and condensed matter �where it describes
the behavior of a weakly interacting Bose gas and is known
as the Gross-Pitaevskii �GP� equation�. The reason for its
importance and ubiquity is that it describes the evolution of
the envelope � of an almost monochromatic wave in a con-
servative system of weakly nonlinear dispersive waves.

With the above line parameters and the above special case
�kB

X0 =−kA
X0 =−k, kB

Y0 =−kA
Y0 =−q�, the dispersion coefficients

Mj are depicted in Fig. 4 with q=0.2 in the range 0.128 44
�k�1.5. The minimal value of k is obtained from condition
�6�. The dispersion coefficient curves show that the disper-
sion coefficient M1 decreases with the presence of the linear
constant capacitance CS, while the dispersion coefficient M2
increases with the introduction of CS in the line.
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III. LINEAR STABILITY ANALYSIS AND
MODULATIONAL INSTABILITY (MI) CRITERIA

Modulational instability �MI� by which a plane wave
breaks up into filaments at high intensities is a ubiquitous
process that occurs in many branches of physics �33�. Over
the years, MI has been observed in various physical settings,
including hydrodynamics �34,35�, plasma physics �36�, non-
linear optics �37,38�, and quite recently in Bose-Einstein
condensates �39�. MI is the outcome of the interplay between
nonlinearity and dispersive and/or diffraction effects. It is a
symmetry-breaking instability so that a small perturbation on
top of a constant amplitude background experiences expo-
nential growth, and this leads to beam breakup in either
space or time. Since this disintegration typically occurs in
the same parameter region where bright solitons are ob-
served, MI is considered, to some extent, a precursor to soli-
ton formation �40�. Modulational instability is responsible
for the formation of envelope solitons in electrical transmis-
sion lines �3,43�. MI also sets a fundamental nonlinear lim-
iting factor in the transmission of dense wavelength-division
multiplexed signals in long-distance electrical links. The
phenomenon of the MI in a homogeneous medium has been
extensively studied for scalar and vector nonlinear
Schrödinger equations �6,41,42� and its criteria for multi-
component BECs have been obtained �44–47�. It has been
shown that MI depends on the frequencies of initial modula-
tions and the powers of waves �42�. All these results were
obtained in media where the characteristic parameters are
constant. In realistic multiconnected electric transmission
links, the chromatic dispersion and nonlinearity are not con-
stant but can fluctuate stochastically around their mean val-
ues. The inhomogeneity of the medium may be inherent to

the medium or induced by other propagating waves. The
situation is relevant for electrical cables where all character-
istic parameters fluctuate slightly around their mean values.
Note that MI is an important nonlinear limiting factor in
long-distance multiconnected electric circuits, but it is also a
way to generate a train of solitonlike pulses. Indeed, when a
small modulation is applied to an input signal �current or
voltage�, MI can be induced if the side band frequency falls
within the MI gain spectrum. If we make use of this induced
MI, it is possible to generate a train of solitonlike pulses with
a repetition frequency determined by the inverse of the input
modulation frequency. In order to produce the desired pulse
train, it is necessary to remove the pulse train at an appro-
priate distance that is very sensitive to the MI gain at fre-
quency �5–8�. To our knowledge, there are not many works
that have studie the phenomenon of MI using a coupled non-
linear transmission line with dispersive element.

In this section, we find the conditions under which a uni-
form wave train moving along the coupled discrete nonlinear
electrical transmission line shown in Fig. 2 will become
stable on unstable to a small perturbation. We start with lin-
ear stability analysis.

A. Linear stability analysis

We first seek a Stokes wave solutions in the form
� j�x ,y ,��=� j0exp
i�k0jx+q0jy+� j�����, where � j0 is a �con-
stant real� amplitude, � j��� is a �real� phase, and k0j and q0j

are �real� wave numbers of the carrier waves, into the
coupled nonlinear Schrödinger equations �8�. Inserting this
expression into Eqs. �8�, we find the Stokes wave solutions
in the form � j���=� j0�, where � j0=M�k0j

2 +q0j
2 �− �Vjj� j0

2

+Vj3−j�l0
2 +
 j� is the frequency of the carrier waves, j=1,2.

Let us consider a small perturbation around the stationary
state � j =� j0exp�−i�Vjj� j0

2 +Vjl�3−j0
2 +
 j��� by taking � j

= �� j0+�� j1�exp�i� j����, where � j1�x ,y ,�� is a complex
function denoting the small ���1� perturbation of the
slowly varying modulated complex amplitude �it includes
both amplitude and phase corrections�, and � j���=� j0� is the
above phasor. Substituting into Eqs �8� and separating into
real and imaginary parts by writing � j1=aj + ibj, the first-
order terms �in �� yield

�bj

�� =−Mj�aj −2Vjj� j0
2 aj

−2Vjl� j0�l0al,
�aj

�� =Mj�bj, where j and l ��j�=1, 2 �this will
henceforth be assumed unless otherwise stated�. Eliminating
bj, these equations yield

�2aj

��2 = − Mj��Mj�aj + 2Vjj� j0
2 aj� − 2Vjl�3−j0� j0�a3−j ,

j = 1,2. �10�

Now, we let aj =aj0exp�i�Kx+Qy−�k���+
complex conjugate, where k= �K ,Q� and �k are the wave
number and the frequency of low-frequency perturba-
tions modulating the carrier signal, respectively, and aj0
is a �constant� complex amplitude. �k is the growth
rate. For the determination of aj0, we insert the express-
ion of aj into Eq. �10� and obtain the linear algebraic

FIG. 4. �Color online� Dispersion coefficients in terms of the
wave number k taken from condition �6�. The black curves are the
M1 curve, while the red curves are the M2 curve. The dashed lines
correspond to CS=0 and the solid lines correspond to CS=50 pF,
0.128 44�k�1.5. The parameter lines are the same as above.
These curves show that the dispersive coefficients Mj take both
positive and negative values and inform that the dispersion coeffi-
cient M1 �M2� decreases �increases� with the introduction of the
linear constant capacitance CS in the line.
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system �2MjV11�10
2 k2−Mj

2k4+�k
2�a10+2MjV12�10�20k

2a20

=0, 2MjV21�20�10k
2a10+ �2MjV22�20

2 k2−Mj
2k4+�k

2�a20=0,
where k2=k ·k=K2+Q2. For a nontrivial solution, the deter-
minant of the coefficients matrix of this system must vanish.
That is, the frequency �k and the wave number k= �K ,Q�
must be related by the dispersion relation

��k
2 + �M1V11�10

2 + M2V22�20
2 �k2 −

M1
2 + M2

2

2
k4�2

= k4	�M2
2 − M1

2

2
k2 + M1V11�10

2 − M2V22�20
2 �2

+ 4V12V21M1M2�10
2 �20

2 
 . �11�

We stress that this dispersion relation �which is independent
of the chemical potentials or Kerr coefficients 
 j� relies on
absolutely no assumption on the sign or the magnitude of
�Mj, hVjj, and �Vj3−j.

B. Modulational instability criteria for coupled nonlinear
transmission lines

The phenomenon of the MI is observed when the angular
frequency �k=�k�k� of the perturbation functions has a non-
zero imaginary part leading to an exponential growth of the
amplitude versus time. The dispersion relation �11� takes the
form of a bi-quadratic polynomial equation and has the so-
lutions

�k±
2 = k2	M1

2 + M2
2

2
k2 − �M1V11�10

2 + M2V22�20
2 �


�	 ± 	�M2
2 − M1

2

2
k2 + �M1V11�10

2 − M2V22�20
2 �
2

+ 4V12V21M1M2�10
2 �20

2 �1/2
 . �12�

Equation �12� defines four branches of instability growth
rate. We note that the right-hand side of Eq. �11� is real and
is either non-negative or negative. Stability is ensured �for
any wave vector k� if �and only if� both solutions �k±

2 are
non-negative. In fact, for a given wave vector k, the growth
rate �k± are real, and hence a1 and a2 are bounded if, and
only if, the right-hand side of Eq. �12� is real. We formulate
the results in terms of the following theorem.

Theorem 1. Let M1
2−M2

2�0. In order that �k±
2 should be

non-negative for any wave vector k, it is necessary that either
V12V21M1M2�0 or V12V21M1M2
0 �M1V11�10

2

−M2V22�20
2 �2+4V12V21M1M2�10

2 �20
2 	0, M1V11�10

2

−M2V22�20
2 	0, and M2

2−M1
2	0, and sufficient that

M1V11�10
2 +M2V22�20

2 �0, and either �M2V11�10
2

−M1V22�20
2 �2+4M1M2V12V21�10

2 �20
2 
0 or �M2V11�10

2

−M1V22�20
2 �2+4M1M2V12V21�10

2 �20
2 �0, 3�M1V22�20

2

+M2V11�10
2 �2+4M1M2�V11V22−V12V21��10

2 �20
2 	0, and

M1M2�M1V22�20
2 +M2V11�10

2 �
0.
An analysis of this theorem shows that its conditions are

satisfied for any perturbation amplitude �� j0� as soon as

M1M2V11V22	M1M2V12V21	0 and MjVjj 
0. In particular,
if Mj 
0, then the conditions of theorem 1 are met as soon as
V11V22	V12V21	0 and Vjj 	0.

Theorem 2. Let M1
2−M2

2=0. In order that �k±
2 should be

non-negative for any wave vector k, it is necessary that
�M1V11�10

2 −M2V22�20
2 �2+4M1M2V12V21�10

2 �20
2 �0 and suffi-

cient that M1V11�10
2 +M2V22�20

2 
0 and M1M2�V12V21
−V11V22�
0.

After some analyses of theorem 2, we easily see that the
conditions of this theorem are valid for any perturbation am-
plitude �� j0� as soon as one of the following conditions is
satisfied:

�i� M1=M2
0, V12V21	0, Vjj 	0, V12V21−V11V22

0;

�ii� M1=M2	0, V12V21	0, Vjj 
0, V12V21−V11V22

0;

�iii� M1=−M2	0, V12V21
0, V11
0, V22	0, and
V11V22−V12V21
0;

�iv� M1=−M2
0, V12V21
0, V11	0, V22
0, and
V11V22−V12V21
0.

We note that if the necessary conditions in theorem 1 are
violated, then the right-hand side of Eq. �11� will be nega-
tive for any wave vector k satisfying either condition

k2
2
−�M1V11�10

2 −M2V22�20
2 �±2��10�20��−V12V21M1M2

M2
2−M1

2 or condition k2

	2
−�M1V11�10

2 −M2V22�20
2 �±2��10�20��−V12V21M1M2

M2
2−M1

2 . For these wave vec-
tors, �k±

2 will be a complex number. In the case of the vio-
lation of the necessary conditions in theorem 2, the right-
hand side of Eq. �11� will be negative for every wave vector,
and then �k±

2 will always be complex. On the other hand, if
the necessary conditions in both theorem 1 and theorem 2 are
fulfilled, then the right-hand side of Eq. �12� is real and is
either non-negative or negative. In order that both �k±

2

should be non-negative for any wave vector k, the sufficient
conditions in theorem 1 and theorem 2 must be satisfied.
Thus, if the sufficient conditions in either theorem 1 or theo-
rem 2 are violated, then for some values of wave vector, the
right-hand side of Eq. �12� will be negative, and then the
corresponding �k± will be complex, which leads to the
modulational instability. It is also possible for �k±

2 to be com-
plex for any wave vector k. For example, if M2

2−M1
2
0,

V12V21M1M2
0, M1V11�10
2 −M2V22�20

2 
0, and �M1V11�10
2

−M2V22�20
2 �2+4V12V21M1M2�10

2 �20
2 	0, then the right-hand

side of Eq. �11� will be negative for any wave vector k.
Hence, �k±

2 will be complex for any wave vector k. This
situation also happens when M2

2−M1
2=0 and �M1V11�10

2

−M2V22�20
2 �2+4M1M2V12V21�10

2 �20
2 
0, because under these

conditions, the right-hand side of Eq. �11� will be negative
for any wave vector k, and then �k±

2 given by Eq. �12� will
be complex for every k. We then obtain the following theo-
rem.

Theorem 3. If either M2
2−M1

2
0, V12V21M1M2
0,
M1V11�10

2 −M2V22�20
2 
0, and �M1V11�10

2 −M2V22�20
2 �2

+4V12V21M1M2�10
2 �20

2 	0 or M2
2−M1

2=0 and �M1V11�10
2

−M2V22�20
2 �2+4M1M2V12V21�10

2 �20
2 
0, then all the �k±

2

given by Eq. �12� will be complex for any wave vector k.
Analyzing theorem 3, we find that if M2

2−M1
2
0,

V12V21M1M2
0, M1V11
0, M2V22	0, and
M1M2�2V12V21−V11V22�	0, then the conditions of theorem
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3 are satisfied for any perturbation amplitude �� j0�. In par-
ticular, for Mj 
0, the conditions of theorem 3 will be valid
as soon as M2

2−M1
2
0, V12V21
0, V11	0, V22
0, and

2V12V21−V11V22	0.
It is important to note that if the conditions of each of

theorems 1, 2, and 3 are violated, then at least one of �k+
2 and

�k−
2 will be positive for some wave vectors k and the other

one will be negative for some other wave vectors k. For
example, let M2

2−M1
2=0 �M1V11�10

2 −M2V22�20
2 �2

+4M1M2V12V21�10
2 �20

2 �0. Then if M1V11�10
2 +M2V22�20

2


0 and M1M2�V12V21−V11V22�	0, we will have �k+
2 �0

for any k, and �k+
2 
0 for every wave vector k, verifying the

condition

k2 

2

M1
2+M2

2 �M1V11�10
2 + M2V22�20

2

+ ��M1V11�10
2 − M2V22�20

2 �2 + 4V12V21M1M2�10
2 �20

2 �;

if the wave vector k is taken from the condition

k2 

2

M1
2+M2

2 �M1V11�10
2 + M2V22�20

2

+ ��M1V11�10
2 − M2V22�20

2 �2 + 4V12V21M1M2�10
2 �20

2 � ,

then �k+
2 will be positive. If M1V11�10

2 +M2V22�20
2 	0 and

M1M2�V12V21−V11V22�
0, then both �k±
2 will be positive

for any wave vector k satisfying the condition

k2 	
2

M1
2 + M2

2 �M1V11�10
2 + M2V22�20

2

+ ��M1V11�10
2 − M2V22�20

2 �2 + 4V12V21M1M2�10
2 �20

2 �;

both �k±
2 will be negative for every wave vector k verifying

the condition

k2 

2

M1
2 + M2

2 �M1V11�10
2 + M2V22�20

2

− ��M1V11�10
2 − M2V22�20

2 �2 + 4V12V21M1M2�10
2 �20

2 �;

for any wave vector k verifying the condition

2

M1
2 + M2

2 �M1V11�10
2 + M2V22�20

2

+ ��M1V11�10
2 − M2V22�20

2 �2 + 4V12V21M1M2�10
2 �20

2 �

	 k2 	
2

M1
2 + M2

2 �M1V11�10
2 + M2V22�20

2

− ��M1V11�10
2 − M2V22�20

2 �2 + 4V12V21M1M2�10
2 �20

2 � ,

we will have �k+
2 
0 and �k−

2 	0. These two examples show
that both �k±

2 can be positive for some values of wave vector,
and negative for some other values of wave vector k; also,
one of the �k+

2 and �k−
2 can be positive or negative for all

wave vectors k and the second one changes its sign with
different values of k. Hence we get the following theorem.

Theorem 4. If the conditions of each of theorems 1, 2, and
3 are not met, then both �k±

2 cannot be of the same sign for
every wave vector k.

It is clear that for the complex �k+ or �k−, aj
=aj0 exp�i�Kx+Qy−�k���+ complex conjugate with aj0�0
will be unbounded, and the modulational instability occurs.
We then conclude that theorem 1 and theorem 2 give the
criteria of the modulational stability of the Stokes wave so-
lutions � j =� j0 exp�−i�Vjj� j0

2 +Vj3−j�3−j0
2 +
 j��� of system

�8�, while the criteria of the modulational instability are
given by theorem 3.

Because the criteria on the modulational �in�stability we
found in this section depend mainly on the coefficients of Eq.
�8�, which depend only on the parameters of the coupled
nonlinear transmission line of Fig. 2 when kj

X0, kj
Y0, and � j

are given, we conclude that for a given coupled nonlinear
transmission line, a modulational instability may or may not
occur, depending on the electrical properties of the line.

C. Computational analysis

For all computational simulations, the following nonlinear
transmission line parameters are used:

C0 = 370 pF, C2 = 100 pF, L = 200 
H,V0 = 2V , �13�

b = 0.25 V−1,

while the dispersive element CS is taken variable. For these
line parameters, we compute v=1/�LC0=3.6761�106.
Table I gives the coefficients of the couple NLS equations �8�
for some values of CS, when kB

X0 =−kA
X0 =−0.4 and kB

Y0 =−kA
Y0

=−0.2. Using this table, we compute the frequency square
�k−

2 and the modulational instability growth ±i�k− as a func-
tion of squared modulation wave function k2. In Fig. 5, the
frequency square �k−

2 and the typical structure of the modu-
lational instability growth rate �=−i�k−�k� as functions of
squared modulation wave number k2 are depicted for the line
parameters �13�. The amplitudes of the Stokes wave solu-
tions are taken in the proportion ��20�2=2 ��10�2=10−16. Fig-
ure 5�a� gives the frequency square versus the squared modu-
lation wave number k2. Here, the dotted black line, the solid
black line, and the solid red line correspond to CS=0, 50, and

TABLE I. Coefficients of the coupled NLS equations �8� for different values of the dispersive element CS

for kB
X0 =−kA

X0 =−0.4 and for the line parameters �13�.

CS M1 M2 V11 V22 V12 V21

0 0.58378�10−10 −0.58378�10−10 3.0145�105 4.0226�105 1.2688�106 −1.2688�106

50 0.71753�10−10 −0.71753�10−10 1.3241�105 1.3052�105 6.6937�105 −6.6937�105

100 7.4904�10−11 −7.4904�10−11 84840 77895 4.546�105 −4.546�105
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100 pF, respectively. Each square frequency shown in Fig.
5�a� admits both negative and positive values. The values of
k2 for which the negative values are taken correspond to the
modulational instability wave numbers. The value of k2 for
which these curves cross zero are the critical wave numbers;
they are kC1

2 �2.7854, kC2

2 �1.2578, and kC3

2 �0.838 02. Fig-
ure 5�b� gives the modulational instability growth versus k2.
For Fig. 5�b�, curves a, b, and c of correspond to CS=0, 50,
and CS=100 pF, respectively, and are depicted for 0�k2

�kCj

2 , j=1,2 ,3. Figures 5�a� and 5�b� show that the region
of the modulational instability and the values of the modula-
tional instability growth rate � decrease with the introduction
of the linear capacitance CS=0. We can then conclude that
the effect of dispersive element CS is to decrease the insta-
bility region and the instability growth rate.

In Fig. 6, we plot the electrical amplitudes �� j�x ,y ,��� �j
=1,2� of the perturbed Stokes wave solutions of system �8�
for different times. We have used the modulation wave vec-
tor �K ,Q�= �0.5,0�, which corresponds to the modulation
wave number k=0.5. In each of Figs. 6�a�–6�f�, the red hori-
zontal line corresponds to the amplitude of the Stokes wave,
the solid black curve denotes the electrical amplitude at the
initial time �=0, and the dotted black line denotes the elec-
trical amplitude for �	0. Cures a, c, and e are the amplitude
of the component �1�x ,y ,��, while curves b, d, and f are the
�2�x ,y ,�� component amplitudes. Figures 6�a�–6�f� corre-
spond to the dispersive element CS=0, 50, and CS=100 pF,
respectively. Curves b, which correspond to CS=0 and �
=63�109, show that the instability is intensified by �=63
�109. Curves correspond to CS=50 pF and �=96�109 and
show that the instability is observed by �=96�109. It is seen
from curves f , which correspond to CS=100 pF and �=131
�109, that the instability is remarkable from �=131�109.
For time �=63�109 or �=96�109, or �=131�109, at least
one of the corresponding ��1�x ,y ,���and ��2�x ,y ,��� is far
away from the Stokes wave amplitude ��10� or ��20�. We can
then conclude that the introduction of the dispersive element
CS in the electrical line shown in Fig. 2 increases the time
over which the onset of instability occurs. This fact is very
important. Indeed, as is well known, the instability of a so-
lution does not exclude its observation in experiments: if the
time scale over which the onset of instability occurs far ex-
ceeds the duration of the experiments, then a formally un-
stable solution is as relevant for the experiments as is the
stable solution.

IV. SUMMARY AND CONCLUSION

Summarizing, we have derived a 2D coupled nonlinear
Schrödinger equation to describe the dynamics of nonlinear
waves in a discrete nonlinear electrical transmission line
with dispersive elements. Exploiting the Stokes wave analy-
sis, we built a result that gives a set of criteria for modula-
tional instability �stability� of plane waves. The criteria of the
modulational stability are given by theorems 1 and 2. If one
condition of the criteria is not met, then the perturbation
frequency develops a finite imaginary part and the solution
blows up in time: we say in this case that the plane wave is
modulationally unstable. The criteria of modulational insta-
bility are given by theorem 3. The computational analysis
shows that the effect of dispersive element CS is to decrease
the instability region and the instability growth rate. A few
comments and qualitative conclusions should, however, be
mentioned.

First, if V11=V22	0, V12=V21, and M1 and M2 have the
same sign, let us say, Mj 
0, then we obtain from theorems
1 and 2 that stability of any Stokes wave solution is ensured
if V11

2 	V12
2 . Second, if V12+V21=0, V11=−V22	0, M1


M2
0, then the analysis of theorem 3 shows that the in-
stability of any Stokes wave solution is ensured if V11

2

−2V12
2 	0. We then conclude from an analysis of theorems 1,

2, and 3 that Stokes wave solutions can be modulationally
stable �unstable� for any perturbation amplitude �� j0 � ; that is,

FIG. 5. �Color online� The perturbation square frequency �k−
2

�a� and the typical structure of the modulational instability growth
rate � �b� as a functions of squared modulation wave number k2 in
the special case when kB

X0 =−kA
X0 =−0.4, kB

Y0 =−kA
Y0 =−0.2, and the

line parameters L=200 
H, V0=2 V, and C0=370 pF. �a� The dot-
ted black curve, the solid black curve, and the solid red curve cor-
respond to CS=0, 50, and 100 pF, respectively. �b� Curves a, b, and
c correspond to CS=0, 50, and 100 pF, respectively. The region of
the modulational instability and the values of the modulational in-
stability growth rate � decrease with the introduction of the linear
capacitance CS=0.
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under some conditions on the coefficients of system �8�, any
Stokes wave solution � j =� j0exp�−i�Vjj� j0

2 +Vjl�3−j0
2 +
 j���

is modulationally stable �unstable�. These results are also in
agreement with that reported in Refs. �44–46� for two-
component Bose-Einstein condensate.

The results obtained in this paper are very useful for ei-
ther the investigation of nonlinear transmission lines or of
other similar physical problems, such as nonlinearity, in the
plasma, dusty plasma, Bose-Einstein condensates, etc. They

may be helpful in the study of the propagation of two-
component solitons on nonlinear transmission lines and other
fields of physics.
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